首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feng S  Pan C  Jiang X  Xu S  Zhou H  Ye M  Zou H 《Proteomics》2007,7(3):351-360
Immobilized metal affinity chromatography (IMAC) is a commonly used technique for phosphoproteome analysis due to its high affinity for adsorption of phosphopeptides. Miniaturization of IMAC column is essential for the analysis of a small amount of sample. Nanoscale IMAC column was prepared by chemical modification of silica monolith with iminodiacetic acid (IDA) followed by the immobilization of Fe3+ ion inside the capillary. It was demonstrated that Fe3+-IDA silica monolithic IMAC capillary column could specifically capture the phosphopeptides from tryptic digest of alpha-casein with analysis by MALDI-TOF MS. The silica monolithic IMAC capillary column was manually coupled with nanoflow RPLC/nanospray ESI mass spectrometer (muRPLC-nanoESI MS) for phosphoproteome analysis. The system was validated by analysis of standard phosphoproteins and then it was applied to the analysis of protein phosphorylation in mouse liver lysate. Besides MS/MS spectra, MS/MS/MS spectra were also collected for neutral loss peak. After database search and manual validation with conservative criteria, 29 singly phosphorylated peptides were identified by analyzing a tryptic digest of only 12 mug mouse liver lysate. The results demonstrated that the silica monolithic IMAC capillary column coupled with muRPLC-nanoESI MS was very suitable for the phosphoproteome analysis of minute sample.  相似文献   

2.
Coast GM 《Peptides》2001,22(2):153-160
Diuresis was studied in vivo by measuring the loss of tritiated water. The basal rate of water loss (5 nl/min) represents respiratory and cuticular losses, whereas higher rates reflect urine output, which reaches 20 nl/min after injection of 1 microl distilled water. This response to hypervolemia involves release of a diuretic hormone(s) into the hemolymph. However, housefly diuretic peptides increased urine output to a maximum of only 7 nl/min, and higher rates may require fluid reabsorption from the hindgut to be reduced. Diuresis is partially blocked by injected anti-muscakinin antibodies, providing evidence of a hormonal function for this insect myokinin.  相似文献   

3.
The potent botulinum neurotoxin inhibits neurotransmitter release at cholinergic nerve terminals, causing a descending flaccid paralysis characteristic of the disease botulism. The currently expanding medical use of the neurotoxin to treat several disorders, as well as the potential misuse of the neurotoxin as an agent in biowarfare, has made understanding of the nature of the toxin's catalytic activity and development of inhibitors critical. To study the catalytic activity of botulinum neurotoxin more thoroughly and characterize potential inhibitors, we have developed a capillary electrophoresis method to measure catalytic activity of different serotypes of botulinum neurotoxin using peptides derived from the native substrates. This assay requires only a minute amount of sample (25 nl), is relatively rapid (15 min/sample), and allows the determination of enzyme kinetic constants for a more sophisticated characterization of inhibitors and neurotoxin catalytic activity. Using this method, we can measure activity of five of the seven serotypes of botulinum neurotoxin (A, B, E, F, and G) with two peptide substrates. Botulinum neurotoxin serotypes C and D did not cleave our peptides, lending insight into potential substrate requirements among the serotypes.  相似文献   

4.
A tryptic digest generated from Xenopus laevis fertilized embryos was fractionated by RPLC. One set of 30 fractions was analyzed by 100‐min CZE‐ESI‐MS/MS separations (50 h total instrument time), and a second set of 15 fractions was analyzed by 3‐h UPLC‐ESI‐MS/MS separations (45 h total instrument time). CZE‐MS/MS produced 70% as many protein IDs (4134 versus 5787) and 60% as many peptide IDs (22 535 versus 36 848) as UPLC‐MS/MS with similar instrument time (50 h versus 45 h) but with 50 times smaller total consumed sample amount (1.5 μg versus 75 μg). Surprisingly, CZE generated peaks that were 25% more intense than UPLC for peptides that were identified by both techniques, despite the 50‐fold lower loading amount; this high sensitivity reflects the efficient ionization produced by the electrokinetically pumped nanospray interface used in CZE. This report is the first comparison of CZE‐MS/MS and UPLC‐MS/MS for large‐scale eukaryotic proteomic analysis. The numbers of protein and peptide identifications produced by CZE‐ESI‐MS/MS approach those produced by UPLC‐MS/MS, but with nearly two orders of magnitude lower sample amounts.  相似文献   

