首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most biopharmaceutical drugs, especially monoclonal antibodies (mAbs), bispecific antibodies (BsAbs) and Fc‐fusion proteins, are expressed using Chinese Hamster Ovary (CHO) cell lines. CHO cells typically yield high product titers and high product quality. Unfortunately, CHO cell lines also generate high molecular weight (HMW) aggregates of the desired product during cell culture along with CHO host cell protein (HCP) and CHO DNA. These immunogenic species, co‐purified during Protein A purification, must be removed in a multi‐step purification process. Our colleagues have reported the use of a novel polymer‐mediated flocculation step to simultaneously reduce HMW, HCP and DNA from stable CHO cell cultures prior to Protein A purification. The objective of this study was to evaluate this novel “smart polymer” (SmP) in a high throughput antibody discovery workflow using transiently transfected CHO cultures. SmP treatment of 19 different molecules from four distinct molecular categories (human mAbs, murine mAbs, BsAbs and Fabs) with 0.1% SmP and 25 mM stimulus resulted in minimal loss of monomeric protein. Treatment with SmP also demonstrated a variable, concentration‐dependent removal of HMW aggregates after Protein A purification. SmP treatment also effectively reduced HCP levels at each step of mAb purification with final HCP levels being several fold lower than the untreated control. Interestingly, SmP treatment was able to significantly reduce high concentrations of artificially spiked levels of endotoxin in the cultures. In summary, adding a simple flocculation step to our existing transient CHO process reduced the downstream purification burden to remove impurities and improved final product quality. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1393–1400, 2017  相似文献   

2.
Monoclonal antibodies (Mab) are heterotetramers consisting of an equimolar ratio of heavy chain (HC) and light chain (LC) polypeptides. Accordingly, most recombinant Mab expression systems utilize an equimolar ratio of heavy chain (hc) to light chain (lc) genes encoded on either one or two plasmids. However, there is no evidence to suggest that this gene ratio is optimal for stable or transient production of recombinant Mab. In this study we have determined the optimal ratio of hc:lc genes for production of a recombinant IgG4 Mab, cB72.3, by Chinese hamster ovary (CHO) cells using both empirical and mathematical modeling approaches. Polyethyleneimine-mediated transient expression of cB72.3 at varying ratios of hc:lc genes encoded on separate plasmids yielded an optimal Mab titer at a hc:lc gene ratio of 3:2; a conclusion confirmed by separate mathematical modeling of the Mab folding and assembly process using transient expression data. On the basis of this information, we hypothesized that utilization of hc genes at low hc:lc gene ratios is more efficient. To confirm this, cB72.3 Mab was transiently produced by CHO cells at constant hc and varying lc gene dose. Under these conditions, Mab yield was increased with a concomitant increase in lc gene dose. To determine if the above findings also apply to stably transfected CHO cells producing recombinant Mab, we compared the intra- and extracellular ratios of HC and LC polypeptides for three GS-CHO cells lines transfected with a 1:1 ratio of hc:lc genes and selected for stable expression of the same recombinant Mab, cB72.3. Intra- and extracellular HC:LC polypeptide ratios ranged from 1:2 to 1:5, less than that observed on transient expression of the same Mab in parental CHO cells using the same vector. In conclusion, our data suggest that the optimal ratio of hc:lc genes used for transient and stable expression of Mab differ. In the case of the latter, we infer that optimal Mab production by stably transfected cells represents a compromise between HC abundance limiting productivity and the requirement for excess LC to render Mab folding and assembly more efficient.  相似文献   

