首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The photosynthetic diatom Cyclotella sp. extrudes chitin nanofibers following cell division. This diatom requires silicon for cell wall biosynthesis and division, as well as nitrogen for biosynthesis of intracellular material and extracellular chitin, an N-acetyl glucosamine biopolymer. The initial nitrogen/silicon molar ratio was the critical parameter for assessing the limits of nitrogen delivery on cell number and chitin production during batch cultivation of Cyclotella in a bubble column photobioreactor under silicon-limited growth conditions, using nitrate as the nitrogen source. The peak rate of volumetric chitin production increased linearly, from 3.0 to 46 mg chitin L?1 day?1, with increasing N/Si ratio over the range studied (0.82 to 8.6 mol N mol?1 Si). However, the cell number yield and the chitin yield per cell increased asymptotically with increasing N/Si ratio, achieving a final cell number yield of 5.3?×?109?±?2.6?×?108 cells mol?1 Si and chitin yield of 28.7?±?1.2 mg chitin per 109 cells (1.0 S.E.). An N/Si ratio of at least 4.0 mol N mol?1 Si achieved 90% of the asymptotic chitin yield. This study has shown that scalable cultivation systems for maximizing chitin nanofiber production will require delivery of both silicon and optimal nitrogen under silicon-limiting growth conditions to promote cell division and subsequent chitin formation.  相似文献   

2.
The relationship between steady‐state growth rate and phosphate concentration was studied for the marine prymnesiophyte Pavlova lutheri (Droop) J. C. Green grown in a chemostat at 22°C under continuous irradiance. A bioassay procedure involving short‐term uptake of 10 picomolar spikes of 33P‐labeled phosphate was used to estimate the concentration of phosphate in the growth chamber. The relationship between growth rate and phosphate was well described by a simple rectangular hyperbola with a half‐saturation constant of 2.6 nM. The cells were able to take up micromolar spikes of phosphate at rates two to three orders of magnitude higher than steady‐state uptake rates. The kinetics of short‐term uptake displayed Holling type III behavior, suggesting that P. lutheri may have multiple uptake systems with different half‐saturation constants. Chl a:C ratios were linearly related to growth rate and similar to values previously reported for P. lutheri under nitrate‐limited conditions. C:N ratios, also linearly related to growth rate, were consistently lower than values reported for P. lutheri under nitrate‐limited conditions, a result presumably reflecting luxury assimilation of nitrogen under phosphate‐limited conditions. C:P ratios were linearly related to growth rate in a manner consistent with the Droop equation for growth rate versus cellular P:C ratio.  相似文献   

3.
4.
When the water quality in Lake Tega was the worst among Japanese lakes in the 1970s, cyanobacteria (mainly the genus Microcystis) were observed to be the dominant species in the summer. Since 2000, for water quality improvement, a large amount of the Tone River water was discharged into Lake Tega, resulting in an improvement in the water quality together with transition of algal dominant species from cyanobacteria to diatoms (mainly the genus Cyclotella). Although several factors including nutrient concentration and daily renewal rate (d) could have been related to the succession of algal dominant species, these effects have not been understood very well. This study investigated the effects of the daily renewal rate and nitrate‐nitrogen (hereafter nitrogen) concentration (N) on the competition between the cyanobacterium Microcystis aeruginosa and the diatom Cyclotella sp. through monoculture and monoxenic culture experiments. Based on the experimental results, a simulation model was constructed to predict the competitive growth pattern of each species. Monoxenic culture experiments showed that M . aeruginosa outcompeted Cyclotella sp. under conditions of N = 0.5 (1.0 mg‐N L?1) and d = 5, 15, and 20%. The domination of M . aeruginosa could be attributed to smaller values for the half‐saturation constant and the minimum nitrogen cell quota for this species with respect to Cyclotella sp. However, Cyclotella sp., possessing higher values of nitrogen cell quota and nitrogen uptake rate, dominated by an increasing nitrogen concentration (N = 1.0 mg L?1) and daily renewal rate (d = 30%). The competitive growth patterns of M . aeruginosa and Cyclotella sp. could roughly be predicted by the simulation model. These results suggested that the daily renewal rate as well as the nitrogen concentration, could affect the competition and be influential factors as to which species dominates between M . aeruginosa and Cyclotella sp.  相似文献   

