首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to establish an easy and accurate method for the determination of bisphenol-A (BPA) in the body liquid such as serum and urine. Two high-performance liquid chromatography (HPLC) systems, HPLC with electrochemical detector (ED), and HPLC with mass spectrometry (MS) using electrospray ionization (ESI) interface were used for the assay in the serum samples prepared with solid-phase extraction method. Water or EtOH at a concentration below 50% was suitable for the extraction of BPA from serum. The limit of detection of BPA was 0.2 ng ml−1 for the HPLC-ED method and 0.1 ng ml−1 for HPLC–MS. There was a good correlation between the data obtained by the two HPLC systems. BPA concentrations in healthy human serum were low (0–1.6 ng ml−1). From various commercial fetal bovine serum and sheep plasma, however, significant amounts of BPA were detected. Since no BPA was detected from sheep plasma immediately after collection, the high amounts of BPA were considered to be caused by the handling of blood during the preparation of the products after blood collection. In vitro study showed that the amount of BPA leached from polycarbonate tube into sheep plasma were 40 times larger than those into water and the leached amount of BPA depended on the temperature (37°C>20°C>5°C).  相似文献   

2.
A sensitive and specific high-performance liquid chromatographic (HPLC) method with UV detection was developed for the determination of minocycline in human plasma and parotid saliva samples. Samples were extracted using an Oasis™ HLB cartridge and were injected into a C8 Nucleosil column. The HPLC eluent contained acetonitrile–methanol–distilled water–0.1% trifluoroacetic acid (25:2:72.9:0.1, v/v). Demeclocycline was used as internal standard. The assay showed linearity in the tested range of 0.1–25 μg/ml. The limit of quantitation was 100 ng/ml. Recovery from plasma or parotid saliva averaged 95%. Precision expressed as %CV was in the range 0.2–17% (limit of quantitation). Accuracy ranged from 93 to 111%. In the two matrices studied at 20 and 4°C, rapid degradation of the drug occurred. Frozen at −30°C, this drug was stable for at least 2 months, the percent recovery averaged 90%. The method’s ability to quantify minocycline with precision, accuracy and sensitivity makes it useful in pharmacokinetic studies.  相似文献   

3.
A selective high-performance liquid chromatographic (HPLC) assay for a sigma receptor antagonist, DuP 734 (I), in rat plasma has been developed. Compound I and internal standard, XC031 (I.S.), were first extracted from plasma into an ethyl acetate—toluene mixture (3:7, v/v) and then back-extracted into freshly prepared phosphoric acid (0.03 M). Separation of I and I.S. with no interference from endogenous substances was achieved on a reversed-phase octyl column and detection was by UV at 229 nm. The mobile phase consisted of acetonitrile—glacial acetic acid—triethylamine—0.05 M ammonium acetate (670:4:2:2000, v/v). Using 0.5 ml of rat plasma for extraction, the limit of quantitation was 43 ng/ml and the assay was linear from 43 to 8536 ng/ml. The intra- and inter-day coefficients of variation ranged from 0.7 to 3.0%, and from 1.4 to 14.5%, respectively, over the entire concentration range. The accuracy was within 16.1% of the spiked concentrations. I was stable in frozen plasma at −20°C for at least 68 days.  相似文献   

4.
A simple and selective assay for the determination of the alkylating cyclophosphamide metabolite phosphoramide mustard (PM) in plasma was developed and validated. PM was determined after derivatisation by high-performance liquid chromatography (HPLC) with ultraviolet detection at 276 nm. Sample pre-treatment consisted of derivatisation of PM with diethyldithiocarbamate (DDTC) at 70°C for 10 min, followed by extraction with acetonitrile in the presence of 0.7 M sodium chloride. Phase separation occurred due to the high salt content of the aqueous phase. The HPLC system consisted of a C8 column with acetonitrile–0.025 M potassium phosphate buffer, pH 8.0, (32:68, v/v) as the mobile phase. The entire sample handling procedure, from collection at the clinical ward until analysis in the laboratory, was optimised and validated. Calibration curves were linear from 50 to 10 000 ng/ml. The lower limit of quantification and the limit of detection (using a signal-to-noise ratio of 3) were 50 and 40 ng/ml, respectively, using 500 μl of plasma. Within-day and between-day precisions were below 11% over the entire concentration range and the accuracies were between 100 and 106%. PM was found to be stable at −30°C for at least 10 weeks both in plasma and as a DDTC-derivative in a dry sample. A pharmacokinetic pilot study in two patients receiving 1000 mg/m2 CP in a 1-h infusion demonstrated the applicability of the assay.  相似文献   