3.
Bispecific antibodies (BsAbs) represent an emerging class of biologics that achieve dual targeting with a single agent. Recombinant DNA technologies have facilitated a variety of creative bispecific designs with many promising therapeutic applications; however, practical methods for producing high quality BsAbs that have good product stability, long serum half-life, straightforward purification, and scalable production have largely been limiting. Here we describe a protein-engineering approach for producing stable, scalable tetravalent IgG-like BsAbs. The stability-engineered IgG-like BsAb was envisioned to target and crosslink two TNF family member receptors, TRAIL-R2 (TNF-Related Apoptosis Inducing Ligand Receptor-2) and LTβR (Lymphotoxin-beta Receptor), expressed on the surface of epithelial tumor cells with the goal of triggering an enhanced anti-tumor effect. Our IgG-like BsAbs consists of a stability-engineered anti-LTβR single chain Fv (scFv) genetically fused to either the N- or C-terminus of the heavy chain of a full-length anti-TRAIL-R2 IgG1 monoclonal antibody. Both N- or C-terminal BsAbs were active in inhibiting tumor cell growth in vitro, and with some cell lines demonstrated enhanced activity relative to the combination of parental Abs. Pharmacokinetic studies in mice revealed long serum half-lives for the BsAbs. In murine tumor xenograft models, therapeutic treatment with the BsAbs resulted in reduction in tumor volume either comparable to or greater than the combination of parental antibodies, indicating that simultaneously targeting and cross-linking receptor pairs is an effective strategy for treating tumor cells. These studies support that stability-engineering is an enabling step for producing scalable IgG-like BsAbs with properties desirable for biopharmaceutical development.Key words: bispecific antibodies, single-chain Fv, immunoglobulins, antibody therapeutics, protein stability, pharmacokinetics, protein engineering, tumor inhibition, cancer treatment  相似文献   

4.
Transient gene expression systems in mammalian cells continue to grow in popularity due to their capacity to produce significant amounts of recombinant protein in a rapid and scalable manner, without the lengthy time periods and resources required for stable cell line development. Traditionally, production of recombinant monoclonal antibodies for pre-clinical assessment by transient expression in CHO cells has been hampered by low titers. In this report, we demonstrate transient monoclonal antibody titers of 140 mg/l with CHO cells using the episomal-based transient expression system, Epi-CHO. Such titers were achieved by implementing an optimized transfection protocol incorporating mild-hypothermia and through screening of a variety of chemically defined and serum-free media for their ability to support elevated and prolonged viable cell densities post-transfection, and in turn, improve recombinant protein yields. Further evidence supporting Epi-CHO’s capacity to enhance transgene expression is provided, where we demonstrate higher transgene mRNA and protein levels of two monoclonal antibodies and a destabilized enhanced green fluorescent protein with Epi-CHO compared to cell lines deficient in plasmid DNA replication and/or retention post-transfection. The results demonstrate the Epi-CHO system’s capacity for the rapid production of CHO cell-derived recombinant monoclonal antibodies in serum-free conditions.  相似文献   

5.
Selection of lead candidates in drug discovery is a complex and time-consuming process. Here, we describe an approach that allows prediction of the productivity and quality of recombinant proteins by stable producer cell clones with the help of transient transfection studies. This is exemplified for three distinct bispecific T cell engager (BiTE®)—a new class of single-chain antibody-based therapeutics showing very promising results in the treatment of cancer. BiTE® titers of transiently transfected HEK cells showed a striking correlation with titers of selected stable CHO cell clones. Likewise, the percentage of the monomeric BiTE® fraction in cell culture supernatants correlated well between transiently expressing HEK and stably expressing CHO cell clones. This validates the use of transient transfection studies for the selection of biopharmaceutical lead candidates with desired pharmaceutical properties.  相似文献   

6.
The artificial chromosome expression (ACE) technology system uses an engineered artificial chromosome containing multiple site-specific recombination acceptor sites for the rapid and efficient construction of stable cell lines. The construction of Chinese hamster ovary(CHO) cell lines expressing an IgG1 monoclonal antibody (MAb) using the ACE system has been previously described (Kennard et al., Biotechnol Bioeng. 2009;104:540-553). To further demonstrate the manufacturing feasibility of the ACE system, four CHO cell lines expressing the human IgG1 MAb 4A1 were evaluated in batch and fed-batch shake flasks and in a 2-L fed-batch bioreactor. The batch shake flasks achieved titers between 0.7 and 1.1 g/L, whereas the fed-batch shake flask process improved titers to 2.5–3.0 g/L. The lead 4A1 ACE cell line achieved titers of 4.0 g/L with an average specific productivity of 40 pg/(cell day) when cultured in a non optimized 2-L fed-batch bioreactor using a completely chemically defined process. Generational stability characterization of the lead 4A1-expressing cell line demonstrated that the cell line was stable for up to 75 days in culture. Product quality attributes of the 4A1 MAb produced by the ACE system during the stability evaluation period were unchanged and also comparable to existing expression technologies such as the CHO-dhfr system. The results of this evaluation demonstrate that a clonal, stable MAb-expressing CHO cell line can be produced using ACE technology that performs competitively using a chemically defined fed-batch bioreactor process with comparable product quality attributes to cell lines generated by existing technologies.  相似文献   