5.
Commercial cultivation of Spirulina sp. is highly popular due to the presence of high amount of C‐phycocyanin (C‐PC ) and other valuable chemicals like carotenoids and γ‐linolenic acid. In this study, the pH and the concentrations of nitrogen and carbon source were manipulated to achieve improved cell growth and C‐PC production in NaCl‐tolerant mutant of Spirulina platensis . In this study, highest C‐PC (147 mg · L?1) and biomass (2.83 g · L?1) production was achieved when a NaCl‐tolerant mutant of S. platensis was cultivated in a nitrate and bicarbonate sufficient medium (40 and 60 mM, respectively) at pH 9.0 under phototrophic conditions. Kinetic study of wildtype S. platensis and its NaCl‐tolerant mutant was also done to determine optimum nitrate concentrations for maximum growth and C‐PC production. Kinetic parameter of inhibition (Haldane model) was fitted to the relationship between specific growth rate and substrate concentration obtained from the growth curves. Results showed that the maximum specific growth rate (μmax) for NaCl‐tolerant mutant increased by 17.94% as compared to its wildtype counterpart, with a slight increase in half‐saturation constant (Ks), indicating that this strain could grow well at high concentration of NaNO3. C‐PC production rate (Cmax) in mutant cells increased by 12.2% at almost half the value of Ks as compared to its wildtype counterpart. Moreover, the inhibition constant (Ki) value was 207.85% higher in NaCl‐tolerant mutant as compared to its wildtype strain, suggesting its ability to produce C‐PC even at high concentrations of NaNO3.  相似文献   

6.
7.
This study is an evaluation of liquid state NMR as a tool for analyzing the lipid composition of algal cultures used for biodiesel production. To demonstrate the viability of this approach, 13C NMR was used to analyze the lipid composition of intact cells of the algal species, Neochloris oleoabundans (UTEX #1185). Two cultures were used in this study. One culture was “healthy” and grown in conventional media, whereas the other culture was “nitrogen‐starved” and grown in media that lacked nitrate. Triglyceride was determined to be present in both cultures by comparing the algal NMR spectra with published chemical shifts for a wide range of lipids and with a spectrum obtained from a triglyceride standard (glyceryl trioleate). In addition, it is shown that (1) the signal‐to‐noise ratio of the ~29.5 ppm methylene peak is indicative of the lipid content and (2) the nitrogen‐starved culture contained a greater lipid content than the healthy culture, as expected. Furthermore, the nitrogen‐starved culture produced spectra that primarily contained the characteristic peaks of triglyceride (at ~61.8 and ~68.9 ppm), whereas the healthy culture produced spectra that contained several additional peaks in the glycerol region, likely resulting from the presence of monoglyceride and diglyceride. Finally, potential interferences are evaluated (including the analysis of phospholipids via 31P NMR) to assess the specificity of the acquired spectra to triglyceride. These results indicate that NMR is a useful diagnostic tool for selectively identifying lipids in algae, with particular relevance to biodiesel production. Biotechnol. Bioeng. 2010;106: 573–583. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
Two bacterial strains used for industrial production of 2‐keto‐L‐gulonic acid (2‐KLG), Ketogulonigenium vulgare 2 and Bacillus thuringiensis 1514, were loaded onto the spacecraft Shenzhou VII and exposed to space conditions for 68 h in an attempt to increase their fermentation productivities of 2‐KLG. An optimal combination of mutants B. thuringiensis 320 and K. vulgare 2194 (KB2194‐320) was identified by systematically screening the pH and 2‐KLG production of 16 000 colonies. Compared with the coculture of parent strains, the conversion rate of L‐sorbose to 2‐KLG by KB2194‐320 in shake flask fermentation was increased significantly from 82·7% to 95·0%. Furthermore, a conversion rate of 94·5% and 2‐KLG productivity of 1·88 g l?1 h?1 were achieved with KB2194‐320 in industrial‐scale fermentation (260 m3 fermentor). An observed increase in cell number of K2194 (increased by 47·8%) during the exponential phase and decrease in 2‐KLG reductase activity (decreased by 46·0%) were assumed to explain the enhanced 2‐KLG production. The results suggested that the mutants KB2194‐320 could be ideal substitutes for the currently employed strains in the 2‐KLG fermentation process and demonstrated the feasibility of using spaceflight to breed high‐yielding 2‐KLG‐producing strains for vitamin C production.