5.
The comprehensive analysis of biological systems requires a combination of genomic and proteomic efforts. The large-scale application of current genomic technologies provides complete genomic DNA sequences, sequence tags for expressed genes (EST's), and quantitative profiles of expressed genes at the mRNA level. In contrast, protein analytical technology lacks the sensitivity and the sample throughput for the systematic analysis of all the proteins expressed by a tissue or cell. The sensitivity of protein analysis technology is primarily limited by the loss of analytes, due to adsorption to surfaces, and sample contamination during handling. Here we summarize our work on the development and use of microfabricated fluidic systems for the manipulation of minute amounts of peptides and delivery to an electrospray ionization tandem mass spectrometer. New data are also presented that further demonstrate the potential of these novel approaches. Specifically, we describe the use of microfabricated devices as modules to deliver femtomole amounts of protein digests to the mass spectrometer for protein identification. We also describe the use of a microfabricated module for the generation of solvent gradients at nl/min flow rates for gradient chromatography-tandem mass spectrometry. The use of microfabricated fluidic systems reduces the risk of sample contamination and sample loss due to adsorption to wetted surfaces. The ability to assemble dedicated modular systems and to operate them automatically makes the use of microfabricated systems attractive for the sensitive and large-scale analysis of proteins.  相似文献   

6.
A peptidomics approach was developed to identify transglutaminase-susceptible Q residues within a pepsin-trypsin gliadin digest. Based on tagging with a monodansylcadaverine fluorescent probe, six alpha/beta-, gamma-gliadin, and low molecular weight glutenin peptides were identified by nanospray tandem mass spectrometry. In functioning as an acyl acceptor, tissue transglutaminase was able to form complexes with the glutamine-rich gliadin peptides, whereas by lowering pH, the peptides were deamidated by transglutaminase at the same Q residues, which were previously transamidated. The main common feature shared by the peptides was the consensus sequence Q-X-P. Our findings offer relevant information for the understanding of how dietary peptides interact with the host organism in celiac disease.  相似文献   

7.
High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that can be used to reduce sample complexity and increase dynamic range in tandem mass spectrometry experiments. FAIMS fractionates ions in the gas-phase according to characteristic differences in mobilities in electric fields of different strengths. Undesired ion species such as solvated clusters and singly charged chemical background ions can be prevented from reaching the mass analyzer, thus decreasing chemical noise. To date, there has been limited success using the commercially available Thermo Fisher FAIMS device with both standard ESI and nanoLC-MS. We have modified a Thermo Fisher electrospray source to accommodate a fused silica pulled tip capillary column for nanospray ionization, which will enable standard laboratories access to FAIMS technology. Our modified source allows easily obtainable stable spray at flow rates of 300 nL/min when coupled with FAIMS. The modified electrospray source allows the use of sheath gas, which provides a fivefold increase in signal obtained when nanoLC is coupled to FAIMS. In this work, nanoLC-FAIMS-MS and nanoLC-MS were compared by analyzing a tryptic digest of a 1:1 mixture of SILAC-labeled haploid and diploid yeast to demonstrate the performance of nanoLC-FAIMS-MS, at different compensation voltages, for post-column fractionation of complex protein digests. The effective dynamic range more than doubled when FAIMS was used. In total, 10,377 unique stripped peptides and 1649 unique proteins with SILAC ratios were identified from the combined nanoLC-FAIMS-MS experiments, compared with 6908 unique stripped peptides and 1003 unique proteins with SILAC ratios identified from the combined nanoLC-MS experiments. This work demonstrates how a commercially available FAIMS device can be combined with nanoLC to improve proteome coverage in shotgun and targeted type proteomics experiments.  相似文献   