5.
We have established a highly sensitive high-performance liquid chromatographic method for the determination of an anticancer drug, UCN-01, in human plasma or urine. Using a fluorescence detector set at an excitation wavelength of 310 nm and emission monitored at 410 nm, there was a good linearity for UCN-01 in human plasma (r=0.999) or urine (r=0.999) at concentrations ranging from 0.2 to 100 ng/ml or 1 to 400 ng/ml, respectively. For intra-day assay, in plasma samples, the precision and accuracy were 1.8% to 5.6% and −10.0% to 5.2%, respectively. For inter-day assay, the precision and accuracy were 2.0% to 18.2% and 2.4% to 10.0%, respectively. In urine samples, the intra- and inter-day precision and accuracy were within 3.9% and ±2.7%, respectively. The lower limit of quantification (LLOQ) was set at 0.2 ng/ml in plasma and 1 ng/ml in urine. UCN-01 in plasma samples was stable up to two weeks at −80°C and also up to four weeks in urine samples. This method could be very useful for studying the human pharmacokinetics of UCN-01.  相似文献   

6.
A selective, accurate, precise and reproducible high-performance liquid chromatographic assay was developed for the quantitation of irbesartan, an angiotensin II antagonist, in human plasma and urine samples. The method involved solid-phase extraction of irbesartan and internal standard (I.S.) using a 100-mg Isolute CN cartridge. A portion of the eluate was injected onto an ODS analytical column connected to a fluorescence detector that was set at an excitation wavelength of 250 nm and an emission wavelength of 371 nm. The mobile phase consisted of 50% acetonitrile and a 50% weak phosphate-triethylamine solution, pH 3.5, at a flow-rate of 0.8 ml/min. The assay was linear from 1 to 1000 ng/ml with both plasma and urine. In either matrix, the lower limit of quantitation was 1 ng/ml. The analyses of quality control samples indicated that the nominal values could be predicted with an accuracy >95%. The inter- and intra-day coefficients of variation for the analyses in both matrices were <8%. Irbesartan was stable in both human plasma and urine for at least seven months at −20°C. The application of the assay to a pharmacokinetic study is described.  相似文献   

7.
A new HPLC assay using UV detection (200 nm) was developed to determine ethambutol (EMB) concentrations in plasma. Following extraction (0.1 ml plasma) with chloroform, EMB and octylamine (used as internal standard) were derivatized with phenylethylisocyanate. Quantitation in plasma was achieved at 200 nm. There were no interferences from endogenous compounds. Intra- and inter-day variabilities were lower than 5.2 and 7.6%, respectively. The limit of quantitation of the method was 0.2 μg/ml. In plasma, ethambutol was found to be stable for at least one month when samples were stored at −20°C. This assay was applied to the therapeutic monitoring of EMB concentrations in 19 patients suffering from tuberculosis.  相似文献   

8.
A gas chromatographic method for the sensitive determination of midazolam in plasma volumes as low as 40 μl was developed, utilizing clinazolam as the internal standard. After liquid-liquid extraction at basic pH into 1-chlorobutane-dichloromethane (96:4) a 2- to 4-μl portion of the reconstituted extract was injected under electronic pressure control onto a 12 m × 0.2 mm I.D. methyl silicone capillary column, and was exposed to a three-step temperature program from 120 to 310°C, to separate the analytes from the plasma constituents. The compound of interest was identified and quantified by means of a mass-selective detector. The assay was linear from 10 to 500 ng/ml using 40 μl of plasma (limit of quantification: 10 ng/ml) and was linear from 0.25 to 100 ng/ml using 500 μl of plasma (limit of quantification: 0.25 ng/ml). The intra-day precision for the 40-μl aliquots varied from 2.2 to 6.6%, the corresponding accuracy from −7.4 to −4.4%; the inter-day precision ranged from 5 to 7.2% and the corresponding accuracy from −7.2 to −5.1%.  相似文献   

