首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Structural elements of the rat μ-opioid receptor important in ligand receptor binding and selectivity were examined using a site-directed mutagenesis approach. Five single amino acid mutations were made, three that altered conserved residues in the μ, δ, and κ receptors (Asn150 to Ala, His297 to Ala, and Tyr326 to Phe) and two designed to test for μ/δ selectivity (Ile198 to Val and Val202 to Ile). Mutation of His297 in transmembrane domain 6 (TM6) resulted in no detectable binding with [3H]DAMGO (3H-labeled d -Ala2, N -Me-Phe4,Gly-ol5-enkephalin), [3H]bremazocine, or [3H]ethylketocyclazocine. Mutation of Asn150 in TM3 produces a three- to 20-fold increase in affinity for the opioid agonists morphine, DAMGO, fentanyl, β-endorphin1–31, JOM-13, deltorphin II, dynorphin1–13, and U50,488, with no change in the binding of antagonists such as naloxone, naltrexone, naltrindole, and nor-binaltorphamine. In contrast, the Tyr326 mutation in TM7 resulted in a decreased affinity for a wide spectrum of μ, δ, and κ agonists and antagonists. Altering Val202 to Ile in TM4 produced no change on ligand affinity, but Ile198 to Val resulted in a four- to fivefold decreased affinity for the μ agonists morphine and DAMGO, with no change in the binding affinities of κ and δ ligands.  相似文献   

2.
Abstract: We report the isolation and characterization of a rat cDNA clone encoding a μ-opioid receptor. This receptor, a 398 amino acid protein, shares 59% overall identity with the mouse Δ-and K -opioid receptors. Transient expression of the receptor in COS cells revealed high-affinity binding of μ-selective opioid antagonists and agonists, with a K D for naloxone ∼1.5 n M , and for [D-Ala2, N -Me-Phe4, Gly5-ol]-enkephalin (DAMGO) and morphine at the high-affinity site of 2–4 n M , confirming a μ-opioid pharmacological profile. Northern blotting and in situ hybridization histoohemistry revealed that the μ-opioid receptor mRNA was expressed in many brain regions, including cerebral cortex, caudate putamen, nucleus accumbens, olfactory tubercle, septal nuclei, thalamus, hippocampus, and medial habenular nucleus, in keeping with the known distribution of the μ-opioid receptor.  相似文献   

3.
Abstract: Radioligand binding assays and functional experiments revealed that the SK-N-BE neuroblastoma cell line expresses a similar ratio of μ- and δ-opioid receptors, both negatively coupled to adenylyl cyclase through pertussis toxin-sensitive G proteins. Our findings also indicate that some functional interaction occurred between the two opioid subtypes; in fact, long-term exposure to [ d -Ala2- N -methyl-Phe4-Gly-ol5]enkephalin (DAMGO), a μ-selective agonist, sensitized the functional response of the δ-selective agonist but not vice versa. It is interesting that in acute interaction experiments, we observed a shift to the right of the concentration-effect curve of either DAMGO or [ d -Pen2,5]enkephalin (DPDPE), a δ-selective agonist, as a result of DPDPE or DAMGO administration, respectively. In addition, low doses of naloxone, an antagonist selective for μ receptors, increased the inhibitory effect of [ d -Ala2, d -Met5]enkephalinamide (DAME), a mixed μ/δ agonist, on adenylyl cyclase activity. Taken overall, these data support the hypothesis of the existence of a cross talk between μ and δ receptors in the SK-N-BE cell line.  相似文献   

4.
Abstract: Endomorphin-1 is a peptide whose binding selectivity suggests a role as an endogenous ligand at μ-opioid receptors. In the present study, the effect of endomorphin-1 on μ receptor-coupled G proteins was compared with that of the μ agonist DAMGO by using agonist-stimulated [35S]GTPγS binding in rat brain. [35S]GTPγS autoradiography revealed a similar localization of endomorphin-1 and DAMGO-stimulated [35S]GTPγS binding in areas including thalamus, caudate-putamen, amygdala, periaqueductal gray, parabrachial nucleus, and nucleus tractus solitarius. Naloxone blocked endomorphin-1-stimulated labeling in all regions examined. Although the distribution of endomorphin-1-stimulated [35S]GTPγS binding resembled that of DAMGO, the magnitude of endomorphin-1-stimulated binding was significantly lower than that produced by DAMGO. Concentration-effect curves of endomorphin-1 and DAMGO in thalamic membranes confirmed that endomorphin-1 produced only 70% of DAMGO-stimulated [35S]GTPγS binding. Differences in maximal stimulation of [35S]GTPγS binding between DAMGO and endomorphin-1 were magnified by increasing GDP concentrations, and saturation analysis of net endomorphin-1-stimulated [35S]GTPγS binding revealed a lower apparent B max value than that obtained with DAMGO. Endomorphin-1 also partially antagonized DAMGO stimulation of [35S]GTPγS binding. These results demonstrate that endomorphin-1 is a partial agonist for G protein activation at the μ-opioid receptor in brain.  相似文献   

