首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This contribution describes strategies to purify monoclonal antibodies from Chinese hamster ovary (CHO) cell culture supernatant using newly designed multimodal membranes (MMMs). The MMMs were used for the capture step purification of human IgG1 following a size‐exclusion desalting column to remove chaotropic salts that interfere with IgG binding. The MMM column attained higher dynamic binding capacity than a Protein A resin column at an equivalent residence time of 1 min. The two‐step MMM chromatography process achieved high selectivity for capturing hIgG1 from the CHO cell culture supernatant, though the desalting step resulted in product dilution. Product purity and host cell protein (HCP) level in the elution pool were analyzed and compared to results from a commercial Protein A column. The product purity was >98% and HCP levels were <20 ppm for both purification methods. In addition, hIgG1 could be eluted from the MMM chromatography column at neutral pH, which is important for limiting the formation of aggregates; although slow elution dilutes the product. Overall, this paper shows that MMMs are highly effective for capture step purification of proteins and should be considered when Protein A cannot be used, e.g., for pH sensitive mAbs or proteins lacking an Fc binding domain. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:658–665, 2017  相似文献   

2.
Chinese hamster ovary (CHO) cells are often used to produce therapeutic monoclonal antibodies (mAbs). CHO cells express many host cell proteins (HCPs) required for their growth. Interactions of HCPs with mAbs can sometimes result in co‐purification of trace levels of ‘hitchhiker’ HCPs during the manufacturing process. Purified mAb‐1 product produced in early stages of process optimization had high HCP levels. In addition, these lots formed delayed‐onset particles containing mAb‐1 and its heavy chain C‐terminal fragments. Studies were performed to determine the cause of the observed particle formation and to optimize the purification for improved HCP clearance. Protease activity and inhibitor stability studies confirmed that an aspartyl protease was responsible for fragmentation of mAb‐1 resulting in particle formation. An affinity resin was used to selectively capture aspartyl proteases from the mAb‐1 product. Mass spectrometry identified the captured aspartyl protease as CHO cathepsin D. A wash step at high pH with salt and caprylate was implemented during the protein A affinity step to disrupt the HCP–mAb interactions and improve HCP clearance. The product at the end of purification using the optimized process had very low HCP levels, did not contain detectable protease activity, and did not form particles. Spiking of CHO cathepsin D back into mAb‐1 product from the optimized process confirmed that it was the cause of the particle formation. This work demonstrated that process optimization focused on removal of HCPs was successful in eliminating particle formation in the final mAb‐1 product. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1360–1369, 2015  相似文献   

3.
Protein A capture chromatography is a critical unit operation in the clearance of host cell protein (HCP) impurities in monoclonal antibody (mAb) purification processes. Though one of the most effective purification steps, variable levels of protein impurities are often observed in the eluate. Coelution of HCP impurities is suggested to be strongly affected by the presence of chromatin complexes (Gagnon et al., 2014; Koehler et al., 2019). We investigated the effect of removal of DNA complex and HCP reduction pre-Protein A on the HCP clearance performance of the Protein A capture step itself. We found that only reduction of DNA in the Protein A load consistently lowered HCP in the Protein A eluate. Reduction of HCP in the Protein A load stream did not produce a significant increase in the chromatography HCP clearance performance. These results are consistent across three different biosimilar therapeutic mAbs expressed by the same Chinese hamster ovary (CHO) cell line (i.e., CHOBC® of Polpharma Biologics). This result demonstrates that optimization of the mAb purification process utilizing Protein A as the primary capture step depends primarily on being able to effectively clear DNA and associated complexes early in the process, rather than trying to incorporate HCP reduction at the harvest cell culture fluid.  相似文献   