8.
The zone stabilization in capillary isotachophoresis in the water phase has been improved by methylcellulose so that proteins can be analysed. Hemoglobin and hemiglobin cyanide samples were studied as model systems. Ampholine carrier ampholytes were used as spacers, enhancing the detection of the different components. The optimal amounts of Ampholine, however, were found to be much smaller than in most of the previously published reports. Linear relationships were found between the zone lengths and sample amounts, including spacers. The separations were reproducible and reached the isotachophoretic steady state. The hemiglobin cyanide was fractionated by isoelectric focusing. The four main fractions were then analyzed by capillary isotachophoresis and shown to be heterogeneous in mobility with a pH of 7.5 in the leading electrolyte. The component zones of the total hemiglobin cyanide sample were all identified in relation to the isotachophoretic components of the isoelectric fractions. The total analysis time was in average 30-40 min. The sample amounts were about 40 mug protein in each experiment with very small Ampholine volumes, 25-100 nl 40% (w/v).  相似文献   

9.
Froelich JM  Reid GE 《Proteomics》2008,8(7):1334-1345
The origin and control of ex vivo sample handling related oxidative modifications of methionine-, S-alkyl cysteine-, and tryptophan-containing peptides obtained from typical "in-solution" or "in-gel" proteolytic digestion strategies, have been examined by capillary HPLC and MS/MS. The origin of increased oxidation levels were found to be predominantly associated with the extensive ex vivo sample handling steps required for gel electrophoresis and/or in-gel proteolytic digestion of proteins prior to analysis by MS. Conditions for deliberately controlling the oxidation state (both oxidation and reduction) of these peptides, as well as for those containing cysteine, have been evaluated using a series of model synthetic peptides and standard tryptic protein digests. Essentially complete oxidation of methionine- and S-alkyl cysteine-containing peptides was achieved by reaction with 30% hydrogen peroxide/5% acetic acid at room temperature for 30 min. Under these conditions, cysteine was also converted to cysteic acid, while only limited oxidation of tryptophan to oxindolylalanine, and methionine and S-alkyl cysteine sulfoxides to their respective sulfones, were observed. Efficient reduction of methionine- and S-alkyl cysteine sulfoxide-containing peptides was achieved by reaction in 1 M dimethylsulfide/10 M hydrochloric acid at room temperature for 10 and 45 min, respectively. None of the reduction conditions evaluated were found to result in the reduction of oxindolylalanine, cysteic acid, or methionine sulfone.  相似文献   

10.
The reactive sulfhydryl group (SHD) (Kawakita et al. (1980) J. Biochem. 87, 609-617) which is essential for the decomposition of the E-P intermediate of Ca2+-transporting ATPase of the rabbit skeletal muscle sarcoplasmic reticulum has been identified. One sample of sarcoplasmic reticulum membranes was reacted for 3 min with 0.4 mM N-[3H]ethylmaleimide at pH 7.0 at 30 degrees C to a labeling density of 1 mol/mol ATPase without loss of the Ca2+-transporting activity. Another sample of the membranes was treated similarly with non-radioactive N-ethylmaleimide and then labeled with 0.4 mM N-ethyl[14C]maleimide for 17 min. An extensive loss of the Ca2+-transporting activity occurred during the period of this radio-labeling, thus substantiating the 14C-labeling of SHD. The labeled membranes were digested by thermolysin, and the labeled peptides were fractionated by gel filtration and reversed-phase HPLC. Two major radioactive peptides were present in both 3H- and 14C-labeled thermolytic digests, and each of the major components of 14C-labeled peptides had a counterpart in the major components of 3H-labeled peptides which behaved identically on HPLC. The major 14C-labeled peptides were purified and found to be identical with the two SHN peptides, TL-I and TL-II (Saito-Nakatsuka et al. (1987) J. Biochem. 101, 365-376), and 0.5 mol/mol ATPase each of Cys344 and Cys364 was assigned as SHD. It seems that the Ca2+-transport system retains its activity while either of the two Cys residues is unoccupied, but loses it when both of them are modified with N-ethylmaleimide.  相似文献   