Significance and Impact of the Study

KB2194‐320, a combination of two bacterial strains bred by spaceflight mutation, exhibited significantly improved 2‐KLG productivity and hence could potentially increase the efficiency and reduce the cost of vitamin C production by the two‐step fermentation process. In addition, a new pH indicator method was applied for rational screening of K2, which dramatically improved the efficiency of screening.  相似文献   

9.
Until recently, biodiesel production has been derived from terrestrial plants such as soybean and canola, leading to competition between biodiesel production and agricultural production for source materials. Microalgae have the potential to synthesize 30 times more oil per hectare than terrestrial plants without competing for agricultural land. We examined four genera (Cyclotella, Aulacoseira, Fragilaria, Synedra) of common freshwater diatoms (Bacillariophyceae) for growth and lipid content in defined medium (sD11) that replicates hypereutrophic conditions in lakes and wastewater treatment plant effluents and optimized the medium for silicon content. Cyclotella and Aulacoseira produced the highest levels of total lipids, 60 and 43 μg total lipids/ml, respectively. Both diatoms are rich in fatty acids C14, C16, C16:1, C16:2,7,10, and C22:5n3. Of the diatoms examined, Cyclotella reached the highest population density (>2.5 × 106 cells/ml) in stationary phase when many of the cells appeared to be filled entirely with oil. Silicon enrichment studies indicated that for optimal utilization of phosphorus and nitrogen by diatoms growing in wastewater effluent, the amount of silicon present or added to the effluent should be 17.5 times the mass of phosphorus in the effluent. With high growth rates, high lipid contents, and rapid settling rates, Cyclotella and Aulacoseira are candidates for biodiesel production.  相似文献   

10.
The reuse of wastewater is important for reducing costs involved with algal lipid production. However, nutrient limitations, wastewater‐borne microbes, and mixotrophic growth can significantly affect biomass yields and lipid/biomass ratios. This research compared the growth performances of both Chlorella vulgaris and Pseudokirchneriella subcapitata on domestic wastewater effluent. The experiments were conducted in the presence and absence of wastewater‐borne bacteria, while additionally assessing the impact of distinct nitrate and glucose supplementations. When compared to the sterilized controls, the presence of wastewater‐borne bacteria in the effluent reduced C. vulgaris and P. subcapitata total biomass production by 37% and 46%, respectively. In the corresponding treatments supplemented with glucose and nitrate, total biomass production increased by 12% and 61%, respectively. The highest biomass production of 1.11 and 0.72 g · L?1 was, however, observed in the sterilized treatments with both glucose and nitrate supplementations for C. vulgaris and P. subcapitata, respectively. Lipid to biomass ratios were, on average, threefold higher when only nitrate was introduced in the sterilized treatments for both species (0.4 and 0.5, respectively). Therefore, the combination of nitrate and glucose supplementation is shown to be an important strategy for enhancing algal lipid and biomass production when those algae are grown in the presence of wastewater‐borne bacteria. On the other hand, in the absence of wastewater‐borne bacteria, only nitrate supplementation can significantly improve lipid/biomass ratios.  相似文献   

