首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taking the advantages of inert and stable nature of endospores, we developed a biocatalysis platform for multiple enzyme immobilization on Bacillus subtilis spore surface. Among B. subtilis outer coat proteins, CotG mediated a high expression level of Clostridium thermocellum cohesin (CtCoh) with a functional display capability of ~104 molecules per spore of xylose reductase‐C. thermocellum dockerin fusion protein (XR‐CtDoc). By co‐immobilization of phosphite dehydrogenase (PTDH) on spore surface via Ruminococcus flavefaciens cohesin‐dockerin modules, regeneration of NADPH was achieved. Both xylose reductase (XR) and PTDH exhibited enhanced stability upon spore surface display. More importantly, by altering the copy numbers of CtCoh and RfCoh fused with CotG, the molar ratio between immobilized enzymes was adjusted in a controllable manner. Optimization of spore‐displayed XR/PTDH stoichiometry resulted in increased yields of xylitol. In conclusion, endospore surface display presents a novel approach for enzyme cascade immobilization with improved stability and tunable stoichiometry. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:383–389, 2017  相似文献   

2.
在免疫分析和生物芯片中,抗原-抗体特异性结合被广泛应用,其中抗体的固定化是研发高效诊断和分离工具的关键环节。生物分子工程、材料化学与交联剂化学的进步极大地促进了抗体固定化技术的发展。 抗体可以通过物理吸附、共价偶联和亲和相互作用固定到不同类型的固相表面。 抗体固定化的目标是以一种正确的空间取向将抗体固定到固相表面,在完全保留抗体构象和活性的同时最大化抗原的结合能力,这对固相化抗体的分析性能至关重要。 对固定抗体到固相载体表面的各种最新方法进行了阐述,包括物理吸附法,通过羧基、氨基、巯基、糖基和点击化学的共价结合法以及基于生物亲和作用的固定法,并对固定化抗体的表征方法进行了归纳,最后对抗体固定化方法的发展方向进行了展望。  相似文献   

3.
A novel sol-gel immobilization method employing a detergentless micro-emulsion system that consisted ofn-hexane/iso-propanol/water was developed and used to immobilize a horseradish peroxidase (HRP). Micro-sized gel powder containing enzymes was generated in the ternary solution without drying and grinding steps or the addition of detergent, therefore, the method described in this study is a simple and straightforward process for the manufacture of gel powder. The gel powder made in this study was able to retain 84% of its initial enzyme activity, which is higher than gel powders produced through other immobilization methods. Furthermore, the HRP immobilized using this method, was able to maintain its activity at or above 95% of its initial activity for 48h, whereas the enzyme activities of free HRP and HRP that was immobilized using the other sol-gel method decreased dramatically. In addition, even when in the presence of excess hydrogen peroxide, the enzyme immobilized using the novel sol-gel method described here was more stable than enzymes immobilized using the other method.  相似文献   

4.
To overcome the main challenges facing alcohol‐based biofuel production, we propose an alternate simplified biofuel production scheme based on a cell‐free immobilized enzyme system. In this paper, we measured the activity of two tetrameric enzymes, a control enzyme with a colorimetric assay, β‐galactosidase, and an alcohol‐producing enzyme, alcohol dehydrogenase, immobilized on multiple surface curvatures and chemistries. Several solid supports including silica nanoparticles (convex), mesopourous silica (concave), diatomaceous earth (concave), and methacrylate (concave) were examined. High conversion rates and low protein leaching was achieved by covalent immobilization of both enzymes on methacrylate resin. Alcohol dehydrogenase (ADH) exhibited long‐term stability and over 80% conversion of aldehyde to alcohol over 16 days of batch cycles. The complete reaction scheme for the conversion of acid to aldehyde to alcohol was demonstrated in vitro by immobilizing ADH with keto‐acid decarboxylase free in solution. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:324–331, 2014  相似文献   