11.
The liquid chromatography-multiple reaction monitoring-tandem mass spectrometry (LC-MRM-MS/MS) method using (13)C stable isotope-labeled dipeptides was newly developed to simultaneously determine the absorption of three antihypertensive peptides (Val-Tyr, Met-Tyr, and Leu-Tyr) into blood of spontaneously hypertensive rats in one run-in assay. After extracting (13)C-labeled peptides in blood sample with a C(18) cartridge, the extract was applied to a (13)C monoisotopic transition LC-MRM-MS/MS system with D-Val-Tyr included as internal standard. An excellent separation of each dipeptide in LC was achieved at the elution condition of 5-100% methanol in 0.1% formic acid at a flow rate of 0.25 ml/min. The (13)C-labeled peptides ionized by electron spray were detected in the positive ion mode within 15 min. The established method showed high reproducibility with less than 10% coefficient of variation as well as high accuracy of more than 85%. After the administration of a mixture containing the three (13)C-labeled dipeptides to rats at each dose of 30 mg/kg, we could successfully determine the intact absorption of each (13)C-labeled peptide with the maximal absorption amount of 1.1 ng/ml plasma for Val-Tyr by the proposed LC-MRM-MS/MS method.  相似文献   

12.
The study of changes in protein levels between samples derived from cells representing different biological conditions is a key to the understanding of cellular function. There are two main methods available that allow both for global scanning for significantly varying proteins and targeted profiling of proteins of interest. One method is based on 2-D gel electrophoresis and image analysis of labelled proteins. The other method is based on LC-MS/MS analysis of either unlabelled peptides or peptides derived from isotopically labelled proteins or peptides. In this study, the non-labelling approach was used involving a new software, DeCyder MS Differential Analysis Software (DeCyder MS) intended for automated detection and relative quantitation of unlabelled peptides in LC-MS/MS data.Total protein extracts of E. coli strains expressing varying levels of dihydrofolate reductase and integron integrase were digested with trypsin and analyzed using a nanoscale liquid chromatography system, Ettan MDLC, online connected to an LTQTM linear ion-trap mass spectrometer fitted with a nanospray interface. Acquired MS data were subjected to DeCyder MS analysis where 2-D representations of the peptide patterns from individual LC-MS/MS analyses were matched and compared.This approach to unlabelled quantitative analysis of the E. coli proteome resulted in relative protein abundances that were in good agreement with results obtained from traditional methods for measuring protein levels.  相似文献   

13.
Madin-Darby canine kidney (MDCK) cells (strain I) grown on 0.45 micron pore size nitrocellulose filters formed monolayers which were highly polarized and had high transepithelial electrical resistance (greater than 3000 ohm X cm2). Morphometric analysis showed that the area of the basolateral surface domain was 7.6 times larger than that of the apical. The uptake of fluid-phase markers [3H]inulin and horseradish peroxidase (HRP) was studied from the apical and the basal side of the monolayer. Uptake of [3H]inulin was biphasic and the rate during the first 40 min corresponded to a fluid phase uptake of 20.5 X 10(-8) nl/min per cell from the basolateral side, and 1.0 X 10(-8) nl/min per cell from the apical side. Electron micrographs of the monolayers after HRP uptake showed that the marker was rapidly delivered into endosome-like vesicles and into multivesicular bodies. No labelling of the Golgi complex could be observed during 2 h of uptake. Evidence was obtained for the transport of fluid phase markers across the cell. HRP and fluorescein isothiocyanate-dextran crossed the monolayers in either direction at a rate corresponding to approximately 3 X 10(-8) nl of fluid/min/cell. Adding the transcytosis rate to the rate of fluid accumulation into the cell yielded a total basolateral endocytic rate which was 6-fold greater than the apical rate. When the uptake rates were normalized for membrane area the apical and basolateral endocytic rates were about equal per unit cell surface area.  相似文献   

