首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extractive fermentation is a technique that can be used to reduce the effect of end product inhibition through the use of a water-immiscible phase that removes fermentation products in situ. This has the beneficial effect of not only removing inhibitory products as they are formed (thus keeping reaction rates high) but also has the potential for reducing product recovery costs. We have chosen to examine the ethanol fermentation as a model system for end product inhibition and extractive fermentation and have developed a computer model predicting the productivity enhancement possible with this technique together with other key parameters such as extraction efficiency and residual glucose concentration. The model accommodates variable liquid flowrates entering and leaving the system, since it was found that the aqueous outlet flowrate could be up to 35% lower than the inlet flowrate during extractive fermentation of concentrated glucose feeds due to the continuous removal of ethanol from the fermentation broth by solvent extraction. The model predicts a total ethanol productivity of 82.6 g/L h if a glucose feed of 750 g/L is fermented with a solvent having a distribution coefficient of 0.5 at a solvent dilution rate of 5.0 h(-1). This is more than 10 times higher than for a conventional chemostat fermentation of a 250 g/L glucose feed. The model has furthermore illustrated the possible trade-offs that exist between obtaining a high extraction efficiency and a low residual glucose concentration.  相似文献   

2.
Summary Aqueous feeds of 413 and 495 g/L glucose were fermented to ethanol at 90–95% conversion in a continuous flow extractive fermentation system with cell recycle. Compared to the continuous conventional fermentation of a 195 g/L glucose medium, the volumetric productivity was more than doubled in extractive mode, with no deleterious effects on cell viability, specific glucose consumption rate or ethanol yield. The use of an effective, biocompatible and stable in situ extractant with flash vaporization can also produce a concentrated ethanol vapour stream, reducing distillation costs of the product.  相似文献   

3.
A dynamic flux balance model based on a genome-scale metabolic network reconstruction is developed for in silico analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Metabolic engineering strategies previously identified for their enhanced steady-state biomass and/or ethanol yields are evaluated for fed-batch performance in glucose and glucose/xylose media. Dynamic analysis is shown to provide a single quantitative measure of fed-batch ethanol productivity that explicitly handles the possible tradeoff between the biomass and ethanol yields. Productivity optimization conducted to rank achievable fed-batch performance demonstrates that the genetic manipulation strategy and the fed-batch operating policy should be considered simultaneously. A library of candidate gene insertions is assembled and directly screened for their achievable ethanol productivity in fed-batch culture. A number of novel gene insertions with ethanol productivities identical to the best metabolic engineering strategies reported in previous studies are identified, thereby providing additional targets for experimental evaluation. The top performing gene insertions were substrate dependent, with the highest ranked insertions for glucose media yielding suboptimal performance in glucose/xylose media. The analysis results suggest that enhancements in biomass yield are most beneficial for the enhancement of fed-batch ethanol productivity by recombinant xylose utilizing yeast strains. We conclude that steady-state flux balance analysis is not sufficient to predict fed-batch performance and that the media, genetic manipulations, and fed-batch operating policy should be considered simultaneously to achieve optimal metabolite productivity.  相似文献   

4.
Microporous-membrane-based extractive product recovery in product-inhibited fermentations allows in situ recovery of inhibitory products in a nondispersive fashion. A tubular bioreactor with continuous strands of hydrophobic microporous hollow fibers having extracting solvent flowing in fiber lumen was utilized for yeast fermentation of glucose to ethanol. Yeast was effectively immobilized on the shell side in small lengths of chopped microporous hyrophilic hollow fibers. The beneficial effects of in situ dispersion-free solvent ex (oleyl alcohol and dibutyl phthalate) were demonstrated for a 300 g/L glucose substrate feed. Outlet glucose concentration dropped drastically from 123 to 41 g/L as solvent/ substrate flow ratio was increased from 0 to 3 at 9 mL/h of substrate flow rate with oleyl alcohol as extracting solvent. The significant productivity increase with in situ solvent extraction became more evident as solvent/ substrate flow ratio increased. A model of the locally integrated extractive bioreactor describes the observed fermentor performance quite well.  相似文献   

