首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoclonal antibody production in commercial scale cell culture bioprocessing requires a thorough understanding of the engineering process and components used throughout manufacturing. It is important to identify high impact components early on during the lifecycle of a biotechnology‐derived product. While cell culture media selection is of obvious importance to the health and productivity of mammalian bioreactor operations, other components such as antifoam selection can also play an important role in bioreactor cell culture. Silicone polymer‐based antifoams were known to have negative impacts on cell health, production, and downstream filtration and purification operations. High throughput screening in micro‐scale bioreactors provides an efficient strategy to identify initial operating parameters. Here, we utilized a micro‐scale parallel bioreactor system to study an IgG1 producing CHO cell line, to screen Dynamis, ProCHO5, PowerCHO2, EX‐Cell Advanced, and OptiCHO media, and 204, C, EX‐Cell, SE‐15, and Y‐30 antifoams and their impacts on IgG1 production, cell growth, aggregation, and process control. This study found ProCHO5, EX‐Cell Advanced, and PowerCHO2 media supported strong cellular growth profiles, with an IVCD of 25‐35 × 106 cells‐d/mL, while maintaining specific antibody production (Qp > 2 pg/cell‐d) for our model cell line and a monomer percentage above 94%. Antifoams C, EX‐Cell, and SE‐15 were capable of providing adequate control of foaming while antifoam 204 and Y‐30 noticeably stunted cellular growth. This work highlights the utility of high throughput micro bioreactors and the importance of identifying both positive and negative impacts of media and antifoam selection on a model IgG1 producing CHO cell line. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:262–270, 2018  相似文献   

2.
Inefficient carbon metabolism is a relevant issue during the culture of mammalian cells for the production of biopharmaceuticals. Therefore, cell engineering strategies to improve the metabolic and growth performance of cell lines are needed. The expression of Vitreoscilla stercoraria hemoglobin (VHb) has been shown to significantly reduce overflow metabolism and improve the aerobic growth of bacteria. However, the effects of VHb on mammalian cells have been rarely studied. Here, the impact of VHb on growth and lactate accumulation during CHO‐K1 cell culture was investigated. For this purpose, CHO‐K1 cells were transfected with plasmids carrying the vgb or gfp gene to express VHb or green fluorescence protein (GFP), respectively. VHb expression increased the specific growth rate and biomass yields on glucose and glutamine by 60 %, and reduced the amount of lactate produced per cell by 40 %, compared to the GFP‐expression controls. Immunofluorescence microscopy showed that VHb is distributed in the cytoplasm and organelles, which support the hypothesis that VHb could serve as an oxygen carrier, enhancing aerobic respiration. These results are useful for the development of better producing cell lines for industrial applications.  相似文献   

3.
Volumetric productivity and product quality are two key performance indicators for any biopharmaceutical cell culture process. In this work, we showed proof‐of‐concept for improving both through the use of alternating tangential flow perfusion seed cultures coupled with high‐seed fed‐batch production cultures. First, we optimized the perfusion N‐1 stage, the seed train bioreactor stage immediately prior to the production bioreactor stage, to minimize the consumption of perfusion media for one CHO cell line and then successfully applied the optimized perfusion process to a different CHO cell line. Exponential growth was observed throughout the N‐1 duration, reaching >40 × 106 vc/mL at the end of the perfusion N‐1 stage. The cultures were subsequently split into high‐seed (10 × 106 vc/mL) fed‐batch production cultures. This strategy significantly shortened the culture duration. The high‐seed fed‐batch production processes for cell lines A and B reached 5 g/L titer in 12 days, while their respective low‐seed processes reached the same titer in 17 days. The shortened production culture duration potentially generates a 30% increase in manufacturing capacity while yielding comparable product quality. When perfusion N‐1 and high‐seed fed‐batch production were applied to cell line C, higher levels of the active protein were obtained, compared to the low‐seed process. This, combined with correspondingly lower levels of the inactive species, can enhance the overall process yield for the active species. Using three different CHO cell lines, we showed that perfusion seed cultures can optimize capacity utilization and improve process efficiency by increasing volumetric productivity while maintaining or improving product quality. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:616–625, 2014  相似文献   