11.
Pichia pastoris has become one of the major microorganisms for the production of proteins in recent years. This development was mainly driven by the readily available genetic tools and the ease of high‐cell density cultivations using methanol (or methanol/glycerol mixtures) as inducer and carbon source. To overcome the observed limitations of methanol use such as high heat development, cell lysis, and explosion hazard, we here revisited the possibility to produce proteins with P. pastoris using glucose as sole carbon source. Using a recombinant P. pastoris strain in glucose limited fed‐batch cultivations, very high‐cell densities were reached (more than 200 gCDW L?1) resulting in a recombinant protein titer of about 6.5 g L?1. To investigate the impact of recombinant protein production and high‐cell density fermentation on the metabolism of P. pastoris, we used 13C‐tracer‐based metabolic flux analysis in batch and fed‐batch experiments. At a controlled growth rate of 0.12 h?1 in fed‐batch experiments an increased TCA cycle flux of 1.1 mmol g?1 h?1 compared to 0.7 mmol g?1 h?1 for the recombinant and reference strains, respectively, suggest a limited but significant flux rerouting of carbon and energy resources. This change in flux is most likely causal to protein synthesis. In summary, the results highlight the potential of glucose as carbon and energy source, enabling high biomass concentrations and protein titers. The insights into the operation of metabolism during recombinant protein production might guide strain design and fermentation development. Biotechnol. Bioeng. 2010;107: 357–368. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
13.
High‐power, durable composite fuel cell membranes are fabricated here by direct membrane deposition (DMD). Poly(vinylidene fluoride‐co ‐hexafluoropropylene) (PVDF‐HFP) nanofibers, decorated with CeO2 nanoparticles are directly electrospun onto gas diffusion electrodes. The nanofiber mesh is impregnated by inkjet‐printed Nafion ionomer dispersion. This results in 12 µm thin multicomponent composite membranes. The nanofibers provide membrane reinforcement, whereas the attached CeO2 nanoparticles promote improved chemical membrane durability due to their radical scavenging properties. In a 100 h accelerated stress test under hot and dry conditions, the reinforced DMD fuel cell shows a more than three times lower voltage decay rate (0.39 mV h?1) compared to a comparably thin Gore membrane (1.36 mV h?1). The maximum power density of the DMD fuel cell drops by 9%, compared to 54% measured for the reference. Impedance spectroscopy reveals that ionic and mass transport resistance of the DMD fuel cell are unaffected by the accelerated stress test. This is in contrast to the reference, where a 90% increase of the mass transport resistance is measured. Energy dispersive X‐ray spectroscopy reveals that no significant migration of cerium into the catalyst layers occurs during degradation. This proves that the PVDF‐HFP backbone provides strong anchoring of CeO2 in the membrane.  相似文献   

14.
Miscanthus × giganteus is often regarded as one of the most promising crops to produce sustainable bioenergy. This perennial crop, renowned for its high productivity associated with low input requirements, in particular regarding fertilizers, is thought to have low environmental impacts, but few data are available to confirm this. Our study aimed at assessing nitrate leaching from Miscanthus × giganteus crops in farmers' fields, thus including a wide range of soil and cropping system conditions. We focused on the first years of growth after planting as experimental studies have suggested that Miscanthus × giganteus, once established, results in low nitrate leaching. We combined on‐farm measurements and modeling to estimate drainage, leached nitrogen, and nitrate concentration in drainage water in 38 fields located in Center‐East France during two winters (November 2010 to March 2011, November 2011 to March 2012). Nitrate leaching and nitrate concentration in drainage water were on average very low. Nitrate leaching averaged 6 kg N ha?1 whereas nitrate concentration averaged 12 mg l?1. These low values are attributable to the low estimates of drainage water (mean = 166 mm) but also to the low soil mineral nitrogen contents measured at the beginning of winter (mean = 37 kg N ha?1). Our results were, however, very variable, mainly due to the crop age: nitrate leaching and nitrate concentration were critically higher during the winter following the first growth year of Miscanthus × giganteus, reflecting the low development of the crop. This variability was also explained by the range of soil and cropping conditions explored in the on‐farm design: shallow and/or sandy soils as well as fields where establishment failed had a higher risk of nitrate leaching.  相似文献   