5.
Two types of bioreactor using a flocculating strain of Saccharomyces cerevisiae and continuous ethanolic fermentation as model were compared in terms of start-up evolution, overall performance and power costs. Also, the effect of adding to the medium a polymer — Magna Floc LT25 — that increases floc porosity was studied. The main difference between the reactors lies on the system that is used to recycle the flocculated cells — one presents an external loop with mechanically forced recycling and the other has an airlift configuration with an internal loop. During start-up of both bioreactors, no significant differences between the fermentation kinetics were established, either with or without Magna Floc. In the airlift bioreactor no positive effect of the dilution rate on substrate uptake was observed. Concerning ethanol productivity, both systems behave in a similar way. The best ethanol productivity, 12.9 kg/kg/h, was obtained for the airlift system. This value is 7 times higher than in conventional systems and justifies the interest devoted to flocculation bioreactors. The results also indicate that the activity of the cells that are kept inside the airlift bioreactor is higher and compensates its lower cell retention capacity at higher dilution rates. The addition of Magna Floc to the medium causes a reduction on the ethanol yield on glucose for the external loop system, but allows for an increase in the maximal dilution rate for total glucose consumption. Such a behavior is not observed for the airlift system. The analysis of the power cost associated with the operation of the two bioreactors indicates that the differences between them are only relevant at laboratory and pilot scales. However, from an industrial scale point of view the airlift bioreactor is advantageous because no mechanical parts are involved in recycling.  相似文献   

6.
Summary Hansenula polymorpha was cultivated in a bubble column loop bioreactor employing ethanol and/or glucose as substrates. By varying the substrate concentration, the cultivations were carried out in non-limited, substrate limited and oxygen transfer limited growth ranges. The influence of the transitions from one range to another on reactor performance (OTR,k L a, a) and cell productivity () were investigated. When employing ethanol as a substrate, the concentration considerably influences the fluid dynamics, mass transfer phenomena and cell productivity. When employing glucose as a substrate, glucose repression occurs. At high glucose concentrations no transition into the oxygen transfer limited growth is possible. The ethanol produced during the glucose repression influences the fluid dynamics, mass transfer phenomena and productivity. With decreasing glucose concentration the glucose repression can be gradually eliminated.  相似文献   

7.
Summary Enhanced rates of continuous ethanol production by a flocculent strain ofPichia stipitis from a sugar mixture (xylose 75%, glucose 20%, arabinose 5%) were attained using a single-stage gas lift tower fermentor. With a substrate feed of 50g/l, the biomass accumulated at a level near 50g/l, showed a maximum and stable ethanol productivity of 10.7 g/l.h, with a substrate conversion of 80%; the ethanol yield reached 0.41g/g. In these operating conditions, similar performances were obtained when D.xylose alone was supplied.  相似文献   

8.
A wild-type yeast strain with a good galactose-utilization efficiency was newly isolated from the soil, and identified and named Saccharomyces cerevisiae KL17 by 18s RNA sequencing. Its performance of producing ethanol from galactose was investigated in flask cultures with media containing various combination and concentrations of galactose and glucose. When the initial galactose concentration was 20 g/L, it showed 2.2 g/L/h of substrate consumption rate and 0.63 g/L/h of ethanol productivity. Although they were about 70 % of those with glucose, such performance of S. cerevisiae KL17 with galactose was considered to be quite high compared with other strains reported to date. Its additional merit was that its galactose metabolism was not repressed by the existence of glucose. Its capability of ethanol production under a high ethanol concentration was demonstrated by fed-batch fermentation in a bioreactor. A high ethanol productivity of 3.03 g/L/h was obtained with an ethanol concentration and yield of 95 and 0.39 g/L, respectively, when the cells were pre-cultured on glucose. When the cells were pre-cultured on galactose instead of glucose, fermentation time could be reduced significantly, resulting in an improved ethanol productivity of 3.46 g/L/h. The inhibitory effects of two major impurities in a crude galactose solution obtained from acid hydrolysis of galactan were assessed. Only 5-Hydroxymethylfurfural (5-HMF) significantly inhibited ethanol fermentation, while levulinic acid (LA) was benign in the range up to 10 g/L.  相似文献   