7.
《MABS-AUSTIN》2013,5(2):128-141
Bispecific antibodies (BsAbs) represent an emerging class of biologics that achieve dual targeting with a single agent. Recombinant DNA technologies have facilitated a variety of creative bispecific designs with many promising therapeutic applications; however, practical methods for producing high quality BsAbs that have good product stability, long serum half-life, straightforward purification, and scalable production have largely been limiting. Here we describe a protein-engineering approach for producing stable, scalable tetravalent IgG-like BsAbs. The stability-engineered IgG-like BsAb was envisioned to target and crosslink two TNF family member receptors, TRAIL-R2 (TNF-Related Apoptosis Inducing Ligand Receptor-2) and LTβR (Lymphotoxin-beta Receptor), expressed on the surface of epithelial tumor cells with the goal of triggering an enhanced anti-tumor effect. Our IgG-like BsAbs consists of a stability-engineered anti- LTβR single chain Fv (scFv) genetically fused to either the N- or C-terminus of the heavy chain of a full-length anti-TRAIL-R2 IgG1 monoclonal antibody. Both N- or C-terminal BsAbs were active in inhibiting tumor cell growth in vitro, and with some cell lines demonstrated enhanced activity relative to the combination of parental Abs. Pharmacokinetic studies in mice revealed long serum half-lives for the BsAbs. In murine tumor xenograft models, therapeutic treatment with the BsAbs resulted in reduction in tumor volume either comparable to or greater than the combination of parental antibodies, indicating that simultaneously targeting and cross-linking receptor pairs is an effective strategy for treating tumor cells. These studies support that stability-engineering is an enabling step for producing scalable IgG-like BsAbs with properties desirable for biopharmaceutical development.  相似文献   

8.
Accumulating evidence suggests that bispecific antibody fragments (BsAbs) seem set to join monoclonal antibodies as powerful therapeutic and diagnostic agents, particularly for targeting cancer. One type of recombinant BsAbs are diabodies, which are constructed from heterogeneous single-chain antibodies and can increase antigen-specific cytotoxicity in T cells by cross-linking tumor antigens with T cell associated antigens. Some diabodies, however, cannot be solubly expressed in sufficient quantities, which limits their use in clinical therapeutics. Previously we constructed an anti-CD20 x CD3 diabody, which effectively directs the lytic potential of cytolytic T cells toward CD20(+) malignant B cells and shows marked antitumor efficacy in vivo. Here, to increase the amount of soluble product for clinical trials, we used an alternative expression vector under the T7 promoter but retained the stII signal sequences to ensure that the expressed protein is secreted to the periplasm of Escherichia coli. We achieved a periplasmic, soluble product by optimizing the conditions for induction with a yield of 8-9mg/L after affinity chromatography purification. This is nearly a five times greater yield than obtained with the previous vector. The diabodies generated from this modified vector retain dual binding specificity for both CD20-positive and CD3-positive cell lines. Taken together, these results suggest that changing expression vectors may be an alternative strategy to accomplish high-level expression of active BsAb proteins from E. coli.  相似文献   

9.
BACKGROUND: The potential of lentiviral vectors for clinical gene therapy has not yet been evaluated. One of the reasons is the cytotoxicity of lentiviral packaging genes which makes the generation of stable producer cell lines difficult. Therefore, a novel packaging system for lentiviral vectors based on transient expression of packaging genes by recombinant adenoviruses was developed. METHODS: Adenoviral vectors expressing VSV-G, codon-optimized HIV-1 gag-pol, and codon-optimized SIV gag-pol under the control of a tetracycline-regulatable promoter (adenoviral lenti-pack vectors) were constructed and the production levels of this vector system were evaluated. RESULTS: The generated adenoviral lenti-pack vectors could be grown to high titers when transgene expression was suppressed and no evidence for instabilities was obtained. Cells stably transfected with a SIV-based vector construct were converted into lentiviral vector producer cells by infection with the adenoviral lenti-pack vectors. Lentiviral vector titers obtained were as high as vector titers obtained by transient cotransfection experiments. A protocol was developed that allowed preparation of lentiviral vector stocks with undetectable levels of contaminating adenoviral lenti-pack vectors. CONCLUSIONS: The adenoviral lenti-pack vectors described should provide a convenient alternative approach to inducible packaging cell lines for large-scale lentiviral vector production. Transient expression of cytotoxic lentiviral packaging genes by the adenoviral lenti-pack vectors circumvents loss of titers during prolonged culture of packaging cell lines. The design of the adenoviral lenti-pack vectors should reduce the risk of transfer of packaging genes to target cells and at the same time provide flexibility with respect to the lentiviral vector constructs that can be packaged.  相似文献   