14.
Electrospray ionization (ESI) mass spectrometry is a powerful and versatile tool for proteomic analysis. By understanding how proteins and peptides behave during ESI, it is possible to predict source conditions that will maximize ionization efficiency, ultimately leading to lower detection limits for protein identification and more accurate quantitation. In this article, we provide an overview of a variety of electrospray-based ionization methods, including nanospray, liquid chromatography and capillary electrophoresis-coupled sources, and how they are optimized for proteomic samples. We will touch upon analyte characteristics, solvent/eluent conditions as well as optimization of ESI for top-down, bottom-up and quantitative experiments.  相似文献   

15.
In this study, mesoporous silicate was applied as a matrix for the analysis of various molecules from small molecules to medium sized peptides in laser desorption/ionization mass spectrometry. In contrast with conventional matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS), the proposed approach desorption/ionization on mesoporous silicate mass spectrometry (DIOM-MS), significantly reduces the problem of matrix interference in low mass region and can be applied to the analysis of versatile chemicals including amino acids, synthetic drugs, peptides and others. In addition, distinctive advantage of DIOM-MS showed higher salt tolerance and could be applied to identify the proteins from the analysis of tryptically digested peptides. DIOM-MS has several availabilities such as easy sample preparation, rapid analysis of small molecules without noise, peptide analysis without organic matrix, high salt tolerance, versatile coupling with other separation techniques, and high throughput manner.  相似文献   

16.
A mass spectrometry-based method was developed for selective detection of FP-biotinylated peptides in complex mixtures. Mixtures of peptides, at the low-picomole level, were analyzed by liquid chromatography and positive ion, nanospray, triple quadrupole, linear ion trap mass spectrometry. Peptides were fragmented by collision-activated dissociation in the mass spectrometer. The free FP-biotin and peptides containing FP-biotinylated serine or FP-biotinylated tyrosine yielded characteristic fragment ions at 227, 312, and 329 m/z. FP-biotinylated serine yielded an additional characteristic fragment ion at 591 m/z. Chromatographic peaks containing FP-biotinylated peptides were indicated by these diagnostic ions. Data illustrating the selectivity of the approach are presented for tryptic digests of FP-biotinylated trypsin and FP-biotinylated serum albumin. A 16-residue peptide from bovine trypsin was biotinylated on the active site serine. A 3-residue peptide from bovine albumin, YTR, was biotinylated on Tyr410. This latter result confirms that the organophosphorus binding site of albumin is a tyrosine. This method can be used to search for new biomarkers of organophosphorus agent exposure.  相似文献   

17.
Turkina MV  Villarejo A  Vener AV 《FEBS letters》2004,564(1-2):104-108
The surface-exposed peptides were cleaved by trypsin from the photosynthetic thylakoid membranes isolated from the green alga Chlamydomonas reinhardtii. Two phosphorylated peptides, enriched from the peptide mixture and sequenced by nanospray quadrupole time-of-flight mass spectrometry, revealed overlapping sequences corresponding to the N-terminus of a nuclear-encoded chlorophyll a/b-binding protein CP29. In contrast to all known nuclear-encoded thylakoid proteins, the transit peptide in the mature algal CP29 was not removed but processed by methionine excision, N-terminal acetylation and phosphorylation on threonine 6. The importance of this phosphorylation site is proposed as the reason of the unique transit peptide retention.  相似文献   