9.
A tapered column type of bioreactor system packed with immobilized Saccharomyces cerevisiae was used to study the bioreactor performance as a function of design and operating variables. The performance of tapered column bioreactor system was found to be better than that of the conventional cylindrical column reactor system for the ethanol fermentation. The new bioreactor design alleviated problems associated with carbon dioxide evolution and provided a significantly better flow pattern for both liquid and gas phases in the bioreactor without local channelling. A mathematical simulation model, which takes into account of the axial convection and dispersion, interphase mass transfer, and apparent kinetic design parameters, was developed. The effect of radial concentration gradients on the bioreactor performance was found to be insignificant. For the reactor system studied, the maximum ethanol productivity obtained was 60 g ethanol/L gel/h, and the maximum glucose assimilation rate was 140 g glucose/L gel/h. One of the most important findings from this study was that the apparent kinetic parameters change at the glucose concentration of 2 g/L This change was found to be due to the changes in yeast physiology and metabolism. The values of V(m) (') and V(m) (') decreased from 0.8 to 0.39 g ethanol/g cell/h and from 97mM to 11mM, respectively. The substrate inhibition constant was estimated as 0.76M and the product inhibition constant was determined as 113 g ethanol/L The degree of product inhibition showed practically a linear relationship with an increasing ethanol concentration. Based on the hydro-dynamic analysis of the bioreactor system, it was found that the Peclet number, N(Pe) was not a strong function of the flow velocity at low flow rates through the bioreactor system, but its value decreased somewhat at an interstitial velocity greater than 0.03 cm/s. The tapered column bioreactor system showed a much better flow pattern of gas and liquid phases within the reactor, thereby providing a more homogeneous distribution of gas-liquid-solid phases in the reactor without any phase separation.  相似文献   

10.
In this work, an expert system was developed and applied for on-line control and supervision of ethanolic fermentation by immobilized Saccharomyces cerevisiae in a fixed-bed pulsed bioreactor of 1.2 l of working volume. A number of experiments with different substrate concentrations (75, 100, 150 and 200 g/l) and hydraulic residence times (2.4, 1.2 and 0.8 h) were carried out. Knowledge-based computer-aided supervision of this process involves accurate on-line measurement of the relevant process variables (temperature, pH, flow rate, carbon dioxide production, etc.). Carbon dioxide production was used for the estimation of the ethanol productivity. The analysis of the measured data allowed to detect states or trends that may be indicative of process or system failures, providing advices and/or alarms. The results showed the reliability of the control system. In previous works, it was proven that pulsing the feed stream highly improves the productivity of fermentation processes carried out in fixed-bed bioreactors [14, 15, 16]. The amplitude and frequency of the pulsation, which is a key factor in the performance of a pulsed feed bioreactor [13], was selected by the control system by using an algorithm allowing the ethanol productivity to be optimized. The pulsation frequency which maximizes the ethanol productivity, presents a high dependency on the hydraulic residence time and the feeding substrate concentration. When increasing the substrate concentration the optimum pulsation frequency also increases; when increasing the hydraulic residence time the optimum pulsation frequency decreases.  相似文献   

11.
The viable fraction of immobilized cells in a bioreactor may be critical in predicting long-term or steady-state reactor performance. The assumption of near 100% viable cells in a bioreactor may not be valid for portions of immobilized cell reactors (ICRs) characterized by conditions resulting in appreciable death rates. A mathematical model of an adsorbed cell type ICR is presented in which a steady-state viable cell fraction is predicted, based on the assumptions of no cell accumulation in the reactor and a random loss of cells from the reactor. Data on cell death rates, cell growth rates, and productivity rates as functions of temperature, substrate, and ethanol concentration for the lactose utilizing yeast K. fragillis were incorporated into this model. The steady-state reactor viable cell fraction as predicted by this model is a strong function of both temperature and ethanol concentration. For example, a stable 20% viable fraction of the immobilized cells is predicted in ICR locations experiencing continuous conditions of either 30 g/L ethanol at 40 degrees C, or 95 g/L ethanol at 25 degrees C. Steady-state ICR "plug flow" concentration profiles and column productivities are predicted at three operating temperatures, 20, 30, and 40 degrees C using two different models for ethanol inhibition of productivity. These profiles suggest that the reactor operating temperature should be low if higher outlet ethanol concentrations are desired. Three reactor design strategies are presented to maximize the viable cell fraction and improve long-term ethanol productivity in ICR's: (1) reducing outlet ethanol concentrations, (2) rotating segments of an ICR between high and low ethanol environments, and (3) simultaneous removal of the ethanol produced from the reactor as it is formed.  相似文献   