4.
Protein A chromatography is a critical and ‘gold‐standard’ step in the purification of monoclonal antibody (mAb) products. Its ability to remove >98% of impurities in a single step alleviates the burden on subsequent process steps and facilitates the implementation of platform processes, with a minimal number of chromatographic steps. Here, we have evaluated four commercially available protein A chromatography matrices in terms of their ability to remove host cell proteins (HCPs), a complex group of process related impurities that must be removed to minimal levels. SELDI‐TOF MS was used as a screening tool to generate an impurity profile fingerprint for each resin and indicated a number of residual impurities present following protein A chromatography, agreeing with HCP ELISA. Although many of these were observed for all matrices there was a significantly elevated level of impurity binding associated with the resin based on controlled pore glass under standard conditions. Use of null cell line supernatant with and without spiked purified mAb demonstrated the interaction of HCPs to be not only with the resin back‐bone but also with the bound mAb. A null cell line column overload and sample enrichment method before 2D‐PAGE was then used to determine individual components associated with resin back‐bone adsorption. The methods shown allow for a critical analysis of HCP removal during protein A chromatography. Taken together they provide the necessary process understanding to allow process engineers to identify rational approaches for the removal of prominent HCPs. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 1037–1044, 2012  相似文献   

5.
Host cell proteins (HCPs) constitute a major group of impurities for biologic drugs produced using cell culture technology. HCPs are required to be closely monitored and adequately removed in the downstream process. However, HCPs are a complex mixture of proteins with significantly diverse molecular and immunological properties. An overall understanding of the composition of HCPs and changes in their molecular properties upon changes in upstream and harvest process conditions can greatly facilitate downstream process design. This article describes the use of a comparative proteomic profiling method viz. two‐dimensional difference gel electrophoresis (2D‐DIGE) to examine HCP composition in the harvest stream of CHO cell culture. The effect of upstream process parameters such as cell culture media, bioreactor control strategy, feeding strategy, and cell culture duration/cell viability on HCP profile was examined using this technique. Among all the parameters studied, cell viability generated the most significant changes on the HCP profile. 2D‐DIGE was also used to compare the HCP differences between monoclonal antibody producing and null cell cultures. The HCP species in production cell culture was found to be well represented in null cell culture, which confirms the suitability of using the null cell culture for immunoassay reagent generation. 2D‐DIGE is complimentary to the commonly used HCP immunoassay. It provides a direct comparison of the changes in HCP composition under different conditions and can reveal properties (pI, MW) of individual species, whereas the immunoassay sensitively quantifies total HCP amount in a given sample. Biotechnol. Bioeng. 2010; 105: 306–316. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
The characterization of host cell protein (HCP) content during the production of therapeutic recombinant proteins is an important aspect in the drug development process. Despite this, key components of the HCP profile and how this changes with processing has not been fully investigated. Here we have investigated the supernatant HCP profile at different times throughout culture of a null and model GS-CHO monoclonal antibody producing mammalian cell line grown in fed-batch mode. Using 2D-PAGE and LC-MS/MS we identify a number of intracellular proteins (e.g., protein disulfide isomerise; elongation factor 2; calreticulin) that show a significant change in abundance relative to the general increase in HCP concentration observed with progression of culture. Those HCPs that showed a significant change in abundance across the culture above the general increase were dependent on the cell line examined. Further, our data suggests that the majority of HCPs in the supernatant of the cell lines investigated here arise through lysis or breakage of cells, associated with loss in viability, and are not present due to the secretion of protein material from within the cell. SELDI-TOF and principal components analysis were also investigated to enable rapid monitoring of changes in the HCP profile. SELDI-TOF analysis showed the same trends in the HCP profile as observed by 2D-PAGE analysis and highlighted biomarkers that could be used for process monitoring. These data further our understanding of the relationship between the HCP profile and cell viability and may ultimately enable a more directed development of purification strategies and the development of cell lines based upon their HCP profile.  相似文献   

7.
Most biopharmaceutical drugs, especially monoclonal antibodies (mAbs), bispecific antibodies (BsAbs) and Fc‐fusion proteins, are expressed using Chinese Hamster Ovary (CHO) cell lines. CHO cells typically yield high product titers and high product quality. Unfortunately, CHO cell lines also generate high molecular weight (HMW) aggregates of the desired product during cell culture along with CHO host cell protein (HCP) and CHO DNA. These immunogenic species, co‐purified during Protein A purification, must be removed in a multi‐step purification process. Our colleagues have reported the use of a novel polymer‐mediated flocculation step to simultaneously reduce HMW, HCP and DNA from stable CHO cell cultures prior to Protein A purification. The objective of this study was to evaluate this novel “smart polymer” (SmP) in a high throughput antibody discovery workflow using transiently transfected CHO cultures. SmP treatment of 19 different molecules from four distinct molecular categories (human mAbs, murine mAbs, BsAbs and Fabs) with 0.1% SmP and 25 mM stimulus resulted in minimal loss of monomeric protein. Treatment with SmP also demonstrated a variable, concentration‐dependent removal of HMW aggregates after Protein A purification. SmP treatment also effectively reduced HCP levels at each step of mAb purification with final HCP levels being several fold lower than the untreated control. Interestingly, SmP treatment was able to significantly reduce high concentrations of artificially spiked levels of endotoxin in the cultures. In summary, adding a simple flocculation step to our existing transient CHO process reduced the downstream purification burden to remove impurities and improved final product quality. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1393–1400, 2017  相似文献   