5.
A new immobilization method for enzymes is presented to facilitate synthetic applications in aqueous as well as organic media. The enzyme Alanine racemase (AlaR) from Geobacillus stearothermophilus was cloned, overexpressed and then immobilized on a silica-coated thin-layer chromatography plate to create an enzyme surface. The enzyme, fused to a His(6)-tag at its N-terminal, was tethered to the chemically modified silica-coated TLC plate through cobalt ions. The immobilized enzyme showed unaltered kinetic parameters in small-scale stirred reactions and retained its activity after rinsing, drying, freezing or immersion in n-hexane. This practical method is a first step towards a general immobilization method for synthesis applications with any enzyme suitable for His6-tagging.  相似文献   

6.
A new enzymatic glucose biosensor based on reversible co‐immobilization of horseradish peroxidase (HRP) and glucose oxidase (GOx) on a pH‐responsive imprinted monolith is prepared. The poly(4‐vinylphenylboronic acid)‐grafted imprinted polymer using HRP as a template is formed via surface initiated atom transfer radical polymerization within the pores of brominated poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) macroporous monolith contained in a 100 μm I.D. capillary column. The two enzymes conjugate is formed via the strong affinity interaction between biotin‐labeled GOx and streptavidin‐labeled HRP. The modulation of the external pH value enables reusability of the biosensor simply using stripping of the inactive enzymes at a low pH value and subsequent immobilization of fresh enzymes at a high pH value. Under the optimized conditions, the enzymatic biosensor features excellent performance in detection of glucose with a linear range of its concentration from 0.11 to 38.85 mmol/L and a limit of detection of 0.03 mmol/L. A relative standard deviation of 3.7% is calculated from determination of twenty glucose samples. This novel enzymatic sensing system is successfully applied for determination of glucose in human serum, and confirms an enhancement both in selectivity and specificity compared to the more traditionally clinical methods.  相似文献   

7.
Immobilization of enzymes and proteins on activated supports permits the simplification of the reactor design and may be used to improve some enzyme properties. In this sense, supports containing epoxy groups seem to be useful to generate very intense multipoint covalent attachment with different nucleophiles placed on the surface of enzyme molecules (e.g., amino, thiol, hydroxyl groups). However, the intermolecular reaction between epoxy groups and soluble enzymes is extremely slow. To solve this problem, we have designed "tailor-made" heterofunctional epoxy supports. Using these, immobilization of enzymes is performed via a two-step process: (i) an initial physical or chemical intermolecular interaction of the enzyme surface with the new functional groups introduced on the support surface and (ii) a subsequent intense intramolecular multipoint covalent reaction between the nucleophiles of the already immobilized enzyme and the epoxy groups of the supports. The first immobilization may involve different enzyme regions, which will be further rigidified by multipoint covalent attachment. The design of some heterofunctional epoxy supports and the performance of the immobilization protocols are described here. The whole protocol to have an immobilized and stabilized enzyme could take from 3 days to 1 week.  相似文献   

8.
On the basis of their versatile structure and chemistry as well as tunable mechanical properties, polymer brushes are well-suited as supports for enzyme immobilization. However, a robust surface design is hindered by an inadequate understanding of the impact on activity from the coupling motif and enzyme distribution within the brush. Herein, horseradish peroxidase C (HRP C, 44 kDa), chosen as a model enzyme, was immobilized covalently through its lysine residues on a N-hydroxysuccinimidyl carbonate-activated poly(2-hydroxyethyl methacrylate) (PHEMA) brush grafted chemically onto a flat impenetrable surface. Up to a monolayer coverage of HRP C is achieved, where most of the HRP C resides at or near the brush-air interface. Molecular modeling shows that lysines 232 and 241 are the most probable binding sites, leading to an orientation of the immobilized HRP C that does not block the active pocket of the enzyme. Michaelis-Menten kinetics of the immobilized HRP C indicated little change in the K(m) (Michaelis constant) but a large decrease in the V(max) (maximum substrate conversion rate) and a correspondingly large decrease in the k(cat) (overall catalytic rate). This indicates a loss in the percentage of active enzymes. Given the relatively ideal geometry of the HRPC-PHEMA brush, the loss of activity is most likely due to structural changes in the enzyme arising from either secondary constraints imposed by the connectivity of the N-hydroxysuccinimidyl carbonate linking moiety or nonspecific interactions between HRP C and DSC-PHEMA. Therefore, a general enzyme-brush coupling motif must optimize reactive group density to balance binding with neutrality of surroundings.  相似文献   