9.
A new, simple, reproducible and reliable high-performance liquid chromatography method with ultraviolet absorbance detection at 240 nm was developed and validated for the determination of 7-oxo-dehydroepiandrosterone-3β-sulfate in human plasma. The method was based upon solid-phase (C18) extraction of plasma after addition of 17β-hydroxy-3β-methoxyandrost-5-en-7-one as internal standard. Using 1 ml of plasma for extraction, the detection limit of the assay was 3 ng/ml. The standard curve was linear over the concentration range 10–1000 ng/ml. Stored at −20°C for about 4 months at various concentrations in plasma, 7-oxo-dehydroepiandrosterone-3β-sulfate did not reveal any appreciable degradation. Also included herein is a method for the simultaneous detection and determination of 7-oxo-dehydroepiandrosterone and 7-oxo-dehydroepiandrosterone-3β-acetate in plasma.  相似文献   

10.
We have modified gradient HPLC procedures for simultaneous quantification of retinol, γ-tocopherol, α-tocopherol, lutein/zeaxanthin, β-cryptoxanthin, trans-lycopene, cis-lycopene, α-carotene and β-carotene in 200-μl aliquots of human plasma. The photosensitivity of these analytes in plasma exposed to fluorescent lighting for up to 72 h was investigated and most were stable under these conditions. The stability of these analytes held in darkness at −20°C, 4°C or room temperature for up to 48 h after extraction from plasma was also investigated. Variability in measurement of most analytes was greater at room temperature than at 4°C or −20°C. There were statistically significant variations in the measured concentrations of some analytes in samples kept cold. However, the magnitude of these variations was small and of little biological significance, particularly over the first 24 h.  相似文献   

11.
An HPLC assay with tandem mass spectrometric detection in the positive-ion Turbo-Ion-Spray (TISP) mode for the fast and sensitive determination of perifosine ((I), D-21266) in human plasma was developed, utilising the structural analogue, miltefosine ((II), D-18506), as internal standard. Automated solid-phase extraction of diluted plasma samples, based on 250-μl plasma aliquots, at pH 6.5, allowed a reliable quantification of perifosine down to 4 ng/ml. Injection of 200 μl of plasma extracts onto a 100×3 mm normal-phase analytical column at a flow-rate of 0.5 ml/min provided retention-times of 2.4 and 2.1 min for perifosine (I) and the internal standard (II), respectively. The standard curves were linear from 4 to 2000 ng/ml using weighted linear regression analysis (1/Y2). The inter-assay and intra-assay accuracies for the calibration standards were within +0.9% and −0.2%, exhibiting precisions (C.V.) of ±6.5 and ±7.3%, respectively. Up to 100 unknowns may be analysed each 24 h per analyst.  相似文献   

12.
An HPLC system using solid-phase extraction and HPLC with UV detection has been validated in order to determine tramadol and o-desmethyltramadol (M1) concentrations in human plasma. The method developed was selective and linear for concentrations ranging from 50 to 3500 ng/ml (tramadol) and 50 to 500 ng/ml (M1) with mean recoveries of 94.36±12.53% and 93.52±7.88%, respectively. Limit of quantitation (LOQ) was 50 ng/ml. For tramadol, the intra-day accuracy ranged from 95.48 to 114.64% and the inter-day accuracy, 97.21 to 103.24%. Good precision (0.51 and 18.32% for intra- and inter-day, respectively) was obtained at LOQ. The system has been applied to determine tramadol concentrations in human plasma samples for a pharmacokinetic study.  相似文献   