10.
The manufacture of recombinant proteins at industrially relevant levels requires technologies that can engineer stable, high expressing cell lines rapidly, reproducibly and with relative ease. Commonly used methods incorporate transfection of mammalian cell lines with plasmid DNA containing the gene of interest. Identifying stable high expressing transfectants is normally laborious and time consuming. To improve this process, the ACE System has been developed based on pre‐engineered artificial chromosomes with multiple recombination acceptor sites. This system allows for the targeted transfection of single or multiple genes and eliminates the need for random integration into native host chromosomes. To illustrate the utility of the ACE System in generating stable, high expressing cell lines, CHO based candidate cell lines were generated to express a human monoclonal IgG1 antibody. Candidate cell lines were generated in under 6 months and expressed over 1 g/L and with specific productivities of up to 45 pg/cell/day under non‐fed, non‐optimized shake flask conditions. These candidate cell lines were shown to have stable expression of the monoclonal antibody for up to 70 days of continuous culture. The results of this study demonstrate that clonal, stable monoclonal antibody expressing CHO based cell lines can be generated by the ACE System rapidly and perform competitively with those cell lines generated by existing technologies. The ACE System, therefore, provides an attractive and practical alternative to conventional methods of cell line generation. Biotechnol. Bioeng. 2009; 104: 540–553 © 2009 Wiley Periodicals, Inc.  相似文献   

11.
Chinese hamster ovary (CHO) cells remain the most popular host for the production of biopharmaceutical drugs, particularly monoclonal antibodies (mAbs), bispecific antibodies, and Fc‐fusion proteins. Creating and characterizing the stable CHO clonally‐derived cell lines (CDCLs) needed to manufacture these therapeutic proteins is a lengthy and laborious process. Therefore, CHO pools have increasingly been used to rapidly produce protein to support and enable preclinical drug development. We recently described the generation of CHO pools yielding mAb titers as high as 7.6 g/L in a 16 day bioprocess using piggyBac transposon‐mediated gene integration. In this study, we wanted to understand why the piggyBac pool titers were significantly higher (2–10 fold) than the control CHO pools. Higher titers were the result of a combination of increased average gene copy number, significantly higher messenger RNA levels and the homogeneity (i.e. less diverse population distribution) of the piggyBac pools, relative to the control pools. In order to validate the use of piggyBac pools to support preclinical drug development, we then performed an in‐depth product quality analysis of purified protein. The product quality of protein obtained from the piggyBac pools was very similar to the product quality profile of protein obtained from the control pools. Finally, we demonstrated the scalability of these pools from shake flasks to 36L bioreactors. Overall, these results suggest that gram quantities of therapeutic protein can be rapidly obtained from piggyBac CHO pools without significantly changing product quality attributes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:534–540, 2017  相似文献   

12.
Large-scale transient expression in mammalian cells is a rapid protein production technology often used to shorten overall timelines for biotherapeutics drug discovery. In this study we demonstrate transient expression in a Chinese hamster ovary (CHO) host (ExpiCHO-S™) cell line capable of achieving high recombinant antibody expression titers, comparable to levels obtained using human embryonic kidney (HEK) 293 cells. For some antibodies, ExpiCHO-S™ cells generated protein materials with better titers and improved protein quality characteristics (i.e., less aggregation) than those from HEK293. Green fluorescent protein imaging data indicated that ExpiCHO-S™ displayed a delayed but prolonged transient protein expression process compared to HEK293. When therapeutic glycoproteins containing non-Fc N-linked glycans were expressed in transient ExpiCHO-S™, the glycan pattern was unexpectedly found to have few sialylated N-glycans, in contrast to glycans produced within a stable CHO expression system. To improve N-glycan sialylation in transient ExpiCHO-S™, we co-transfected galactosyltransferase and sialyltransferase genes along with the target genes, as well as supplemented the culture medium with glycan precursors. The authors have demonstrated that co-transfection of glycosyltransferases combined with medium addition of galactose and uridine led to increased sialylation content of N-glycans during transient ExpiCHO-S™ expression. These results have provided a scientific basis for developing a future transient CHO system with N-glycan compositions that are similar to those profiles obtained from stable CHO protein production systems. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2724, 2019  相似文献   