5.
Abstract: The present study demonstrates a conditional, agonist-dependent phosphorylation of the μ-opioid receptor (MOR-1) by cyclic AMP-dependent protein kinase (PKA) in membrane preparations of MOR-1-transfected neuroblastoma Neuro2A cells. Opioid agonist-dependent phosphorylation occurs in a time- and concentration-dependent manner (EC50∼40 n M ) and can be abolished by the receptor antagonist naloxone. Stoichiometric analysis indicates incorporation of a maximum of 6 mol of phosphate/mol of receptor in the presence of 1 µ M morphine and 6 n M PKA. Although morphine and related alkaloids as well as some peptide agonists (PLO17 and β-endorphin) stimulated phosphorylation of MOR-1 by PKA, the potent μ-opioid-selective peptide [ d -Ala2, N -MePhe4,Gly-ol5]-enkephalin (DAMGO) or other enkephalin analogues such as [ d -Ala2]-Met5-enkephalinamide (DALA), [ d -Ala2, d -Leu5]-enkephalin (DADLE), and Met5-enkephalin had no effect. The lack of the effect of DAMGO on MOR-1 phosphorylation state was evident also after chronic pretreatment. These results suggest the existence of different agonist-dependent conformations of MOR-1. Furthermore, phosphorylation may be a useful parameter with which to identify different agonist-receptor conformations.  相似文献   

6.
7.
Abstract: To investigate the role of Asp114 in the cloned rat μ-opioid receptor for ligand binding, the charged amino acid was mutated to an asparagine to generate the mutant μ receptor D114N. The wild-type μ receptor and the D114N mutant were then stably expressed in human embryonic kidney 293 cells, and the binding affinities of a series of opioids were investigated. The μ-selective agonists [ d -Ala2,MePhe4,Gly-ol5]enkephalin and morphine and the endogenous peptides Met-enkephalin and β-endorphin exhibited greatly reduced affinities for the D114N mutant compared with the wild-type μ receptor, as did the potent synthetic agonist etorphine. In contrast to the full agonists, the partial agonists buprenorphine and nalorphine and the antagonists diprenorphine and naloxone bound with similar affinities to the wild-type and D114N mutant μ receptors. The reduced affinities of the full agonists for the D114N mutant did not involve an uncoupling of the receptor from G proteins because methadone and etorphine stimulated the D114N μ receptors to inhibit adenylyl cyclase. Although the Asp114 to Asn114 mutation reduced full-agonist binding, mutation of His297 to Asn297 in the μ receptor did not but, in contrast, did reduce binding affinity of the partial agonist buprenorphine and the antagonist diprenorphine. These results indicate that some partial agonists and antagonists may have different determinants for binding to the μ receptor than do the prototypical full agonists.  相似文献   

8.
We have recently shown that the activation of the rat μ-opioid receptor (MOPr, also termed MOR1) by the μ-agonist [ d -Ala2, Me Phe4, Glyol5]enkephalin (DAMGO) leads to an increase in phospholipase D2 (PLD2) activity and an induction of receptor endocytosis, whereas the agonist morphine which does not induce opioid receptor endocytosis fails to activate PLD2. We report here that MOPr-mediated activation of PLD2 stimulates production of reactive oxygen molecules via NADH/NADPH oxidase. Oxidative stress was measured with the fluorescent probe dichlorodihydrofluorescein diacetate and the role of PLD2 was assessed by the PLD inhibitor d -erythro-sphingosine (sphinganine) and by PLD2-small interfering RNA transfection. To determine whether NADH/NADPH oxidase contributes to opioid-induced production of reactive oxygen species, μ-agonist-stimulated cells were pre-treated with the flavoprotein inhibitor, diphenylene iodonium, or the specific NADPH oxidase inhibitor, apocynin. Our results demonstrate that receptor-internalizing agonists (like DAMGO, β-endorphin, methadone, piritramide, fentanyl, sufentanil, and etonitazene) strongly induce NADH/NADPH-mediated ROS synthesis via PLD-dependent signaling pathways, whereas agonists that do not induce MOPr endocytosis and PLD2 activation (like morphine, buprenorphine, hydromorphone, and oxycodone) failed to activate ROS synthesis in transfected human embryonic kidney 293 cells. These findings indicate that the agonist-selective PLD2 activation plays a key role in the regulation of NADH/NADPH-mediated ROS formation by opioids.  相似文献   