15.
Antimicrobial peptides are important components of the host innate immune responses by exerting broad‐spectrum microbicidal activity against pathogenic microbes. Cy‐AMP1 found in the cycad (Cycas revoluta) seeds has chitin‐binding ability, and the chitin‐binding domain was conserved in knottin‐type and hevein‐type antimicrobial peptides. The recombinant Cy‐AMP1 was expressed in Escherichia coli and purified to study the role of chitin‐binding domain. The mutants of Cy‐AMP1 lost chitin‐binding ability completely, and its antifungal activity was markedly decreased in comparison with native Cy‐AMP1. However, the antimicrobial activities of the mutant peptides are nearly identical to that of native one. It was suggested that the chitin‐binding domain plays an essential role in antifungal, but not antimicrobial, activity of Cy‐AMP1. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
In Lake Tega, Japan, the shift of dominant algal species was caused as a result of discharging water from the adjacent river into the lake. The transition from cyanobacteria (mainly the genus Microcystis) to diatoms (mainly the genus Cyclotella) resulted in a disappearance of algal blooms. Although some environmental conditions such as flow rate, nutrient concentration, and transparency were changed by the project, the decisive factor for the transition has not been clarified yet. For the effective control of algal blooms by water discharge, this study aimed to elucidate the effects of daily renewal rate and nitrogen concentration on the interspecific competition between Microcystis aeruginosa and Cyclotella sp. Monoculture experiments were conducted to obtain growth characteristics for each species and mixed culture experiments were performed to examine their competitive abilities under various daily renewal rates of the culture medium (15 and 30 %) and nitrate concentrations (71.4, 178, and 357 μM). In addition to prepared medium, Lake Tega water was also used for mixed culture experiments. The results showed that the increase in a daily renewal rate contributed to the dominance of Cyclotella sp., while a nitrate concentration had little influence on the competition. We conclude that algal blooms composed of the genus Microcystis would be controlled by maintaining a daily renewal rate up to 30 % or more, which corresponded to the dilution rate of 0.36 day?1, under a nitrate concentration of ≤357 μM. The study would include essential information for the management of lakes suffering from frequent occurrences of algal blooms.  相似文献   

17.
The influence of oscillatory versus unidirectional flow on the growth and nitrate‐uptake rates of juvenile kelp, Laminaria digitata, was determined seasonally in experimental treatments that simulated as closely as possible natural environmental conditions. In winter, regardless of flow condition (oscillatory and unidirectional) or water velocity, no influence of water motion was observed on the growth rate of L. digitata. In summer, when ambient nitrate concentrations were low, increased water motion enhanced macroalgal growth, which is assumed to be related to an increase in the rate of supply of nutrients to the blade surface. Nitrate‐uptake rates were significantly influenced by water motion and season. Lowest nitrate‐uptake rates were observed for velocities <5 cm · s?1 and nitrate‐uptake rates increased by 20%–50% under oscillatory motion compared to unidirectional flow at the same average speed. These data further suggested that the diffusion boundary layer played a significant role in influencing nitrate‐uptake rates. However, while increased nitrate‐uptake in oscillatory flow was clear, this was not reflected in growth rates and further work is required to understand the disconnection of nitrate‐uptake and growth by L. digitata in oscillatory flow. The data obtained support those from related field‐based studies, which suggest that in summer, when insufficient nitrogen is available in the water to saturate metabolic demand, the growth rate of kelps will be influenced by water motion restricting mass transfer of nitrogen.  相似文献   