13.
Complex recombinant proteins are increasingly desired as potential therapeutic options for many disease indications and are commonly expressed in the mammalian Chinese hamster ovary (CHO) cells. Generally, stoichiometric expression and proper folding of all subunits of a complex recombinant protein are required to achieve the desired titers and product qualities for a complex molecule. Targeted integration (TI) cell line development (CLD), which entails the insertion of the desired transgene(s) into a predefined landing-pad in the CHO genome, enables the generation of a homogeneous pool of cells from which clonally stable and high titer clones can be isolated with minimal screening efforts. Despite these advantages, using a single transgene(s) configuration with predetermined gene dosage might not be adequate for the expression of complex molecules. The goal of this study is to develop a method for seamless screening of many vector configurations in a single TI CLD attempt. As testing vector configurations in transient expression systems is not predictive of protein expression in the stable cell lines and parallel TI CLDs with different transgene configurations is resource-intensive, we tested the concept of randomized configuration targeted integration (RCTI) CLD approach for expression of complex molecules. RCTI allows simultaneous transfection of multiple vector configurations, encoding a complex molecule, to generate diverse TI clones each with a single transgene configuration but clone specific productivity and product qualities. Our findings further revealed a direct correlation between transgenes’ configuration/copy-number and titer/product quality of the expressed proteins. RCTI CLD enabled, with significantly fewer resources, seamless isolation of clones with comparable titers and product quality attributes to that of several parallel standard TI CLDs. Therefore, RCTI introduces randomness to the TI CLD platform while maintaining all the advantages, such as clone stability and reduced sequence variant levels, that the TI system has to offer.  相似文献   

14.
Lentivirus‐derived vectors (LVs) were studied for the generation of stable recombinant Chinese hamster ovary (CHO) cell lines. Stable pools and clones expressing the enhanced green fluorescent protein (eGFP) were selected via fluorescence‐activated cell sorting (FACS). For comparison, cell pools and cell lines were also generated by transfection, using the LV transfer plasmid alone. The level and stability of eGFP expression was greater in LV‐transduced cell lines and pools than in those established by transfection. CHO cells were also infected at two different multiplicities of infection with an LV co‐expressing eGFP and a tumor necrosis factor receptor:Fc fusion protein (TNFR:Fc). At 2‐day post‐infection, clonal cell lines with high eGFP‐specific fluorescence were recovered by FACS. These clones co‐expressed TNFR:Fc with yields of 50–250 mg/L in 4‐day cultures. The recovered cell lines maintained stable expression over 3 months in serum‐free suspension culture without selection. In conclusion, LV‐mediated gene transfer provided an efficient alternative to plasmid transfection for the generation of stable and high‐producing recombinant cell lines. Biotechnol. Bioeng. 2011; 108:600–610. © 2010 Wiley Periodicals, Inc.  相似文献   

15.
The use of bispecific antibodies (BsAbs) to treat human diseases is on the rise. Increasingly complex and powerful therapeutic mechanisms made possible by BsAbs are spurring innovation of novel BsAb formats and methods for their production. The long‐lived in vivo pharmacokinetics, optimal biophysical properties and potential effector functions of natural IgG monoclonal (and monospecific) antibodies has resulted in a push to generate fully IgG BsAb formats with the same quaternary structure as monoclonal IgGs. The production of fully IgG BsAbs is challenging because of the highly heterogeneous pairing of heavy chains (HCs) and light chains (LCs) when produced in mammalian cells with two IgG HCs and two LCs. A solution to the HC heterodimerization aspect of IgG BsAb production was first discovered two decades ago; however, addressing the LC mispairing issue has remained intractable until recently. Here, we use computational and rational engineering to develop novel designs to the HC/LC pairing issue, and particularly for κ LCs. Crystal structures of these designs highlight the interactions that provide HC/LC specificity. We produce and characterize multiple fully IgG BsAbs using these novel designs. We demonstrate the importance of specificity engineering in both the variable and constant domains to achieve robust HC/LC specificity within all the BsAbs. These solutions facilitate the production of fully IgG BsAbs for clinical use.  相似文献   