12.
Process intensification in biomanufacturing has attracted a great deal of interest in recent years. Manufacturing platform improvements leading to higher cell density and bioreactor productivity have been pursued. Here we evaluated a variety of intensified mammalian cell culture processes for producing monoclonal antibodies. Cell culture operational modes including fed‐batch (normal seeding density or high seeding density with N‐1 perfusion), perfusion, and concentrated fed‐batch (CFB) were assessed using the same media set with the same Chinese Hamster Ovary (CHO) cell line. Limited media modification was done to quickly fit the media set to different operational modes. Perfusion and CFB processes were developed using an alternating tangential flow filtration device. Independent of the operational modes, comparable cell specific productivity (fed‐batch: 29.4 pg/cell/day; fed‐batch with N‐1 perfusion: 32.0 pg/cell/day; perfusion: 31.0 pg/cell/day; CFB: 20.1 – 45.1 pg/cell/day) was reached with similar media conditions. Continuous media exchange enabled much higher bioreactor productivity in the perfusion (up to 2.29 g/L/day) and CFB processes (up to 2.04 g/L/day), compared with that in the fed‐batch processes (ranging from 0.39 to 0.49 g/L/day), largely due to the higher cell density maintained. Furthermore, media cost per gram of antibody produced from perfusion was found to be highly comparable with that from fed‐batch; and the media cost for CFB was the highest due to the short batch duration. Our experimental data supports the argument that media cost for perfusion process could be even lower than that in a fed‐batch process, as long as sufficient bioreactor productivity is achieved. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:867–878, 2017  相似文献   

13.
Perfusion medium was successfully developed based on our fed‐batch platform basal and feed media. A systematic development approach was undertaken by first optimizing the ratios of fed‐batch basal and feed media followed by targeted removal of unnecessary and redundant components. With this reduction in components, the medium could then be further concentrated by 2× to increase medium depth. The medium osmolality was also optimized where we found ~360 mOsm/kg was desirable resulting in a residual culture osmolality of ~300 mOsm/kg for our cell lines. Further building on this, the amino acids Q, E, N, and D were rebalanced to reduce lactate and ammonium levels, and increase the cell‐specific productivity without compromising on cell viability while leaving viable cell density largely unaffected. Further modifications were also made by increasing certain important vitamin and lipid concentrations, while eliminating other unnecessary vitamins. Overall, an effective perfusion medium was developed with all components remaining in the formulation understood to be important and their concentrations increased to improve medium depth. The critical cell‐specific perfusion rate using this medium was then established for a cell line of interest to be 0.075 nL/cell‐day yielding 1.2 g/L‐day at steady state. This perfusion process was then successfully scaled up to a 100 L single‐use bioreactor with an ATF6 demonstrating similar performance as a 2 L bioreactor with an ATF2. Large volume handling challenges in our fed‐batch facility were overcome by developing a liquid medium version of the powder medium product contained in custom totes for plug‐and‐play use with the bioreactor. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:891–901, 2017  相似文献   

14.
Summary Living Gluconobacter oxydans cells were attached on fibrous nylon carrier. Free gluconic acid was directly continuously produced in an aerated tubular immobilized-cell bioreactor for at least 6 months, with a volumetric productivity of at least 5 g/lh at 100 g/l substrate glucose and about 80 g/l product gluconic acid concentrations. The highest volumetric productivity in respect to glucose concentration was obtained with 175 g/l glucose, with about 120 g/l product gluconic acid level. With self-directing optimization procedure in respect to maximum product gluconic acid level, productivities as high as about 12–15 g/lh were obtained at relatively high substrate feed rate of 0.166 l/lh and relatively low aeration rate of 0.5 l/lmin. The highest glucose conversion of about 96% was obtained with a long residence time, at the lowest substrate feed rate used at a relatively low aeration rate, resulting however in a significant increase in ketogluconic acid production.  相似文献   

15.
Detection of salmonellas in animal feeds by electrical conductance   总被引:10,自引:0,他引:10  
A comparison was made between standard culture methods and electrical conductance using a Malthus AT Microbiological Analyser for the examination of animal feeds for salmonella. Conductance testing with a selenite cystine/trimethylamine-N-oxide/dulcitol medium resulted in the detection of salmonellas in 49 of 55 known positive animal feeds, 13 of 19 spiked feed samples and 36 of 47 salmonella cultures. Testing with a lysine decarboxylase/glucose medium gave significantly better results (P less than 0.05) than with selenite cystine medium but five lysine decarboxylase negative strains of salmonella were undetected. When both media were used in parallel all salmonella positive samples were detected. No difference was found between preenrichment in buffered peptone water containing trimethylamine/mannitol and that containing lysine/glucose. Positive detection criteria for selenite medium of conductance peak at greater than or equal to 500 microsiemens (microS) with a rate of change of greater than or equal to 60 microS/h or 400-499 microS with a rate of change of greater than or equal to 40 microS/h and for lysine medium with a peak of greater than or equal to 100 microS have been established. The method offers savings in media and operating costs over conventional standard culture methods, provides results within 48 h and is recommended for statutory feed monitoring purposes.  相似文献   