4.
Chinese hamster ovary (CHO) cell lines are widely used for scientific research and biotechnology. A CHO genomic bacterial artificial chromosome (BAC) library was constructed from a mouse dihydrofolate reductase (DHFR) gene‐amplified CHO DR1000L‐4N cell line for genome‐wide analysis of CHO cell lines. The CHO BAC library consisted of 122,281 clones and was expected to cover the entire CHO genome five times. A CHO chromosomal map was constructed by fluorescence in situ hybridization (FISH) imaging using BAC clones as hybridization probes (BAC‐FISH). Thirteen BAC‐FISH marker clones were necessary to identify all the 20 individual chromosomes in a DHFR‐deficient CHO DG44 cell line because of the aneuploidy of the cell line. To determine the genomic structure of the exogenous Dhfr amplicon, a 165‐kb DNA region containing exogenous Dhfr was cloned from the BAC library using high‐density replica (HDR) filters and Southern blot analysis. The nucleotide sequence analysis revealed a novel genomic structure in which the vector sequence containing Dhfr was sandwiched by long inverted sequences of the CHO genome. Biotechnol. Bioeng. 2009; 104: 986–994. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
Process intensification in biomanufacturing has attracted a great deal of interest in recent years. Manufacturing platform improvements leading to higher cell density and bioreactor productivity have been pursued. Here we evaluated a variety of intensified mammalian cell culture processes for producing monoclonal antibodies. Cell culture operational modes including fed‐batch (normal seeding density or high seeding density with N‐1 perfusion), perfusion, and concentrated fed‐batch (CFB) were assessed using the same media set with the same Chinese Hamster Ovary (CHO) cell line. Limited media modification was done to quickly fit the media set to different operational modes. Perfusion and CFB processes were developed using an alternating tangential flow filtration device. Independent of the operational modes, comparable cell specific productivity (fed‐batch: 29.4 pg/cell/day; fed‐batch with N‐1 perfusion: 32.0 pg/cell/day; perfusion: 31.0 pg/cell/day; CFB: 20.1 – 45.1 pg/cell/day) was reached with similar media conditions. Continuous media exchange enabled much higher bioreactor productivity in the perfusion (up to 2.29 g/L/day) and CFB processes (up to 2.04 g/L/day), compared with that in the fed‐batch processes (ranging from 0.39 to 0.49 g/L/day), largely due to the higher cell density maintained. Furthermore, media cost per gram of antibody produced from perfusion was found to be highly comparable with that from fed‐batch; and the media cost for CFB was the highest due to the short batch duration. Our experimental data supports the argument that media cost for perfusion process could be even lower than that in a fed‐batch process, as long as sufficient bioreactor productivity is achieved. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:867–878, 2017  相似文献   

6.
Development of bioprocesses with mammalian cell culture deals with different bioreactor types and scales. The bioreactors might be intended for generation of cell inoculum and production, research, process development, validation, or transfer purposes. During these activities, not only the difficulty of up and downscaling might lead to failure of consistency in cell growth, but also the use of different bioreactor geometries and operation conditions. In such cases, criteria for bioreactor design and process transfer should be carefully evaluated in order to select appropriate cultivation parameters. In this work, power input, mixing time, impeller tip speed, and Reynolds number have been compared systematically for the cultivation of the human cell line AGE1.HN within three partner laboratories using five different bioreactor systems. Proper operation ranges for the bioreactors were identified using the maximal cell‐specific growth rate (μmax) as indicator. Common optimum values for process transfer criteria were found in these geometrically different bioreactors, in which deviations of μmax between cultivation systems can be importantly reduced. The data obtained in this work are used for process standardization and comparability of results obtained in different bioreactor systems, i.e. to guarantee lab‐to‐lab consistency for systems biology approaches using mammalian cells.  相似文献   