16.
近年来越来越多的重组蛋白,尤其是单克隆抗体,作为生物药应用于医疗。临床及实验室研究中,经常要求在短时间内生产一定量的候选蛋白供应研究需求。经典的建立稳定细胞系生产重组蛋白过程复杂冗长,而作为替代方法,瞬时基因表达技术在数周内即可生产数十至数百毫克重组蛋白,得到广泛应用。本文将总结近年来工业及学术上,在哺乳动物细胞尤其是人胚胎肾细胞(HEK293)及中国仓鼠卵巢细胞(CHO)中瞬时表达重组蛋白的一系列研究,概述瞬时表达技术在宿主细胞改造、表达载体最优化设计、瞬时转染条件等方面的研究进展,并展望其未来发展方向。  相似文献   

17.
赵志文  张铮  吴颖 《生物磁学》2014,(3):593-596
近年来越来越多的重组蛋白,尤其是单克隆抗体,作为生物药应用于医疗。临床及实验室研究中,经常要求在短时间内生产一定量的候选蛋白供应研究需求。经典的建立稳定细胞系生产重组蛋白过程复杂冗长,而作为替代方法,瞬时基因表达技术在数周内即可生产数十至数百毫克重组蛋白,得到广泛应用。本文将总结近年来工业及学术上,在哺乳动物细胞尤其是人胚胎肾细胞(HEK293)TL中国仓鼠卵巢细胞(CHO)中瞬时表达重组蛋白的一系列研究,概述瞬时表达技术在宿主细胞改造、表达载体最优化设计、瞬时转染条件等方面的研究进展,并展望其未来发展方向。  相似文献   

18.
A myriad of innovative bispecific antibody (BsAb) platforms have been reported. Most require significant protein engineering to be viable from a development and manufacturing perspective. Single-chain variable fragments (scFvs) and diabodies that consist only of antibody variable domains have been used as building blocks for making BsAbs for decades. The drawback with Fv-only moieties is that they lack the native-like interactions with CH1/CL domains that make antibody Fab regions stable and soluble. Here, we utilize a redesigned Fab interface to explore 2 novel Fab-based BsAbs platforms. The redesigned Fab interface designs limit heavy and light chain mixing when 2 Fabs are co-expressed simultaneously, thus allowing the use of 2 different Fabs within a BsAb construct without the requirement of one or more scFvs. We describe the stability and activity of a HER2×HER2 IgG-Fab BsAb, and compare its biophysical and activity properties with those of an IgG-scFv that utilizes the variable domains of the same parental antibodies. We also generated an EGFR × CD3 tandem Fab protein with a similar format to a tandem scFv (otherwise known as a bispecific T cell engager or BiTE). We show that the Fab-based BsAbs have superior biophysical properties compared to the scFv-based BsAbs. Additionally, the Fab-based BsAbs do not simply recapitulate the activity of their scFv counterparts, but are shown to possess unique biological activity.  相似文献   

19.
目的 构建和鉴定Hoxa11和EGFP双基因共表达真核载体.方法 采用DNA重组技术,将目的 基因Hoxa11克隆至含有报告基因EGFP的pEGFP-N1真核表达载体中,构建的真核表达载体pEGFP-Hoxa11经PCR,双酶切及基因测序鉴定;转染至CHO细胞,荧光显微镜下观察重组质粒的表达,提取细胞蛋白Western印迹检测蛋白表达.结果 pEGFP-Hoxa11重组质粒构建成功.构建的真核表达载体pEGFP-Hoxa11能在CHO细胞中有效表达.结论 成功构建了共表达Hoxa11和EGFP的真核表达载体,并能在CHO细胞中有效表达.为进一步研究Hoxa11的功能提供实验基础.  相似文献   

20.
The efficacy of engaging multiple drug targets using bispecific antibodies (BsAbs) is affected by the relative cell-surface protein levels of the respective targets. In this work, the receptor density values were correlated to the in vitro activity of a BsAb (JNJ-61186372) targeting epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (c-MET). Simultaneous binding of the BsAb to both receptors was confirmed in vitro. By using controlled Fab-arm exchange, a set of BsAbs targeting EGFR and c-MET was generated to establish an accurate receptor quantitation of a panel of lung and gastric cancer cell lines expressing heterogeneous levels of EGFR and c-MET. EGFR and c-MET receptor density levels were correlated to the respective gene expression levels as well as to the respective receptor phosphorylation inhibition values. We observed a bias in BsAb binding toward the more highly expressed of the two receptors, EGFR or c-MET, which resulted in the enhanced in vitro potency of JNJ-61186372 against the less highly expressed target. On the basis of these observations, we propose an avidity model of how JNJ-61186372 engages EGFR and c-MET with potentially broad implications for bispecific drug efficacy and design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号