9.
Increasing interest in protein immobilization on surfaces has heightened the need for techniques enabling layer‐by‐layer protein attachment. Here, we report a technique for controlling enzyme‐mediated immobilization of layers of protein on the surface using a genetically encoded protecting group. An enterokinase‐cleavable peptide sequence was inserted at the N‐terminus of bifunctional fluorescent proteins containing Sortase A substrate recognition tags at both ends to control Sortase A‐mediated protein immobilization on the surface layer‐by‐layer. Efficient, sequential immobilization of a second layer of protein using Sortase A required removal of the N‐terminal protecting group, suggesting the method enables multilayer synthesis using cyclic deprotection and coupling steps. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:824–831, 2017  相似文献   

10.
The immobilization of proteins (mostly typically enzymes) onto solid supports is mature technology and has been used successfully to enhance biocatalytic processes in a wide range of industrial applications. However, continued developments in immobilization technology have led to more sophisticated and specialized applications of the process. A combination of targeted chemistries, for both the support and the protein, sometimes in combination with additional chemical and/or genetic engineering, has led to the development of methods for the modification of protein functional properties, for enhancing protein stability and for the recovery of specific proteins from complex mixtures. In particular, the development of effective methods for immobilizing large multi-subunit proteins with multiple covalent linkages (multi-point immobilization) has been effective in stabilizing proteins where subunit dissociation is the initial step in enzyme inactivation. In some instances, multiple benefits are achievable in a single process.Here we comprehensively review the literature pertaining to immobilization and chemical modification of different enzyme classes from thermophiles, with emphasis on the chemistries involved and their implications for modification of the enzyme functional properties. We also highlight the potential for synergies in the combined use of immobilization and other chemical modifications.  相似文献   

11.
Enzyme immobilization is extensively studied to improve enzyme properties in catalysis and analytical applications. Here, we introduce a simple and versatile enzyme immobilization platform based on adhesion-promoting peptides, namely Matter-tags. Matter-tags immobilize enzymes in an oriented way as a dense monolayer. The immobilization platform was established with three adhesion-promoting peptides; Cecropin A (CecA), liquid chromatography peak I (LCI), and Tachystatin A2 (TA2), that were genetically fused to enhanced green fluorescent protein and to two industrially important enzymes: a phytase (from Yersinia mollaretii) and a cellulase (CelA2 from a metagenomic library). Here, we report a universal and simple Matter-tag–based immobilization platform for enzymes on various materials including polymers (polystyrene, polypropylene, and polyethylene terephthalate), metals (stainless steel and gold), and silicon-based materials (silicon wafer). The Matter-tag–based enzyme immobilization is performed at ambient temperature within minutes (<10 min) in an aqueous solution harboring the phytase or cellulase by immersing the targeted material. The peptide LCI was identified as universal adhesion promoter; LCI immobilized both enzymes on all investigated materials. The attachment of phytase-LCI onto gold was characterized with surface plasmon resonance spectroscopy obtaining a dissociation constant value (KD) of 2.9·10−8 M and a maximal surface coverage of 504 ng/cm².  相似文献   

12.
Immobilization of enzymes on thiolsulphinate-agarose, a thiol-reactive support, is a unique method which allows reversible covalent immobilization under mild conditions, so excellent immobilization and activity yields are obtained. It allows both the formation of stable bonds as well as enzyme desorption and matrix regeneration. The impact of the source of the enzyme's thiol group involved in the immobilization (native, reduced disulphide or chemically introduced) on the properties of the resulting biocatalysts was studied using three β-galactosidases from Escherichia coli, Kluyveromices lactis and Aspergillus oryzae as a model. Chemical thiolation, which generates changes at surface exposed lysines, produced derivatives similar to their soluble counterparts. However, the reduction of native disulphide bonds prior to immobilization lead to very variable activity and stability of the derivatives depending on the accessibility and location of the disulphide bonds in the enzyme structure.  相似文献   