18.
Solid state NMR measurements on selectively 13C‐labeled RADA16‐I peptide (COCH3–RADARADARADARADA–NH2) were used to obtain new molecular level information on the conversion of α‐helices to β‐sheets through self‐assembly in the solid state with increasing temperature. Isotopic labeling at the A4 Cβ site enabled rapid detection of 13C NMR signals. Heating to 344–363 K with simultaneous NMR detection allowed production of samples with systematic variation of α‐helix and β‐strand content. These samples were then probed at room temperature for intermolecular 13C–13C nuclear dipolar couplings with the PITHIRDS‐CT NMR experiment. The structural transition was also characterized by Fourier transform infrared spectroscopy and wide angle X‐ray diffraction. Independence of PITHIRDS‐CT decay shapes on overall α‐helical and β‐strand content infers that β‐strands are not observed without association with β‐sheets, indicating that β‐sheets are formed at elevated temperatures on a timescale that is fast relative to the NMR experiment. PITHIRDS‐CT NMR data were compared with results of similar measurements on RADA16‐I nanofibers produced by self‐assembly in aqueous salt solution. We report that β‐sheets formed through self‐assembly in the solid state have a structure that differs from those formed through self‐assembly in the solution state. Specifically, solid state RADA16‐I self‐assembly produces in‐register parallel β‐sheets, whereas nanofibers are composed of stacked parallel β‐sheets with registry shifts between adjacent β‐strands in each β‐sheet. These results provide evidence for environment‐dependent self‐assembly mechanisms for RADA16‐I β‐sheets as well as new constraints on solid state self‐assembled structures, which must be avoided to maximize solution solubility and nanofiber yields. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
N‐acetylneuraminic acid (NeuAc) is a common sialic acid that has a wide range of applications in nutraceuticals and pharmaceuticals. However, low production efficiency and high environmental pollution associated with traditional extraction and chemical synthesis methods constrain the supply of NeuAc. Here, a biological approach is developed for food‐grade NeuAc production via whole‐cell biocatalysis by the generally regarded as safe (GRAS) bacterium Bacillus subtilis (B. subtilis). Promoters for controlling N‐acetylglucosamine 2‐epimerase (AGE) and NeuAc adolase (NanA) are optimized, yielding 32.84 g L?1 NeuAc production with a molar conversion rate of 26.55% from N‐acetylglucosamine (GlcNAc). Next, NeuAc production is further enhanced to 46.04 g L?1, which is 40.2% higher than that of the strain with promoter optimization, by expressing NanA from Staphylococcus hominis instead of NanA from Escherichia coli. To enhance the expression level of ShNanA, the N‐terminal coding sequences of genes with high expression levels are fused to the 5′‐end of the ShNanA gene, resulting in 56.82 g L?1 NeuAc production. Finally, formation of the by‐product acetoin from pyruvate is blocked by deleting the alsS and alsD genes, resulting in 68.75 g L?1 NeuAc production with a molar conversion rate of 55.57% from GlcNAc. Overall, a GRAS B. subtilis strain is demonstrated as a whole‐cell biocatalyst for efficient NeuAc production.  相似文献   

20.
The hybridoma 192 was used to produce a monoclonal antibody (MAb) against 17‐hydroxyprogesterone (17‐OHP), for possible use in screening for congenital adrenal hyperplasia (CAH). The factors influencing the MAb production were screened and optimized in a 2 L stirred bioreactor. The production was then scaled up to a 20 L bioreactor. All of the screened factors (aeration rate, stirring speed, dissolved oxygen concentration, pH, and temperature) were found to significantly affect production. Optimization using the response surface methodology identified the following optimal production conditions: 36.8°C, pH 7.4, stirring speed of 100 rpm, 30% dissolved oxygen concentration, and an aeration rate of 0.09 vvm. Under these conditions, the maximum viable cell density achieved was 1.34 ± 0.21 × 106 cells mL?1 and the specific growth rate was 0.036 ± 0.004 h?1. The maximum MAb titer was 11.94 ± 4.81 μg mL?1 with an average specific MAb production rate of 0.273 ± 0.135 pg cell?1 h?1. A constant impeller tip speed criterion was used for the scale‐up. The specific growth rate (0.040 h?1) and the maximum viable cell density (1.89 × 106 cells mL?1) at the larger scale were better than the values achieved at the small scale, but the MAb titer in the 20 L bioreactor was 18% lower than in the smaller bioreactor. A change in the culture environment from the static conditions of a T‐flask to the stirred bioreactor culture did not affect the specificity of the MAb toward its antigen (17‐OHP) and did not compromise the structural integrity of the MAb. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号