8.
Protein A chromatography is commonly used as the initial step for purifying monoclonal antibody biotherapeutics expressed in mammalian tissue culture cells. The purpose of this step, as well as later chromatography steps, is, in part, to remove host cell proteins (HCPs) and other related impurities. Understanding the retention mechanism for the subset of HCPs retained during this step is of great interest to monoclonal antibody (mAb) process developers because it allows formation of a guided HCP clearance strategy. However, only limited information is available about the specific HCPs that co‐purify with mAbs at this step. In this study, a comprehensive comparison of HCP subpopulations that associated with 15 different mAbs during protein A chromatography was conducted by a 2D‐LC‐HDMSE approach. We found that a majority of CHO HCPs binding to and eluting with the mAbs were common among the mAbs studied, with only a small percentage (~10% on average) of a mAb's total HCP content in the protein A (PrA) eluate specific for a particular antibody. The abundance of these HCPs in cell culture fluids and their ability to interact with mAbs were the two main factors determining their prevalence in protein A eluates. Potential binding segments for HCPs to associate with mAbs were also studied through their co‐purification with individual Fc and (Fab′)2 antibody fragments. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:708–717, 2016  相似文献   

9.
Genome-scale metabolic models (GEMs) possess the power to revolutionize bioprocess and cell line engineering workflows thanks to their ability to predict and understand whole-cell metabolism in silico. Despite this potential, it is currently unclear how accurately GEMs can capture both intracellular metabolic states and extracellular phenotypes. Here, we investigate this knowledge gap to determine the reliability of current Chinese hamster ovary (CHO) cell metabolic models. We introduce a new GEM, iCHO2441, and create CHO-S and CHO-K1 specific GEMs. These are compared against iCHO1766, iCHO2048, and iCHO2291. Model predictions are assessed via comparison with experimentally measured growth rates, gene essentialities, amino acid auxotrophies, and 13C intracellular reaction rates. Our results highlight that all CHO cell models are able to capture extracellular phenotypes and intracellular fluxes, with the updated GEM outperforming the original CHO cell GEM. Cell line-specific models were able to better capture extracellular phenotypes but failed to improve intracellular reaction rate predictions in this case. Ultimately, this work provides an updated CHO cell GEM to the community and lays a foundation for the development and assessment of next-generation flux analysis techniques, highlighting areas for model improvements.  相似文献   