9.
Abstract: Voltage-dependent Ca2+ currents were measured in NG108-15 neuroblastoma × glioma hybrid cells transformed to express the rat μ-opioid receptor by the whole-cell configuration of the patch-clamp technique with Ba2+ as charge carrier. A μ-opioid receptor-selective agonist, [ d -Ala2, N -Me-Phe4,Gly5-ol]enkephalin caused significant inhibition of voltage-dependent Ca2+ currents in μ-receptor-transformed NG108-15 cells but not in nontransfected or vector-transformed control cells. On the other hand, a δ-opioid receptor-selective agonist, [ d -penicillamine2, d -penicillamine5]enkephalin, induced inhibition of voltage-dependent Ca2+ currents in both control and μ-receptor-transformed cells, which is mediated by the δ-opioid receptor expressed endogenously in NG108-15 cells. The inhibition of voltage-dependent Ca2+ currents induced by [ d -Ala2, N -Me-Phe4,Gly5-ol]enkephalin and [ d -penicillamine2, d -penicillamine5]enkephalin was reduced by pretreatment of the cells with pertussis toxin or ω-conotoxin GVIA. These results indicate that the μ-opioid receptor expressed from cDNA functionally couples with ω-conotoxin-sensitive N-type Ca2+ channels through the action of pertussis toxin-sensitive G proteins in NG108-15 cells.  相似文献   

10.
Abstract: The effects of morphine and selective ligands for μ-, κ-, and δ-opioid receptors on the extracellular histamine (HA) concentration in the striatum of freely moving rats were examined by in vivo microdialysis. On the day after implantation of the dialysis probe, the HA output per 30-min period was measured using HPLC-fluorometry. Morphine (3.8 mg/kg, s.c.) significantly increased the HA output by ∼200% 1–3 h after treatment. This effect was completely antagonized by naltrexone (1.6 mg/kg, s.c.). The HA output decreased to a level below 10% of the basal value by 4 h after treatment with ( S )-α-fluoromethylhistidine (77 mg/kg, s.c.). In such animals, morphine (3.8 mg/kg, s.c.) had no influence on the HA output. [ d -Ala2,MePhe4,Gly(ol)5]Enkephalin (DAGO; 0.2 µg, i.c.v.), a selective μ-agonist, significantly increased the HA output by ∼150% 0.5–1.5 h after treatment, and this effect was also completely blocked by naltrexone. A selective κ-agonist, U-50,488 (3.8 and 7.6 mg/kg, s.c.), and a selective δ-agonist, [ d -Pen2, d -Pen5]enkephalin (0.5 and 2 µg, i.c.v.), had no effect on the HA output. These findings suggest that the stimulation of μ-opioid receptors by morphine and DAGO increases the extracellular HA concentration by accelerating HA release from nerve endings.  相似文献   

11.
Abstract: The human NK1 tachykinin receptor in the astrocytoma cell line U 373 MG was characterized using selective agonists and antagonists described for this receptor in the rat. Specific [3H]substance P binding sites were present on cell homogenates, whereas [3H]neurokinin A or [3H]-senktide binding sites were absent. The binding was saturable and reversible. The binding of [3H]substance P was inhibited by very low concentrations of [L-Pro9]substance P and [Sar9,Met(O2)11]substance P; septide was ∼ 1,000-fold less potent. The most potent peptide antagonist was trans -4-hydroxy-1-(1 H -indol-3-ylcarbonyl)-L-prolyl- N -methyl- N -(phenylmethyl)-L-tyrosineamide. The rank order of potency for the nonpeptide antagonists was ( S , S )-CP 96,345 > (±)-CP 96,345 > (±)-2-chlorobenzylquinuclidinone > ( R , R )-CP 96,345 > RP 67580 > RP 68651. In [3H]-inositol-labeled cells, substance P stimulated phosphatidylinositol turnover. A good correlation was found when the abilities of NK1 receptor agonists for stimulating inositol phosphate production and for inhibiting [3H]substance P binding were compared. Similarly, the binding and functional assays were well correlated for the antagonists. As a result of its high sensitivity and selectivity, the U 373 MG cell line thus appears an excellent tool for investigating the pharmacology of the human NK1 receptor.  相似文献   