13.
A sensitive, robust gas chromatographic–mass spectrometric assay suitable for use in pharmacokinetic or bioequivalence studies is presented for the selective serotonin reuptake inhibitor, fluoxetine, and its major metabolite, norfluoxetine (N-desmethylfluoxetine). This method employs solid-phase extraction followed by acetylation with trifluoroacetic anhydride and analysis of the derivatives using selected ion monitoring. The lower limit of quantification was 1.0 ng/ml, and the assay was linear for both analytes from 1 to 100 ng/ml. Mean recoveries following solid-phase extraction at concentrations of 5.0, 20 and 100 ng/ml were 91% (fluoxetine) and 87% (norfluoxetine). Assay precision (as mean RSD) and accuracy (as mean relative error) for both analytes were tested at the same three nominal concentrations and were found to be within 10% in all cases. Analysis of fluoxetine concentrations in plasma samples from 18 volunteers following administration of a single 40 mg dose of fluoxetine provided the following pharmacokinetic data (mean±SD): Cmax, 32.73±9.21 ng/ml; AUC0–∞, 1627±1372 ng/ml h; Tmax, 3.08 h (median); ke, 0.022±0.007 h−1; elimination half-life, 37.69±21.70 h.  相似文献   

14.
A simple and sensitive high-performance liquid chromatographic method has been developed to measure megazol in human plasma. The method was optimized and validated according to the Washington Concensus Conference on the Validation of Analytical Methods (V.P. Shah et al., Eur. J. Drug Metab. Pharmacokinet., 15 (1991) 249). The criteria of complete validation were specificity, linearity, precision, analytical recovery, dilution and stability. It involved extraction of the plasma with dichloromethane, followed by reversed-phase high-performance liquid chromatography using a KromasilR C8 column and UV detection at 360 nm. The retention times of the internal standard (tinidazol) and megazol were 6.10 and 9.60 min, respevtively. The standard curve was linear from 2 ng ml−1 (limit of quantification) to 2000 ng ml−1. The coefficients of variation for all the criteria of validation were less than 6%; 85 to 92% extraction efficiencies were obtained. Megazol was stable during the storage period (one month at −20°C) in plasma and for two months at 25°C in standard solution. The method was tested by measuring the plasma concentration following oral administration to rat and was shown to be suitable for pharmacokinetic studies.  相似文献   

15.
A rapid, selective and sensitive HPLC assay has been developed for the routine analysis of metronidazole in small volumes of rat plasma, gastric aspirate and gastric tissue. The extraction procedure involves liquid–liquid extraction and a protein precipitation step. A microbore Hypersil ODS 3 μm (150×2.1 mm I.D.) column was used with a mobile phase consisting of acetonitrile–aqueous 0.05 M potassium phosphate buffer (pH 7) containing 0.1% triethylamine (10:90). The column temperature was at 25°C and the detection was by UV absorbance at 317 nm. The limit of detection was 0.015 μg ml−1 for gastric juice aspirate and plasma and 0.010 μg g−1 for gastric tissue (equivalent to 0.75 ng on-column). The method was linear up to a concentration of 200 μg ml−1 for plasma and gastric juice aspirate and up to 40 μg g−1 for tissue, with inter- and intra-day relative standard deviations less than 14%. The measured recovery was at least 78% in all sample matrices. The method proved robust and reliable when applied to the measurement of metronidazole in rat plasma, gastric juice aspirate and gastric tissue for pharmacokinetic studies in individual rats.  相似文献   

16.
A method was developed for the determination of gemifloxacin (I) in human plasma using high-performance liquid chromatography–tandem mass spectrometry. Prior to analysis, the protein in plasma samples was precipitated with acetonitrile containing [13C2H3] gemifloxacin (II) to act as an internal standard. The supernatant was injected onto a PLRP-S column without any further clean-up. The mass spectrometer was operated in positive ion mode, employing a heat assisted nebulisation, electrospray interface. Ions were detected in multiple reaction monitoring (MRM) mode. The assay requires 50 μl of plasma and is precise and accurate within the range 10–5000 ng/ml. The average within-run and between-run coefficients of variation were <11% at 10 ng/ml and greater concentrations. The average accuracy of validation standards was generally within ±7% of the nominal concentration. There was no evidence of instability of I in human plasma following three complete freeze–thaw cycles and samples can safely be stored for at least 6 months at −20°C. The method proved very robust and was successfully applied to the analysis of clinical samples from patients dosed with gemifloxacin.  相似文献   