10.
Recombinant protein products such as monoclonal antibodies (mAbs) for use in the clinic must be clear of host cell impurities such as host cell protein (HCP), DNA/RNA, and high molecular weight immunogenic aggregates. Despite the need to remove and monitor HCPs, the nature, and fate of these during downstream processing (DSP) remains poorly characterized. We have applied a proteomic approach to investigate the dynamics and fate of HCPs in the supernatant of a mAb producing cell line during early DSP including centrifugation, depth filtration, and protein A capture chromatography. The primary clarification technique selected was shown to influence the HCP profile that entered subsequent downstream steps. MabSelect protein A chromatography removed the majority of contaminating proteins, however using 2D‐PAGE we could visualize not only the antibody species in the eluate (heavy and light chain) but also contaminant HCPs. These data showed that the choice of secondary clarification impacts upon the HCP profile post‐protein A chromatography as differences arose in both the presence and abundance of specific HCPs when depth filters were compared. A number of intracellularly located HCPs were identified in protein A elution fractions from a Null cell line culture supernatant including the chaperone Bip/GRP78, heat shock proteins, and the enzyme enolase. We demonstrate that the selection of early DSP steps influences the resulting HCP profile and that 2D‐PAGE can be used for monitoring and identification of HCPs post‐protein A chromatography. This approach could be used to screen cell lines or hosts to select those with reduced HCP profiles, or to identify HCPs that are problematic and difficult to remove so that cell‐engineering approaches can be applied to reduced, or eliminate, such HCPs. Biotechnol. Bioeng. 2013; 110: 240–251. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
A single-stage clarification was developed using a single-use chromatographic clarification device (CCD) to recover a recombinant protein from Chinese Hamster Ovary (CHO) harvest cell culture fluid (HCCF). Clarification of a CHO HCCF is a complex and costly process, involving multiple stages of centrifugation and/or depth filtration to remove cells and debris and to reduce process-related impurities such as host cell protein (HCP), nucleic acids, and lipids. When using depth filtration, the filter train consists of multiple filters of varying ratios, layers, pore sizes, and adsorptive properties. The depth filters, in combination with a 0.2-micron membrane filter, clarify the HCCF based on size-exclusion, adsorptive, and charge-based mechanisms, and provide robust bioburden control. Each stage of the clarification process requires time, labor, and utilities, with product loss at each step. Here, use of the 3M™ Harvest RC Chromatographic Clarifier, a single-stage CCD, is identified as an alternative strategy to a three-stage filtration train. The CCD results in less overall filter area, less volume for flushing, and higher yield. Using bioprocess cost modeling, the single-stage clarification process was compared to a three-stage filtration process. By compressing the CHO HCCF clarification to a single chromatographic stage, the overall cost of the clarification process was reduced by 17%–30%, depending on bioreactor scale. The main drivers for the cost reduction were reduced total filtration area, labor, time, and utilities. The benefits of the single-stage harvest process extended throughout the downstream process, resulting in a 25% relative increase in cumulative yield with comparable impurity clearance.  相似文献   

12.
Host cell proteins (HCPs) are endogenous impurities, and their proteolytic and binding properties can compromise the integrity, and, hence, the stability and efficacy of recombinant therapeutic proteins such as monoclonal antibodies (mAbs). Nonetheless, purification of mAbs currently presents a challenge because they often co-elute with certain HCP species during the capture step of protein A affinity chromatography. A Quality-by-Design (QbD) strategy to overcome this challenge involves identifying residual HCPs and tracing their source to the harvested cell culture fluid (HCCF) and the corresponding cell culture operating parameters. Then, problematic HCPs in HCCF may be reduced by cell engineering or culture process optimization. Here, we present experimental results linking cell culture temperature and post-protein A residual HCP profile. We had previously reported that Chinese hamster ovary cell cultures conducted at standard physiological temperature and with a shift to mild hypothermia on day 5 produced HCCF of comparable product titer and HCP concentration, but with considerably different HCP composition. In this study, we show that differences in HCP variety at harvest cascaded to downstream purification where different residual HCPs were present in the two sets of samples post-protein A purification. To detect low-abundant residual HCPs, we designed a looping liquid chromatography-mass spectrometry method with continuous expansion of a preferred, exclude, and targeted peptide list. Mild hypothermic cultures produced 20% more residual HCP species, especially cell membrane proteins, distinct from the control. Critically, we identified that half of the potentially immunogenic residual HCP species were different between the two sets of samples.  相似文献   

13.
14.
Chinese hamster ovary (CHO) cells have been used as host cells in the production of a range of recombinant therapeutic proteins, including monoclonal antibodies and Fc-fusion proteins. Host cell proteins (HCP) represent impurities that must be removed from therapeutic formulations because of their potential risks for immunogenicity. While the majority of HCP impurities are effectively removed in typical downstream purification processes, clearance of a small population of HCP remains challenging. In this study, we knocked out the Anxa2 and Ctsd genes to assess the feasibility of knockout approaches for diminishing the risk of contamination with HCP. Using the CRISPR/Cas9 system, Anxa2-, and Ctsd-knockout CHO cell lines were successfully established, and we confirmed the complete elimination of the corresponding HCP in cell lysates. Importantly, all knockout cell lines showed similar growth and viability to those of the wild-type control during 8 days of cultivation. Thus, knockout of unrequired genes can reduce contamination with HCP in the production of recombinant therapeutic proteins.  相似文献   