18.
R M Pope  C S Raska  S C Thorp  J Liu 《Glycobiology》2001,11(6):505-513
A highly sensitive method to identify and quantify heparan sulfate (HS) oligosaccharides by using nano-electrospray ionization mass spectrometry (nESI-MS) is described. The new approach allows us to detect approximately 50 nM of a chemically synthesized pentasaccharide with a structure of GlcNS6S-GlcA-GlcNS6S-IdoA2S-GlcNS6SOMe (3-OH pentasaccharide). Typically, solutions were infused for a total of 5 min, at an average flow rate of 30 nl/min, and the remaining sample was recovered from the nanovial. The spectra shown were obtained by summing scans for 1--3 min. Hence, our data indicated that as little as 3 x 10(-15) mole of the pentasaccharide was consumed to obtain a reasonable spectrum at the concentration as low as 50 nM. In addition, we found a linear relationship between the relative response of the molecular ion and the concentration of the analyzed 3-OH pentasaccharide, demonstrating that this approach can be used to determine the amount of HS oligosaccharides. To this end, a 3-O-sulfated pentasaccharide was prepared by incubating the 3-OH pentasaccharide with purified HS 3-O-sulfotransferase-1 and 3'-phosphoadenosine-5'-phospho[(35)S]sulfate. The resulting 3-O-sulfated pentasaccharide was purified and analyzed by nESI-MS. Based on the standard curve constructed with the 3-OH pentasaccharide, we calculated the concentration of the 3-O-sulfated pentasaccharide by the relative response. The result indicates that this value is very close to the value measured by [(35)S]sulfate radioactivity. In conclusion, nESI-MS provides both high sensitivity and the capacity to quantify HSs. This approach is likely to become a very important tool for structural analysis and sequencing of HS and heparin oligosaccharides.  相似文献   

19.
This study examines for the first time the effects of uninephrectomy (Nx) on modulation of whole kidney glomerular filtration rate (GFR), single-nephron GFR (SNGFR), and progression of diabetic nephropathy in the db/db mouse model of type 2 diabetes mellitus. To characterize SNGFR and tubuloglomerular feedback (TGF) responses to Nx and chronic neuronal nitric oxide synthase inhibition in the db/db mouse, we studied the effects of Nx on whole kidney GFR, SNGFR, and TGF characteristics in db/db and wild-type (WT) mice after Nx or sham Nx. We also documented progression of glomerular changes over a 6-mo period. Whole kidney GFR and SNGFR were significantly higher in db/db Nx than db/db sham mice, without change in proximal tubule reabsorptive rates. The TGF responses, determined as proximal-distal SNGFR differences, were brisk: 12.1 +/- 1.0 vs. 8.4 +/- 0.6 nl/min in WT sham (P < 0.05), 15.7 +/- 1.0 vs. 12.0 +/- 1.0 nl/min in WT Nx (P < 0.05), and 17.8 +/- 1.3 vs. 14.3 +/- 1.0 nl/min in db/db Nx (P < 0.05) mice. Chronic ingestion of the neuronal nitric oxide synthase inhibitor S-methylthiocitrulline for 2-3 wk after Nx had no effect on SNGFR or the TGF response. These studies show further elevations in whole kidney GFR and SNGFR in these hyperglycemic morbidly obese db/db mice, with an intact TGF system after Nx. In addition, in the db/db Nx mice, 4-6 mo after Nx, there was an exacerbation of the lesions of diabetic nephropathy, as quantified by a significant increase in the ratio of mesangial surface area to total glomerular surface area.  相似文献   

20.
Proteins bound to a glutathione-S-transferase-p21Cip1 affinity column were separated by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified using tandem mass spectrometry. Capillary liquid chromatography coupled to microelectrospray tandem mass spectrometry (capLC-microESI MS/MS) in an ion trap allowed identification of the proteins present in the gel bands. Of eleven bands analyzed, fifty-three proteins were identified. More than one hundred tryptic peptides were detected on-line, automatically fragmented and used for protein characterization in databases. Samples were also analyzed by off-line nanospray and matrix-assisted laser desorption/ionization mass spectrometry. CapLC-microESI MS/MS was the most efficient technique for the analysis of these protein mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号