7.
Mycoplasma contamination events in biomanufacturing facilities can result in loss of production and costly cleanups. Mycoplasma may survive in mammalian cell cultures with only subtle changes to the culture and may penetrate the 0.2 µm filters often used in the primary clarification of harvested cell culture fluid. Culture cell-based and indicator cell-based assays that are used to detect mycoplasma are highly sensitive but can take up to 28 days to complete and cannot be used for real-time decision making during the biomanufacturing process. To support real-time measurements of mycoplasma contamination, there is a push to explore nucleic acid testing. However, cell-based methods measure growth or colony forming units and nucleic acid testing measures genome copy number; this has led to ambiguity regarding how to compare the sensitivity of the methods. In addition, the high risk of conducting experiments wherein one deliberately spikes mycoplasma into bioreactors has dissuaded commercial groups from performing studies to explore the multiple variables associated with the upstream effects of a mycoplasma contamination in a manufacturing setting. Here we studied the ability of Mycoplasma arginini to persist in a single-use, perfusion rocking bioreactor system containing a Chinese hamster ovary (CHO) DG44 cell line expressing a model monoclonal immunoglobulin G1 (IgG1) antibody. We examined M. arginini growth and detection by culture methods, as well as the effects of M. arginini on mammalian cell health, metabolism, and productivity. We compared process parameters and controls normally measured in bioreactors including dissolved oxygen, gas mix, and base addition to maintain pH, to examine parameter changes as potential indicators of contamination. Our work showed that M. arginini affects CHO cell growth profile, viability, nutrient consumption, oxygen use, and waste production at varying timepoints after M. arginini introduction to the culture. Importantly, how the M. arginini contamination impacts the CHO cells is influenced by the concentration of CHO cells and rate of perfusion at the time of M. arginini spike. Careful evaluation of dissolved oxygen, pH control parameters, ammonia, and arginine over time may be used to indicate mycoplasma contamination in CHO cell cultures in a bioreactor before a read-out from a traditional method.  相似文献   

8.
A mycoplasma contamination event in a biomanufacturing facility can result in costly cleanups and potential drug shortages. Mycoplasma may survive in mammalian cell cultures with only subtle changes to the culture and penetrate the standard 0.2-µm filters used in the clarification of harvested cell culture fluid. Previously, we reported a study regarding the ability of Mycoplasma arginini to persist in a single-use, perfusion rocking bioreactor system containing a Chinese hamster ovary (CHO) DG44 cell line expressing a model monoclonal immunoglobulin G 1 (IgG1) antibody. Our previous work showed that M. arginini affects CHO cell growth profile, viability, nutrient consumption, oxygen use, and waste production at varying timepoints after M. arginini introduction to the culture. Careful evaluation of certain identified process parameters over time may be used to indicate mycoplasma contamination in CHO cell cultures in a bioreactor before detection from a traditional method. In this report, we studied the changes in the IgG1 product quality produced by CHO cells considered to be induced by the M. arginini contamination events. We observed changes in critical quality attributes correlated with the duration of contamination, including increased acidic charge variants and high mannose species, which were further modeled using principal component analysis to explore the relationships among M. arginini contamination, CHO cell growth and metabolites, and IgG1 product quality attributes. Finally, partial least square models using NIR spectral data were used to establish predictions of high levels (≥104 colony-forming unit [CFU/ml]) of M. arginini contamination, but prediction of levels below 104 CFU/ml were not reliable. Contamination of CHO cells with M. arginini resulted in significant reduction of antibody product quality, highlighting the importance of rapid microbiological testing and mycoplasma testing during particularly long upstream bioprocesses to ensure product safety and quality.  相似文献   

9.
10.
11.
In recent years, the number of complex but clinically effective biologicals such as multi‐specific antibody formats and fusion proteins has increased dramatically. However, compared to classical monoclonal antibodies (mAbs), these rather artificially designed therapeutic proteins have never undergone millions of years of evolution and thus often turn out to be difficult‐to‐express using mammalian expression systems such as Chinese hamster ovary (CHO) cells. To provide access to these sophisticated but effective drugs, host cell engineering of CHO production cell lines represents a promising approach to overcome low production yields. MicroRNAs (miRNAs) have recently gained much attention as next‐generation cell engineering tools. However, only very little is known about the capability of miRNAs to specifically increase production of difficult‐to‐express proteins. In a previous study we identified miR‐143 amongst others to improve protein production in CHO cells. Thus, the aim of the present study was to examine if miR‐143 might be suitable to improve production of low yield protein candidates. Both transient and stable overexpression of miR‐143 significantly improved protein production without negatively affecting cell growth and viability of different recombinant CHO cells. In addition, mitogen‐activated protein kinase 7 (MAPK7) was identified as a putative target gene of miR‐143‐3p in CHO cells. Finally, siRNA‐mediated knock‐down of MAPK7 could be demonstrated to phenocopy pro‐productive effects of miR‐143. In summary, our data suggest that miR‐143 might represent a novel genetic element to enhance production of difficult‐to‐express proteins in CHO cells which may be partly mediated by down‐regulation of MAPK7. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1046–1058, 2017  相似文献   