16.
Economical production of second generation ethanol from Ponderosa pine is of interest due to widespread mountain pine beetle infestation in the western United States and Canada. The conversion process is limited by low glucose and high inhibitor concentrations resulting from conventional low‐solids dilute acid pretreatment and enzymatic hydrolysis. Inhibited fermentations require larger fermentors (due to reduced volumetric productivity) and low sugars lead to low ethanol titers, increasing distillation costs. In this work, multiple effect evaporation (MEE) and nanofiltration (NF) were evaluated to concentrate the hydrolysate from 30 g/l to 100, 150, or 200 g/l glucose. To ferment this high gravity, inhibitor containing stream, traditional batch fermentation was compared with continuous stirred tank fermentation (CSTF) and continuous fermentation with cell recycle (CSTF‐CR). Equivalent annual operating cost (EAOC = amortized capital + yearly operating expenses) was used to compare these potential improvements for a local‐scale 5 MGY ethanol production facility. Hydrolysate concentration via evaporation increased EAOC over the base process due to the capital and energy intensive nature of evaporating a very dilute sugar stream; however, concentration via NF decreased EAOC for several of the cases (by 2 to 15%). NF concentration to 100 g/l glucose with a CSTF‐CR was the most economical option, reducing EAOC by $0.15 per gallon ethanol produced. Sensitivity analyses on NF options showed that EAOC improvement over the base case could still be realized for even higher solids removal requirements (up to two times higher centrifuge requirement for the best case) or decreased NF performance. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:946–956, 2015  相似文献   

17.
Production of fuel ethanol from sugar beet juice, using cells immobilized on loofa sponge was investigated. Based on ethanol productivity and ease of cell immobilization, a flocculating yeast strain, Saccharomyces cerevisiae IR2 was selected for ethanol production from sugar beet juice. It was found that raw sugar beet juice was an optimal substrate for ethanol production, requiring neither pH adjustment nor nitrogen source supplement. When compared with a 2 l bubble column bioreactor, mixing was not sufficient in an 8 l bioreactor containing a bed of sliced loofa sponges and consequently, the immobilized cells were not uniformly distributed within the bed. Most of the cells were immobilized in the lower part of the bed and this resulted in decreased ethanol productivity. By using an external loop bioreactor, constructing the fixed bed with cylindrical loofa sponges, dividing the bed into upper, middle and lower sections with approximately 1 cm spaces between them and circulating the broth through the loop during the immobilization, uniform cell distribution within the bed was achieved. Using this method, the system was scaled up to 50 l and when compared with the 2 l bubble column bioreactor, there were no significant differences (P > 0.05) in ethanol productivity and yield. By using external loop bioreactor to immobilize the cells uniformly on the loofa sponge beds, efficient large scale ethanol production systems can be constructed.  相似文献   

18.
Growth kinetics and ethanol production of Zymomonas mobilis in a bioreactor with cell recycle were modelled. High specific growth rates can be used to control excessive biomass accumulation in the system. Predicted peak productivity with a cell concentration of 80 g l−1, a dilution rate of 6.5 h−1, and a feed glucose concentration of 120 g l−1 is 350 g l−1 h−1. The design of a special recycle reactor using a filter which should permit the operating conditions required for the validation of the model is proposed.  相似文献   

19.
在1.5L搅拌式发酵罐中,使用葡萄糖质量浓度分别为120、200、280g/L的培养基进行酿酒酵母Saccharomyces cerevisiae连续发酵生成酒精的动力学研究。研究发现,当培养基中葡萄糖浓度为200和280g/L时,发酵液中残糖浓度、酒精浓度以及菌体生物量从小幅度波动的准稳态发展到大幅度波动的振荡状态。提出了伴有周期性振荡现象准稳态过程的概念,并针对该过程,建立了兼有底物和产物抑制的酵母细胞生长和产物酒精生成动力学模型。  相似文献   

20.
Continuous culture for the production of ethanol from wood hydrolysate was carried out in an internal membrane-filtration bioreactor. The hydrolysate medium was sterilized at a relatively low temperature of 60 degrees C with the intention of reducing the formation of inhibitory compounds during the sterilization. The maximum ethanol concentration and productivity obtained in this study were 76.9 g/L and 16.9 g/L-h, respectively, which were much higher than those (57.2-67 g/L and 0.3-1.0 g/L-h) obtained in batch cultures using hydrolysate media sterilized at 60 degrees C. The productivity was also found to be much higher than that (6.7 g/L-h) obtained in a continuous cell retention culture using a wood hydrolysate sterilized at 121 degrees C. These results show that the internal membrane-filtration bioreactor in combination with low-temperature sterilization could be very effective for ethanol production from wood hydrolysate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号