12.
Abstract: The rat μ-opioid receptor (rMOR1), expressed in human embryonic kidney 293 (HEK293) cells, shows a desensitization to the inhibitory effect of the μ agonist DAMGO on adenylate cyclase activity within 4 h of DAMGO preincubation. To investigate the role of calcium/calmodulin-dependent protein kinase II (CaM kinase II) on μ-opioid receptor desensitization, we coexpressed rMOR1 and constitutively active CaM kinase II in HEK293 cells. This coexpression led to a faster time course of agonist-induced desensitization of the μ-opioid receptor. The increase of desensitization could not be observed with a μ-opioid receptor mutant (S261A/S266A) that lacks two putative CaM kinase II phosphorylation sites in the third intracellular loop. In addition, injection of CaM kinase II in Xenopus oocytes led only to desensitization of expressed rMOR1, but not of an S261A/S266A receptor mutant. These results suggest that phosphorylation of Ser261 and Ser266 by CaM kinase II is involved in the desensitization of the μ-opioid receptor.  相似文献   

13.
Abstract— Recent reports have suggested that a major proportion of [3H]kainate binding in goldfish brain is to a novel form of G-protein-linked glutamate receptor. Here we confirm that guanine nucleotides decrease [3H]kainate binding in goldfish brain membranes, but that binding is also reduced to a similar extent under conditions where G-protein modulation should be minimised. Inclusion of GTPγS resulted in an approximately twofold decrease in the affinity of [3H]kainate binding and a 50% reduction in the apparent B max values in both Mg2+/Na+ and Mg2+/Na+-free buffer when assayed at 0°c. The pharmacology of [3H]kainate binding is similar to that of well-characterised ionotropic kainate receptors but unlike that of known me-tabotropic glutamate receptors, with neither 1 S ,3 R -amino-1,3-cyclopentanedicarboxylic acid (1 S ,3 R -ACPD) nor ibo-tenic acid being effective competitors. The molecular mass of the [3H]kainate binding protein, as determined by radiation inactivation, was 40 kDa, similar to the subunit sizes of other lower vertebrate kainate binding proteins that are believed to comprise ligand-gated ion channels. Furthermore, GTP-γS also inhibited the binding of the non-NMDA receptor-selective antagonist 6-[3H]cyano-7-ni-troquinoxaline-2,3-dione. These data strongly suggest that the regulatory interaction between guanine nucleotides and [3H]kainate and 6-[3H]cyano-7-nitroquinoxaline-2,3-dione binding is complex and involves competition at the agonist/antagonist binding site in addition to any G-protein-mediated modulation.  相似文献   

14.
Abstract : Agonist-induced down-regulation of opioid receptors appears to require the phosphorylation of the receptor protein. However, the identities of the specific protein kinases that perform this task remain uncertain. Protein kinase C (PKC) has been shown to catalyze the phosphorylation of several G protein-coupled receptors and potentiate their desensitization toward agonists. However, it is unknown whether opioid receptor agonists induce PKC activation under physiological conditions. Using cultured SH-SY5Y neuroblastoma cells, which naturally express μ- and δ-opioid receptors, we investigated whether μ-opioid receptor agonists can activate PKC by measuring enzyme translocation to the membrane fraction. PKC translocation and opioid receptor densities were simultaneously measured by 3H-phorbol ester and [3H]diprenorphine binding, respectively, to correlate alterations in PKC localization with changes in receptor binding sites. We observed that μ-opioid agonists have a dual effect on membrane PKC density depending on the period of drug exposure. Exposure for 2-6 h to [ d -Ala2, N -Me-Phe4, Gly-ol]enkephalin or morphine promotes the translocation of PKC from the cytosol to the plasma membrane. Longer periods of opioid exposure (>12 h) produce a decrease in membrane-bound PKC density to a level well below basal. A significant decrease in [3H]diprenorphine binding sites is first observed at 2 h and continues to decline through the last time point measured (48 h). The opioid receptor antagonist naloxone attenuated both opioid-mediated PKC translocation and receptor down-regulation. These results demonstrate that opioids are capable of activating PKC, as evidenced by enhanced translocation of the enzyme to the cell membrane, and this finding suggests that PKC may have a physiological role in opioid receptor plasticity.  相似文献   

