首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: To characterize of a thermostable recombinant α‐l ‐arabinofuranosidase from Caldicellulosiruptor saccharolyticus for the hydrolysis of arabino‐oligosaccharides to l ‐arabinose. Methods and Results: A recombinant α‐l ‐arabinofuranosidase from C. saccharolyticus was purified by heat treatment and Hi‐Trap anion exchange chromatography with a specific activity of 28·2 U mg?1. The native enzyme was a 58‐kDa octamer with a molecular mass of 460 kDa, as measured by gel filtration. The catalytic residues and consensus sequences of the glycoside hydrolase 51 family of α‐l ‐arabinofuranosidases were completely conserved in α‐l ‐arabinofuranosidase from C. saccharolyticus. The maximum enzyme activity was observed at pH 5·5 and 80°C with a half‐life of 49 h at 75°C. Among aryl‐glycoside substrates, the enzyme displayed activity only for p‐nitrophenyl‐α‐l ‐arabinofuranoside [maximum kcat/Km of 220 m(mol l?1)?1 s?1] and p‐nitrophenyl‐α‐l ‐arabinopyranoside. This substrate specificity differs from those of other α‐l ‐arabinofuranosidases. In a 1 mmol l?1 solution of each sugar, arabino‐oligosaccharides with 2–5 monomer units were completely hydrolysed to l ‐arabinose within 13 h in the presence of 30 U ml?1 of enzyme at 75°C. Conclusions: The novel substrate specificity and hydrolytic properties for arabino‐oligosaccharides of α‐l ‐arabinofuranosidase from C. saccharolyticus demonstrate the potential in the commercial production of l ‐arabinose in concert with endoarabinanase and/or xylanase. Significance and Impact of the Study: The findings of this work contribute to the knowledge of hydrolytic properties for arabino‐oligosaccharides performed by thermostable α‐l ‐arabinofuranosidase.  相似文献   

2.
Immunoglobin G with α‐2,6 sialylation has been reported to have an impact on antibody‐dependent cellular cytotoxicity and anti‐inflammatory efficacy. However, production of antibodies with α‐2,6 sialylation from Chinese hamster ovary cells is challenging due to the inaccessibility of sialyltransferases for the heavy chain N‐glycan site and the presence of exclusively α‐2,3 sialyltransferases. In this study, combining mutations on the Fc regions to allow sialyltransferase accessibility with overexpression of α‐2,6 sialyltransferase produced IgG with significant levels of both α‐2,6 and α‐2,3 sialylation. Therefore, ST3GAL4 and ST3GAL6 genes were disrupted by CRISPR/Cas9 to minimize the α‐2,3 sialylation. Sialidase treatment and SNA lectin blot indicated greatly increased α‐2,6 sialylation level relative to α‐2,3 sialylation for the α‐2,3 sialyltransferase knockouts when combined with α‐2,6 sialyltransferase overexpression. Indeed, α‐2,3 linked sialic acids were not detected on IgG produced from the α‐2,3 sialyltransferase knockout‐α‐2,6 sialyltransferase overexpression pools. Finally, glycoprofiling of IgG with four amino acid substitutions expressed from an α‐2,3 sialyltransferase knockout‐α‐2,6 sialyltransferase stable clone resulted in more than 77% sialylated glycans and more than 62% biantennary disialylated glycans as indicated by both MALDI‐TOF and LC‐ESI‐MS. Engineered antibodies from these modified Chinese hamster ovary cell lines will provide biotechnologists with IgGs containing N‐glycans with different structural variations for examining the role of glycosylation on protein performance.  相似文献   

3.
Plants offer fast, flexible and easily scalable alternative platforms for the production of pharmaceutical proteins, but differences between plant and mammalian N‐linked glycans, including the presence of β‐1,2‐xylose and core α‐1,3‐fucose residues in plants, can affect the activity, potency and immunogenicity of plant‐derived proteins. Nicotiana benthamiana is widely used for the transient expression of recombinant proteins so it is desirable to modify the endogenous N‐glycosylation machinery to allow the synthesis of complex N‐glycans lacking β‐1,2‐xylose and core α‐1,3‐fucose. Here, we used multiplex CRISPR/Cas9 genome editing to generate N. benthamiana production lines deficient in plant‐specific α‐1,3‐fucosyltransferase and β‐1,2‐xylosyltransferase activity, reflecting the mutation of six different genes. We confirmed the functional gene knockouts by Sanger sequencing and mass spectrometry‐based N‐glycan analysis of endogenous proteins and the recombinant monoclonal antibody 2G12. Furthermore, we compared the CD64‐binding affinity of 2G12 glycovariants produced in wild‐type N. benthamiana, the newly generated FX‐KO line, and Chinese hamster ovary (CHO) cells, confirming that the glyco‐engineered antibody performed as well as its CHO‐produced counterpart.  相似文献   