13.
Immobilization of enzymes on thiolsulphinate-agarose, a thiol-reactive support, is a unique method which allows reversible covalent immobilization under mild conditions, so excellent immobilization and activity yields are obtained. It allows both the formation of stable bonds as well as enzyme desorption and matrix regeneration. The impact of the source of the enzyme's thiol group involved in the immobilization (native, reduced disulphide or chemically introduced) on the properties of the resulting biocatalysts was studied using three β-galactosidases from Escherichia coli, Kluyveromices lactis and Aspergillus oryzae as a model. Chemical thiolation, which generates changes at surface exposed lysines, produced derivatives similar to their soluble counterparts. However, the reduction of native disulphide bonds prior to immobilization lead to very variable activity and stability of the derivatives depending on the accessibility and location of the disulphide bonds in the enzyme structure.  相似文献   

14.
《Process Biochemistry》2014,49(5):830-839
A set of recommendations to maintain high activity of immobilized enzymes is developed based on direct observation via AFM. This helps to close knowledge gaps that often lead to poor performance of nanobiocatalysts for chemical synthesis. Molecule-level height and volume distribution analyses from high-resolution AFM images were applied to Candida antarctica Lipase B (CALB), subtilisin Carlsberg, and the Lipase from Thermomyces lanuginosus (TLL) deposited on model silica surfaces. Ensembles of flexible or “soft” enzymes appear separated when interactions with the surface are considerable at low surface coverage but form highly entangled structures of increased conformational stability at high surface coverage. By contrast, ensembles of rigid or “hard” enzymes appear to maintain stable aggregates even under strong interaction with the surface. The more rigid the enzyme the higher its tendency to remain in a densely packed state that is able to withstand surface-induced conformational transitions detrimental to catalysis. Weakening of surface-protein interactions for “soft” enzymes will prevent single-molecule immobilization, which reduces catalytic competency through structural changes. Multi-layer coverage in enzyme immobilization should generally be avoided due to mass transfer limitations.  相似文献   

15.
The aim of the present work is to design an electrode for biosensors by covalent immobilization of the redox enzyme. In the covalently modified electrode, the biocatalyst is located close to the electrode surface and this is expected to enhance the electron transfer rate from the enzyme to the electrode. Several methods of covalent immobilization of enzymes onto a glassy carbon surface are described. We have chosen horse radish peroxidase enzyme in our study but any other suitable enzyme can be immobilized depending on the intended use. A three step procedure that includes (i) heat treatment of matrix at l00-l10°C to remove volatiles and absorbates, (ii) chemjcal pretreatment to introduce functional groups like -OH, -NO2, -Br etc. followed by (iii) glutaraldehyde coupling of the enzyme (for the nitrated matix after subsequent reduction) or modification of the matrix by carboxymethylation and enzyme coupling using carbodiimide (for hydroxylated matrix) was followed. The amount of enzyme immobilized onto the carbon surface was estimated by spectrophotometric enzymatic activity assay, commonly used for the soluble enzyme. We found that simple nitration did not introduce any significant amount of functional groups and the matrix with hydrogen peroxide pretreatment showed the highest enzyme loading of 0.05 U/mg of carbon matrix. The HRP enzyme electrode was tested in a rotating disk experiment for its response with the substrate.  相似文献   

16.

Background

We describe a biosensor platform for monitoring molecular interactions that is based on the combination of a defined nano-porous silicon surface, coupled to light interferometry. This platform allows the label-free detection of protein-protein and protein-DNA interactions in defined, as well as complex protein mixtures. The silicon surface can be functionalized to be compatible with traditional carboxyl immobilization chemistries, as well as with aldehyde-hydrazine bioconjugation chemistries.

Results

We demonstrate the utility of the new platform in measuring protein-protein interactions of purified products in buffer, in complex mixtures, and in the presence of different organic solvent spikes, such as DMSO and DMF, as these are commonly used in screening chemical compound libraries.