12.
The increasing application of regenerative medicine has generated a growing demand for stem cells and their derivatives. Single‐use bioreactors offer an attractive platform for stem cell expansion owing to their scalability for large‐scale production and feasibility of meeting clinical‐grade standards. The current work evaluated the capacity of a single‐use bioreactor system (1 L working volume) for expanding Meg01 cells, a megakaryocytic (MK) progenitor cell line. Oxygen supply was provided by surface aeration to minimize foaming and orbital shaking was used to promote oxygen transfer. Oxygen transfer rates (kLa) of shaking speeds 50, 100, and 125 rpm were estimated to be 0.39, 1.12, and 10.45 h?1, respectively. Shaking speed was a critical factor for optimizing cell growth. At 50 rpm, Meg01 cells exhibited restricted growth due to insufficient mixing. A negative effect occurred when the shaking speed was increased to 125 rpm, likely caused by high hydrodynamic shear stress. The bioreactor culture achieved the highest growth profile when shaken at 100 rpm, achieving a total expansion rate up to 5.7‐fold with a total cell number of 1.2 ± 0.2 × 109 cells L?1. In addition, cells expanded using the bioreactor system could maintain their potency to differentiate following the MK lineage, as analyzed from specific surface protein and morphological similarity with the cells grown in the conventional culturing system. Our study reports the impact of operational variables such as shaking speed for growth profile and MK differentiation potential of a progenitor cell line in a single‐use bioreactor. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:362–369, 2018  相似文献   

13.
Cell culture process development requires the screening of large numbers of cell lines and process conditions. The development of miniature bioreactor systems has increased the throughput of such studies; however, there are limitations with their use. One important constraint is the limited number of offline samples that can be taken compared to those taken for monitoring cultures in large‐scale bioreactors. The small volume of miniature bioreactor cultures (15 mL) is incompatible with the large sample volume (600 µL) required for bioanalysers routinely used. Spectroscopy technologies may be used to resolve this limitation. The purpose of this study was to compare the use of NIR, Raman, and 2D‐fluorescence to measure multiple analytes simultaneously in volumes suitable for daily monitoring of a miniature bioreactor system. A novel design‐of‐experiment approach is described that utilizes previously analyzed cell culture supernatant to assess metabolite concentrations under various conditions while providing optimal coverage of the desired design space. Multivariate data analysis techniques were used to develop predictive models. Model performance was compared to determine which technology is more suitable for this application. 2D‐fluorescence could more accurately measure ammonium concentration (RMSECV 0.031 g L?1) than Raman and NIR. Raman spectroscopy, however, was more robust at measuring lactate and glucose concentrations (RMSECV 1.11 and 0.92 g L?1, respectively) than the other two techniques. The findings suggest that Raman spectroscopy is more suited for this application than NIR and 2D‐fluorescence. The implementation of Raman spectroscopy increases at‐line measuring capabilities, enabling daily monitoring of key cell culture components within miniature bioreactor cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:337–346, 2017  相似文献   

14.
Perfusion medium was successfully developed based on our fed‐batch platform basal and feed media. A systematic development approach was undertaken by first optimizing the ratios of fed‐batch basal and feed media followed by targeted removal of unnecessary and redundant components. With this reduction in components, the medium could then be further concentrated by 2× to increase medium depth. The medium osmolality was also optimized where we found ~360 mOsm/kg was desirable resulting in a residual culture osmolality of ~300 mOsm/kg for our cell lines. Further building on this, the amino acids Q, E, N, and D were rebalanced to reduce lactate and ammonium levels, and increase the cell‐specific productivity without compromising on cell viability while leaving viable cell density largely unaffected. Further modifications were also made by increasing certain important vitamin and lipid concentrations, while eliminating other unnecessary vitamins. Overall, an effective perfusion medium was developed with all components remaining in the formulation understood to be important and their concentrations increased to improve medium depth. The critical cell‐specific perfusion rate using this medium was then established for a cell line of interest to be 0.075 nL/cell‐day yielding 1.2 g/L‐day at steady state. This perfusion process was then successfully scaled up to a 100 L single‐use bioreactor with an ATF6 demonstrating similar performance as a 2 L bioreactor with an ATF2. Large volume handling challenges in our fed‐batch facility were overcome by developing a liquid medium version of the powder medium product contained in custom totes for plug‐and‐play use with the bioreactor. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:891–901, 2017  相似文献   