15.
Abstract: The astrocytoma cell line rat C6 glioma has been used as a model system to study the mechanism of various opioid actions. Nevertheless, the type of opioid receptor(s) involved has not been established. Here we demonstrate the presence of high-affinity U69,593, endomorphin-1, morphine, and β-endorphin binding in desipramine (DMI)-treated C6 cell membranes by performing homologous and heterologous binding assays with [3H]U69,593, [3H]morphine, or 125I-β-endorphin. Naive C6 cell membranes displayed U69,593 but neither endomorphin-1, morphine, nor β-endorphin binding. Cross-linking of 125I-β-endorphin to C6 membranes gave labeled bands characteristic of opioid receptors. Moreover, RT-PCR analysis of opioid receptor expression in control and DMI-treated C6 cells indicate that both κ- and μ-opioid receptors are expressed. There does not appear to be a significant difference in the level of μ nor κ receptor expression in naive versus C6 cells treated with DMI over a 20-h period. Collectively, the data indicate that κ- and μ-opioid receptors are present in C6 glioma cells.  相似文献   

16.
Abstract: Radiolabeled analogues of neuromedin N have been prepared by acylation of the α, ε1, and ε2 amino groups of [Lys2]neuromedin N (Lys-Lys-Pro-Tyr-Ile-Leu) either with the 125I-labeled Bolton-Hunter reagent or with N -succinimidyl[2,3-3H]propionate. The binding properties of the purified analogues toward newborn mouse brain homogenate or toward membranes of cells transitorily (COS) or permanently (AA1) transfected with the cloned rat brain neurotensin receptor cDNA were evaluated and compared with those of radiolabeled neurotensin. The α-modified analogue of [Lys2]neuromedin N behaves exactly like neurotensin in these binding experiments, whereas the ε1- and ε2-modified analogues selectively recognize the fraction of neurotensin binding sites that is sensitive to GTPγS. The proportion of neurotensin receptors coupled to GTP binding proteins is ∼50% in membranes of newborn mouse brain or of AA1 cells that respond to neurotensin by an increase of the intracellular inositol trisphosphate concentration. By contrast, membranes of transitorily transfected COS cells that do not respond to neurotensin exhibit very low levels of GTP-sensitive receptors labeled with the ε1- or ε2-modified analogues. These radiolabeled peptides offer new tools to selectively detect active neurotensin receptors.  相似文献   

17.
Abstract: A tritiated heptapeptide, [3H]Tyr-Gly-Gly-Phe-Met-Arg-Phe ([3H]Met-enkephalin-Arg6-Phe7), with high specific radioactivity has been synthesized in order to characterize its opioid binding activity to frog brain membrane fractions. The apparent K D value of the radioligand calculated from homologous displacement experiments was 3.4 n M , and the maximal number of specific binding sites was 630 fmol/mg of protein. The K D determined from equilibrium saturation binding studies was found to be 3.6 n M . However, the Hill coefficient was far below unity ( n H = 0.43), which suggests the presence of a second, lower affinity binding site. The presence of this binding component is strengthened by the displacement experiments performed with levorphanol and some other ligands. It is assumed that the lower affinity site has no opiate character. The rank order of potency of the applied ligands in competing reversibly with [3H]Met-enkephalin-Arg6-Phe7 binding reflects a κ2- and/or δ-subtype specificity of the heptapeptide. Binding to a κ1 and/or μ site of opioid receptors is excluded, but the existence of a novel endogenous opiate receptor subtype for Met-enkephalin-Arg6-Phe7 in frogs cannot be ruled out. The [3H]Met-enkephalin-Arg6-Phe7 binding was inhibited by both sodium ions and GppNHp, which suggests the opioid agonist character of the heptapeptide.  相似文献   