15.
Process characterization using QbD approaches has rarely been described for precipitation steps used for impurity removal in biopharmaceutical processes. We propose a two-step approach for process characterization in which the first step focuses on product quality and the second focuses on process performance. This approach provides an efficient, streamlined strategy for the characterization of precipitation steps under the Quality by Design paradigm. This strategy is demonstrated by a case study for the characterization of a precipitation using sodium caprylate to reduce host cell proteins (HCP) during a monoclonal antibody purification process. Process parameters were methodically selected through a risk assessment based on prior development data and scientific knowledge described in the literature. The characterization studies used two multivariate blocks to decouple and distinguish the impact of product quality (e.g., measured HCP of the recovered product from the precipitation) and process performance (e.g., step yield). Robustness of the precipitation step was further demonstrated through linkage studies across the overall purification process. HCP levels could be robustly reduced to ≤100 ppm in the drug substance when the precipitation step operated within an operation space of ≤1% (m/v) sodium caprylate, pH 5.0–6.0, and filter flux ≤300 L/m2-hr for a load HCP concentration up to 19,000 ppm. This two-step approach for characterization of precipitation steps has several advantages, including tailoring of the experimental design and scale-down model to the intended purpose for each step, use of a manageable number of experiments without compromising scientific understanding, and limited time and material consumption.  相似文献   

16.
The generation of a high productivity cell line is a critical step in the production of a therapeutic protein. Many innovative engineering strategies have been devised in order to maximize the expression rate of production cells for increased process efficiency. Less effort has focused on improvements to the cell line generation process, which is typically long and laborious when using mammalian cells. Based on unexpected findings when generating stable CHO cell lines expressing human IL‐17F, we studied the benefit of expressing this protein during the establishment of production cell lines. We demonstrate that IL‐17F expression enhances the rate of selection and overall number of selected cell lines as well as their transgene expression levels. We also show that this benefit is observed with different parental CHO cell lines and selection systems. Furthermore, IL‐17F expression improves the efficiency of cell line subcloning processes. IL‐17F can therefore be exploited in a standard manufacturing process to obtain higher productivity clones in a reduced time frame. Biotechnol. Bioeng. 2013; 110: 1153–1163. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Residual host cell protein impurities (HCPs) are a key component of biopharmaceutical process related impurities. These impurities need to be effectively cleared through chromatographic steps in the downstream purification process to produce safe and efficacious protein biopharmaceuticals. A variety of strategies to demonstrate robust host cell protein clearance using scale-down studies are highlighted and compared. A common strategy is the "spiking" approach, which is widely employed in clearance studies for well-defined impurities. For HCPs this approach involves spiking cell culture harvest, which is rich in host cell proteins, into the load material for all chromatographic steps to assess their clearance ability. However, for studying HCP clearance, this approach suffers from the significant disadvantage that the vast majority of host cell protein impurities in a cell culture harvest sample are not relevant for a chromatographic step that is downstream of the capture step in the process. Two alternative strategies are presented here to study HCP clearance such that relevance of those species for a given chromatographic step is taken into consideration. These include a "bypass" strategy, which assumes that some of the load material for a chromatographic step bypasses that step and makes it into the load for the subsequent step. The second is a "worst-case" strategy, which utilizes information obtained from process characterization studies. This involves operating steps at a combination of their operating parameters within operating ranges that yield the poorest clearance of HCPs over that step. The eluate from the worst case run is carried forward to the next chromatographic step to assess its ability to clear HCPs. Both the bypass and worst-case approaches offer significant advantages over the spiking approach with respect to process relevance of the HCP impurity species being studied. A combination of these small-scale validation approaches with large-scale HCP clearance data from clinical manufacturing and manufacturing consistency runs is used to demonstrate robust HCP clearance for the downstream purification process of an Fc fusion protein. The demonstration of robust HCP clearance through this comprehensive strategy can potentially be used to eliminate the need for routine analytical testing or for establishing acceptance criteria for these impurities as well as to demonstrate robust operation of the entire downstream purification process.  相似文献   