15.
Banik GG  Todd PW  Kompala DS 《Cytotechnology》1996,22(1-3):179-184
Foreign protein expression from the commonly used SV40 promoter has been found to be primarily during the S-phase of the cell cycle. Simple mathematical models with this cell cycle phase dependent expression of foreign protein suggest that the specific production rate will be proportional to the cell growth rate, which is particularly disadvantageous in high cell density fed-batch or perfusion bioreactors. In this study we investigate this predicted relationship between the production rate and growth rate by culturing recombinant CHO cells in a continuous suspension bioreactor. One CHO cell line, GS-26, has been stably transfected with the plasmid pSVgal, which contains the E. coli lac Z gene under the control of the SV40 promoter. This GS-26 cell line was grown in suspension cultures over a range of specific growth rates in batch and continuous modes. The intracellular -galactosidase activity was assayed using a standard spectrophotometric method after breaking the cells open and releasing the enzyme. A strong growth associated relationship is found between the intracellular -galactosidase content and the specific growth rate in batch and continuous cultures, as predicted.  相似文献   

16.
Protein synthesis in mammalian cells can be observed in two strikingly different patterns: 1) production of monoclonal antibodies in hybridoma cultures is typically inverse growth associated and 2) production of most therapeutic glycoproteins in recombinant mammalian cell cultures is found to be growth associated. Production of monoclonal antibodies has been easily maximized by culturing hybridoma cells at very low growth rates in high cell density fed- batch or perfusion bioreactors. Applying the same bioreactor techniques to recombinant mammalian cell cultures results in drastically reduced production rates due to their growth associated production kinetics. Optimization of such growth associated production requires high cell growth conditions, such as in repeated batch cultures or chemostat cultures with attendant excess biomass synthesis. Our recent research has demonstrated that this growth associated production in recombinant Chinese hamster ovary (CHO) cells is related to the S (DNA synthesis)-phase specific production due to the SV40 early promoter commonly used for driving the foreign gene expression. Using the stably transfected CHO cell lines synthesizing an intracellular reporter protein under the control of SV40 early promoter, we have recently demonstrated in batch and continuous cultures that the product synthesis is growth associated. We have now replaced this S-phase specific promoter in new expression vectors with the adenovirus major late promoter which was found to be active primarily in the G1-phase and is expected to yield the desirable inverse growth associated production behavior. Our results in repeated batch cultures show that the protein synthesis kinetics in this resulting CHO cell line is indeed inverse growth associated. Results from continuous and high cell density perfusion culture experiments also indicate a strong inverse growth associated protein synthesis. The bioreactor optimization with this desirable inverse growth associated production behavior would be much simpler than bioreactor operation for cells with growth associated production. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
We previously reported real-time monitoring of cell cycle dynamics of cancer cells throughout a live tumor intravitally using a fluorescence ubiquitination cell cycle indicator (FUCCI). Approximately 90% of cancer cells in the center and 80% of total cells of an established tumor are in G0/G1 phase. Longitudinal real-time FUCCI imaging demonstrated that cytotoxic agents killed only proliferating cancer cells at the surface and, in contrast, and had little effect on the quiescent cancer cells. Resistant quiescent cancer cells restarted cycling after the cessation of chemotherapy. Thus cytotoxic chemotherapy which targets cells in S/G2/M, is mostly ineffective on solid tumors, but causes toxic side effects on tissues with high fractions of cycling cells, such as hair follicles, bone marrow and the intestinal lining. We have termed this phenomenon tumor intrinsic chemoresistance (TIC). We previously demonstrated that tumor-targeting Salmonella typhimurium A1-R (S. typhimurium A1-R) decoyed quiescent cancer cells in tumors to cycle from G0/G1 to S/G2/M demonstrated by FUCCI imaging. We have also previously shown that when cancer cells were treated with recombinant methioninase (rMETase), the cancer cells were selectively trapped in S/G2, shown by cell sorting as well as by FUCCI. In the present study, we show that sequential treatment of FUCCI-expressing stomach cancer MKN45 in vivo with S. typhimurium A1-R to decoy quiescent cancer cells to cycle, with subsequent rMETase to selectively trap the decoyed cancer cells in S/G2 phase, followed by cisplatinum (CDDP) or paclitaxel (PTX) chemotherapy to kill the decoyed and trapped cancer cells completely prevented or regressed tumor growth. These results demonstrate the effectiveness of the praradigm of “decoy, trap and shoot” chemotherapy.  相似文献   

18.