17.
A rapid, sensitive, precise and accurate high-performance liquid chromatographic assay with ultraviolet detection was developed for the determination of nalbuphine in human, rabbit, pig and dog plasma. It is comprised of only a one-step extraction procedure with hexane-isoamyl alcohol at pH 9.25 and reversed-phase chromatography on a μPorasil column. The recoveries of nalbuphine and ethylmorphine (internal standard) were greater than 86%. Calibration graphs were linear over the concentration range 0.75–150 ng/ml with a coefficient of variation, both within-day and between-day, of less than 10% at any level. The limit of quantitation was 0.75 ng/ml of plasma based on a signal-to-noise ratio of 3. Seven other clinically used analgesics were investigated to check for potential interferences and their analytical conditions. The specificity of this assay was checked with a metabolite of nalbuphine (noroxymorphine). Nalbuphine in plasma did not decompose significantly at −20°C for six weeks. Pharmacokinetic application in three surgical patients and four rabbits revealed that nalbuphine followed a linear three-compartment model with two distribution phases. The two distribution and one elimination half-lives and the plasma clearance of nalbuphine were 0.9, 5.8 and 157 min and 370 ml/min in human, and 3.5, 28 and 117 min and 21 166 ml/min in rabbits.  相似文献   

18.
A rapid, selective and very sensitive ion-pairing reversed-phase HPLC method was developed for the simultaneous determination of trimebutine (TMB) and its major metabolite, N-monodesmethyltrimebutine (NDTMB), in rat and human plasma. Heptanesulfonate was employed as the ion-pairing agent and verapamil was used as the internal standard. The method involved the extraction with a n-hexane–isopropylalcohol (IPA) mixture (99:1, v/v) followed by back-extraction into 0.1 M hydrochloric acid and evaporation to dryness. HPLC analysis was carried out using a 4-μm particle size, C18-bonded silica column and water–sodium acetate–heptanesulfonate–acetonitrile as the mobile phase and UV detection at 267 nm. The chromatograms showed good resolution and sensitivity and no interference of plasma. The mean recoveries for human plasma were 95.4±3.1% for TMB and 89.4±4.1% for NDTMB. The detection limits of TMB and its metabolite, NDTMB, in human plasma were 1 and 5 ng/ml, respectively. The calibration curves were linear over the concentration range 10–5000 ng/ml for TMB and 25–25000 ng/ml for NDTMB with correlation coefficients greater than 0.999 and with within-day or between-day coefficients of variation not exceeding 9.4%. This assay procedure was applied to the study of metabolite pharmacokinetics of TMB in rat and the human.  相似文献   

19.
Naloxone, the analyte and the internal standard, sumatriptan, are extracted from plasma using solid-phase extraction columns. Chromatography and detection are performed using isocratic reversed-phase high-performance liquid chromatography (HPLC) with coulometric end-point detection. The standard curve was linear over the range 0–50 ng/ml of naloxone in plasma. The reproducibility, the coefficient of variation (C.V.) of the method over the range of the standard curve was 6.2–11.2%. The recovery averaged 90.4±8.9%. A plasma profile following i.v. administration of naloxone in one normal healthy volunteer is presented.  相似文献   

20.
An improved HPLC method using a silica gel column with fluorescence detection (excitation at 300 nm and emission at 365 nm) was developed for the determination of sulpiride concentrations in plasma. Analysis of sulpiride in plasma samples was simplified by a one-step liquid–liquid extraction after alkaline treatment of only 1 ml of plasma. The low limit of quantitation was 20 ng/ml with a coefficient of variation of less than 20%. A linear range was found from 20 to 1500 ng/ml. This HPLC method was validated with the precision for inter-day and intra-day runs being 0.36–8.01% and 0.29–5.25%, respectively, and the accuracy (standard deviation of mean, SD) for inter-day and intra-day runs being −1.58 to 5.02% and −2.14 to 5.21%, respectively. Bioequivalence of the two products was evaluated in 12 normal healthy male volunteers in a single-dose, two-period, two-sequence, two-treatment cross-over study. Sulpiride plasma concentrations were analyzed with this validated HPLC method. Results demonstrated that the two tablet formulations of sulpiride appear to be bioequivalent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号