18.
中国仓鼠卵巢(Chinese hamster ovary,CHO)细胞是生产复杂重组药物蛋白的首选宿主细胞,腺嘌呤磷酸核糖转移酶(adenine phosphoribosyltransferase,APRT)催化腺嘌呤与磷酸核糖缩合形成腺苷一磷酸,是嘌呤生物合成步骤中的关键酶。采用基因编辑技术敲除CHO细胞中aprt基因,验证获得的APRT缺陷型CHO细胞系的生物学特性;构建两种真核表达载体:对照载体(含有目的基因增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)和弱化载体(含有启动子和起始密码子突变的aprt弱化表达盒及EGFP),分别转染APRT缺陷型和野生型CHO细胞并筛选获得稳定转染的细胞池;重组CHO细胞传代培养60代并用流式细胞术检测EGFP表达的平均荧光强度,并比较不同实验组重组蛋白EGFP的表达稳定性。PCR扩增和测序结果表明,CHO细胞aprt基因成功敲除;获得的APRT缺陷型CHO细胞系在细胞形态、生长增殖、倍增时间等生物学特性方面与野生CHO细胞无显著差异。目的蛋白瞬时表达结果表明,与野生型CHO细胞相比,转染对照载体和弱化载体的APRT缺陷型CHO细胞系中EGFP的表达分别提高了42%±6%和56%±9%;特别是长期传代培养时,转染弱化载体的APRT缺陷型细胞中EGFP表达量显著高于野生型CHO细胞(P<0.05);构建的基于APRT缺陷型CHO细胞系能够明显提高重组蛋白的长期表达稳定性。研究结果为建立高效稳定的CHO细胞表达系统提供了一种有效的细胞工程策略。  相似文献   

19.
The dihydrofolate reductase-deficient Chinese hamster ovary cell line, DXB11-CHO, commonly used as a host cell for the production of recombinant proteins requires 7.5% serum-supplementation for optimal growth. Regulatory issues surrounding the use of serum in clinical production processes and the direct and indirect costs of using serum in large-scale production and recovery processes have triggered efforts to derive serum-independent host cell lines. We have successfully isolated a serum-free host that we named Veggie- CHO. Veggie-CHO was generated by adapting DXB11-CHO cells to growth in serum-free media in the absence of exogenous growth factors such as Transferrin and Insulin-like growth factor, which we have previously shown to be essential for growth and viability of DXB11- CHO cells. Veggie-CHO cells have been shown to maintain an average doubling time of 22 hr in continuous growth cultures over a period of three months and have retained the dihydrofolate reductase -deficient phenotype of their parental DXB11-CHO cells. These properties and the stability of its serum-free phenotype have allowed the use of Veggie- CHO as host cells for transfection and amplified expression of recombinant proteins. We describe the derivation a serum-free recombinant cell line with an average doubling time of 20 hr and specific productivity of 2.5 Units recombinant Flt-3L protein per 10e6 cells per day. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The clearance of host cell proteins (HCPs) is of crucial importance in biomanufacturing, given their diversity in composition, structure, abundance, and occasional structural homology with the product. The current approach to HCP clearance in the manufacturing of monoclonal antibodies (mAbs) relies on product capture with Protein A followed by removal of residual HCPs in flow-through mode using ion exchange or mixed-mode chromatography. Recent studies have highlighted the presence of “problematic HCP” species, which are either difficult to remove (Group I), can degrade the mAb product (Group II), or trigger immunogenic reactions (Group III). To improve the clearance of these species, we developed a family of synthetic peptides that target HCPs and exhibit low binding to IgG product. In this study, these peptides were conjugated onto chromatographic resins and evaluated in terms of HCP clearance and mAb yield, using an industrial mAb-producing CHO harvest as model supernatant. To gather detailed knowledge on the binding of individual HCPs, the unbound fractions were subjected to shotgun proteomic analysis by mass spectrometry. It was found that these peptide ligands exhibit superior HCP binding capability compared to those of the benchmark commercial resins commonly used in mAb purification. In addition, some peptide-based resins resulted in much lower losses of product yield compared to these commercial supports. The proteomic analysis showed effective capture of many “problematic HCPs” by the peptide ligands, especially some that are weakly bound by commercial media. Collectively, these results indicate that these peptides show great promise toward the development of next-generation adsorbents for safer and cost-effective manufacturing of biologics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号