Conclusion

Nano-porous silicon, when combined with white light interferometry, is a powerful technique for the measurement of protein-protein interactions. In addition to studying the binary interactions of biomolecules in clean buffer systems, the newly developed surfaces are also suited for studying interactions in complex samples, such as plasma.  相似文献   

17.
The controlled and partial modification of epoxy groups of Eupergit C and EP-Sepabeads with sodium sulfide has permitted the preparation of thiol-epoxy supports. Their use allowed not only the specific immobilization of enzymes through their thiol groups via thiol-disulfide interchange, but also enzyme stabilization via multipoint covalent attachment. Penicillin G acylase (PGA) from Escherichia coli and lipase from Rhizomucor miehei were used as model enzymes. Both enzymes lacked exposed cysteine residues, but were introduced via chemical modification under very mild conditions. In the first moments of the immobilization, a certain percentage of immobilized protein could be released from the support by incubation with DTT; this confirms that the first step was via a thiol-disulfide interchange. Moreover, the promotion of some further epoxy-enzyme bonds was confirmed because no enzyme release was detected after some immobilization time by incubation with DTT. In the case of the heterodimeric PGA, it was possible to demonstrate the formation of at least one epoxy bond per enzyme subunit by analyzing with SDS-PAGE the supernatants obtained after boiling the enzyme derivatives in the presence of mercaptoethanol and SDS. Thermal inactivation studies showed that these multipoint enzyme-support attachments promoted an increase in the stability of the immobilized enzymes. In both cases, the stabilization factor was around 12-15-fold comparing optimal derivatives with their just-thiol immobilized counterparts.  相似文献   

18.
Allyl glycidyl ether (AGE)–ethylene glycol dimethacrylate (EGDM) copolymer with 25% crosslink density (AGE‐25) shows excellent bovine serum albumin (BSA) adsorption (up to 16% (w/w)) at pH 8.0 and the adsorbed BSA is strongly bound. This protein‐coated polymer provides a novel matrix with naturally existing functional groups such as thiol, amino, and carboxylic acid that are available for covalent immobilization of functional enzymes. Employing appropriate strategies, trypsin as a model protein was covalently bound to BSA‐coated matrix both independently, and in a stepwise manner on the same matrix, with less than 5% loss of enzyme activity during immobilization. Glutaraldehyde crosslinking after immobilization provide stable enzyme preparation with activity of 510 units/g recycled up to six times without loss of enzyme activity. AFM studies reveal that the polymer surface has protein peaks and valleys rather than a uniform monolayer distribution of the protein and the immobilized enzyme preparation can best be described as polymer supported cross‐linked enzyme aggregates (CLEAs). © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:317–323, 2014  相似文献   

19.
Among enzyme immobilization techniques, the preparation of cross‐linked enzyme aggregates has shown promising results in biocatalysis, because they are easy to prepare, versatile, and cheap. The method involves the precipitation of enzymes with ammonium sulfate or an organic solvent and subsequent cross‐linking with glutaraldehyde. However, the Schiff base produced with glutaraldehyde is reversible and can be broken with acids or bases, releasing proteins to the reaction medium. To solve this problem, we propose replacing glutaraldehyde with diepoxide compounds to obtain an irreversible secondary amine bond. Such a substitution avoids protein leakage during the biocatalytic process, contamination of the final products, and loss of enzyme. It also improves the synthesis of the biocatalyst, because, while the Schiff base is favored at mildly acidic pH, the epoxide reaction can be made at the optimal enzyme pH, assuring its structural stability and catalytic performance. The proposed method has been successfully used in the production and optimization of aldolase epoxy‐cross‐linked aggregates, which retain 98% activity. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1425–1429, 2017  相似文献   

20.
Fu J  Reinhold J  Woodbury NW 《PloS one》2011,6(4):e18692

Background

Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing protein denaturation. New strategies for enzyme immobilization are needed that allow the precise control over orientation and position and thereby provide optimized activity.

Methodology/Principal Findings

A method is presented for utilizing peptide ligands to immobilize enzymes on surfaces with improved enzyme activity and stability. The appropriate peptide ligands have been rapidly selected from high-density arrays and when desirable, the peptide sequences were further optimized by single-point variant screening to enhance both the affinity and activity of the bound enzyme. For proof of concept, the peptides that bound to β-galactosidase and optimized its activity were covalently attached to surfaces for the purpose of capturing target enzymes. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activity and stability, as well as controlled protein orientation.

Conclusions/Significance

A simple method for immobilizing enzymes through specific interactions with peptides anchored on surfaces has been developed. This approach will be applicable to the immobilization of a wide variety of enzymes on surfaces with optimized orientation, location and performance, and provides a potential mechanism for the patterned self-assembly of multiple enzymes on surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号