18.
Iron inefficiency in the maize ( Zea mays L.) mutant ysl is caused by a defect in the uptake system for Fe-phytosiderophores. To characterize this defect further, the uptake kinetics of Fe-phytosiderophores in ysl was compared to the Fe-efficient maize cultivar Alice. Short-term uptake of 59Fe-labeled Fe-deoxymugineic acid (Fe-DMA) was measured over a concentration range of 0.03 to 300 μM. Iron uptake in Fe-deficient plants followed Michaelis-Menten kinetics up to about 30 μM and was linear at higher concentrations, indicating two kinetically distinct components in the uptake of Fe-phytosiderophores. The saturable component had similar Km (∼ 10 μM) in both genotypes. In contrast. Vmax was 5.5 μmol Fe-DMA g−1 dry weight [30 min]−1 in Alice, but only 0.6 μmol Fe-DMA g−1 dry weight [30 min]−1 in ysl. Uptake experiments with double-labeled 59Fe-[14C]DMA suggest that in both cultivars Fe-DMA was taken up by the roots as the intact chelate. The results indicate the existence of a high-affinity and a low-affinity uptake system mediating Fe-phytosiderophore transport across the root plasma membrane in maize. Apparently, the mutation responsible for Fe inefficiency in ysl affected high-affected uptake and led to a decrease in activity and/or number of Fe-phytosiderophore transporters.  相似文献   

19.
Abstract: Guanine nucleotides differentiate binding of tritium-labeled agonists and antagonists to rat brain membranes. In the absence of sodium, GTP (50 μM) decreased binding of [3H]-labeled agonists by 20–60% and [3H]-labeled antagonists by 0–20%. In the presence of 100 mM-NaCl, GTP had no effect on antagonist binding, but decreased agonist binding by 60–95%. GMP was less potent than either GTP or GDP in decreasing agonist binding. GTP (50 μM) reduced high-affinity [3H]dihydromorphine sites by 52% and low-affinity sites by 55%. Without sodium, GTP reduced high-affinity [3H]-naloxone sites by 36%; in the presence of 100 mM-NaCl, GTP had no effect on either high- or low-affinity [3H]naloxone sites. GTP increased the association rate of [3H]dihydromorphine twofold and the dissociation rate by fourfold, while having no effect on association or dissociation rates of the antagonist [3H]diprenorphine. The affinities of uniabeled antagonists in inhibiting [3H]-diprenorphine binding were not affected by GTP or sodium, but the affinities of agonists were reduced 40- 120-fold, with met- and leu-enkephalin affinities reduced by the greatest degree. GTP and sodium lowered [3H]dihydromorphine binding in an additive fashion, while divalent cations, especially manganese, reversed the effects of GTP on [3H]-labeled agonist binding by stimulating membrane-bound phosphatases that hydrolyze GTP to GMP and guanosine. These results suggest that by affecting binding of agonists, but not antagonists, GTP may regulate opiate receptor interactions with their physiological effectors.  相似文献   

20.
Cloning and Characterization of a Mouse σ1 Receptor   总被引:1,自引:1,他引:0  
Abstract: A cDNA clone (S2-1a) isolated from a mouse brain cDNA library, using a guinea pig σ1 cDNA as probe, has high homology to the predicted protein sequence of the guinea pig (88%) and human (90%) σ1 receptors. Northern analysis revealed a major mRNA of ∼1.8 kb in a wide range of mouse tissues, with highest levels in brain, liver, kidney, and thymus. Southern analysis and chromosomal mapping in the mouse suggested a single-copy gene in region A5-B2 of chromosome 4. Expression of the clone in MCF-7 and CHO cells led to a pronounced increase in (+)-[3H]pentazocine binding with a selectivity profile consistent with σ1 receptors. In vitro translation yielded a protein of ∼28 kDa, as did transfection of a probe containing the hemagglutinin (HA) epitope (S2-1a.HA) into CHO cells, as determined by western analysis using an antibody directed against HA. (+)-[3H]-Pentazocine binding to immunopurified HA-tagged receptor demonstrated conclusively that S2-1a.HA encodes a high-affinity (+)-[3H]pentazocine binding site with characteristics of a murine σ1 receptor. An antisense oligodeoxynucleotide designed from S2-1a potentiated opioid analgesia in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号