Introduction

Mammalian cells like Chinese hamster ovary (CHO) cells are routinely used for production of recombinant therapeutic proteins. Cells require a continuous supply of energy and nutrients to sustain high cell densities whilst expressing high titres of recombinant proteins. Cultured mammalian cells are primarily dependent on glucose and glutamine metabolism for energy production.

Objectives

The TCA cycle is the main source of energy production and its continuous flow is essential for cell survival. Modulated regulation of TCA cycle can affect ATP production and influence CHO cell productivity.

Methods

To determine the key metabolic reactions of the cycle associated with cell growth in CHO cells, we transiently silenced each gene of the TCA cycle using RNAi.

Results

Silencing of at least four TCA cycle genes was detrimental to CHO cell growth. With an exception of mitochondrial aconitase (or Aco2), all other genes were associated with ATP production reactions of the TCA cycle and their resulting substrates can be supplied by other anaplerotic and cataplerotic reactions. This study is the first of its kind to have established key role of aconitase gene in CHO cells. We further investigated the temporal effects of aconitase silencing on energy production, CHO cell metabolism, oxidative stress and recombinant protein production.

Conclusion

Transient silencing of mitochondrial aconitase inhibited cell growth, reduced ATP production, increased production of reactive oxygen species and reduced cell specific productivity of a recombinant CHO cell line by at least twofold.
  相似文献   

19.
The consideration of inherent population inhomogeneities of mammalian cell cultures becomes increasingly important for systems biology study and for developing more stable and efficient processes. However, variations of cellular properties belonging to different sub‐populations and their potential effects on cellular physiology and kinetics of culture productivity under bioproduction conditions have not yet been much in the focus of research. Culture heterogeneity is strongly determined by the advance of the cell cycle. The assignment of cell‐cycle specific cellular variations to large‐scale process conditions can be optimally determined based on the combination of (partially) synchronized cultivation under otherwise physiological conditions and subsequent population‐resolved model adaptation. The first step has been achieved using the physical selection method of countercurrent flow centrifugal elutriation, recently established in our group for different mammalian cell lines which is presented in Part I of this paper series. In this second part, we demonstrate the successful adaptation and application of a cell‐cycle dependent population balance ensemble model to describe and understand synchronized bioreactor cultivations performed with two model mammalian cell lines, AGE1.HNAAT and CHO‐K1. Numerical adaptation of the model to experimental data allows for detection of phase‐specific parameters and for determination of significant variations between different phases and different cell lines. It shows that special care must be taken with regard to the sampling frequency in such oscillation cultures to minimize phase shift (jitter) artifacts. Based on predictions of long‐term oscillation behavior of a culture depending on its start conditions, optimal elutriation setup trade‐offs between high cell yields and high synchronization efficiency are proposed. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:175–185, 2015  相似文献   

20.
Generating purified protein for GLP toxicology studies (GLP‐Tox) represents an important and often rate limiting step in the biopharmaceutical drug development process. Toxicity testing requires large amounts of therapeutic protein (>100 g), typically produced in a single 500–2,500 L bioreactor, using the final CHO clonally derived cell line (CDCL). One approach currently used to save time is to manufacture GLP‐Tox material using pools of high‐producing CHO CDCLs instead of waiting for the final CDCL. Recently, we reported CHO pools producing mAb titers >7 g/L using piggyBac‐mediated gene integration (PB CHO pools). In this study, we wanted to leverage high titer PB CHO pools to produce GLP‐Tox material. A detailed product quality attribute (PQA) assessment was conducted comparing PB CHO pools to pooled Top4 CDCLs. Four mAbs were evaluated. First, we found that PB CHO pools expressed all four mAbs at high titers (2.8–4.4 g/L in shake flasks). Second, all four PB CHO pools were aged to 55 generations (Gen). All four PB CHO Pools were found to be suitable over 55 Gen. Finally, we performed bioreactor scale‐up. PB CHO pool titers (3.7–4.8 g/L) were similar or higher than the pooled Top 4 CDCLs in 5 L bioreactors (2.4–4.1 g/L). The PQAs of protein derived from PB CHO pools were very similar to pooled Top 4 CHO CDCLs according to multiple orthogonal techniques including peptide mapping analysis. Taken together, these results demonstrate the technical feasibility of using PB CHO pools to manufacture protein for GLP‐Tox. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1436–1448, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号