4.
3‐Fucosyllactose (3‐FL), one of the major oligosaccharides in human breast milk, is produced in engineered Escherichia coli. In order to search for a good α‐1,3‐fucosyltransferase, three bacterial α‐1,3‐fucosyltransferases are expressed in engineered E. coli deficient in β‐galactosidase activity and expressing the essential enzymes for the production of guanosine 5′‐diphosphate‐l ‐fucose, the donor of fucose for 3‐FL biosynthesis. Among the three enzymes tested, the fucT gene from Helicobacter pylori National Collection of Type Cultures 11637 gives the best 3‐FL production in a simple batch fermentation process using glycerol as a carbon source and lactose as an acceptor. In order to use glucose as a carbon source, the chromosomal ptsG gene, considered the main regulator of the glucose repression mechanism, is disrupted. The resulting E. coli strain of ?LP‐YA+FT shows a much lower performance of 3‐FL production (4.50 g L?1) than the ?L‐YA+FT strain grown in a glycerol medium (10.7 g L?1), suggesting that glycerol is a better carbon source than glucose. Finally, the engineered E. coli ?LW‐YA+FT expressing the essential genes for 3‐FL production and blocking the colanic acid biosynthetic pathway (?wcaJ) exhibits the highest concentration (11.5 g L?1), yield (0.39 mol mol?1), and productivity (0.22 g L?1 h) of 3‐FL in glycerol‐limited fed‐batch fermentation.  相似文献   

5.
Herein, a Mn‐based metal–organic framework is used as a precursor to obtain well‐defined α‐MnS/S‐doped C microrod composites. Ultrasmall α‐MnS nanoparticles (3–5 nm) uniformly embedded in S‐doped carbonaceous mesoporous frameworks (α‐MnS/SCMFs) are obtained in a simple sulfidation reaction. As‐obtained α‐MnS/SCMFs shows outstanding lithium storage performance, with a specific capacity of 1383 mAh g?1 in the 300th cycle or 1500 mAh g?1 in the 120th cycle (at 200 mA g?1) using copper or nickel foil as the current collector, respectively. The significant (pseudo)capacitive contribution and the stable composite structure of the electrodes result in impressive rate capabilities and outstanding long‐term cycling stability. Importantly, in situ X‐ray diffraction measurements studies on electrodes employing various metal foils/disks as current collector reveal the occurrence of the conversion reaction of CuS at (de)lithiation process when using copper foil as the current collector. This constitutes the first report of the reaction mechanism for α‐MnS, eventually forming metallic Mn and Li2S. In situ dilatometry measurements demonstrate that the peculiar structure of α‐MnS/SCMFs effectively restrains the electrode volume variation upon repeated (dis)charge processes. Finally, α‐MnS/SCMFs electrodes present an impressive performance when coupled in a full cell with commercial LiMn1/3Co1/3Ni1/3O2 cathodes.  相似文献   

6.
Bacteria degrading α‐(1→3)‐glucan were sought in the gut of fungivorous insects feeding on fruiting bodies of a polypore fungus Laetiporus sulphureus, which are rich in this polymer. One isolate, from Diaperis boleti, was selected in an enrichment culture in the glucan‐containing medium. The bacterium was identified as Paenibacillus sp. based on the results of the ribosomal DNA analysis. The Paenibacillus showed enzyme activity of 4.97 mU/cm3 and effectively degraded fungal α‐(1→3)‐glucan, releasing nigerooligosaccharides and a trace amount of glucose. This strain is the first reported α‐(1→3)‐glucan‐degrading microorganism in the gut microbiome of insects inhabiting fruiting bodies of polypore fungi.  相似文献   

7.
To investigate the pharmacological mechanism of the traditional Chinese medicine, Pulsatilla decoction (PD), the levels of nitric oxide (NO), endothelin‐1 (ET‐1), tumor necrosis factor‐α (TNF‐α), and interleukin‐1α (IL‐1α) secreted by cultured rat intestinal microvascular endothelial cells (RIMECs) were determined after treatment with PD and its seven active ingredients, namely anemoside B4, anemonin, berberine, jatrorrhizine, palmatine, aesculin, and esculetin. RIMECs were challenged with lipopolysaccharide (LPS) at 1 µg ml?1 for 3 h and then treated with PD at 1, 5, and 10 mg ml?1 and its seven ingredients at 1, 5, and 10 µg ml?1 for 21 h, respectively. The results revealed that PD, anemonin, berberine, and esculetin inhibited the production of NO; PD, anemonin, and esculetin inhibited the secretion of ET‐1; PD, anemoside B4, berberine, jatrorrhizine, and aesculin downregulated TNF‐α expression; PD, anemoside B4, berberine, and palmatine decreased the content of IL‐1α. It showed that PD and its active ingredients could significantly inhibit the secretion of NO, ET‐1, TNF‐α, and IL‐1α in LPS‐induced RIMECs and suggested they would reduce inflammatory response via these cytokines. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Orthorhombic α‐MoO3 is a potential anode material for lithium‐ion batteries due to its high theoretical capacity of 1100 mAh g?1 and excellent structural stability. However, its intrinsic poor electronic conductivity and high volume expansion during the charge–discharge process impede it from achieving a high practical capacity. A novel composite of α‐MoO3 nanobelts and single‐walled carbon nanohorns (SWCNHs) is synthesized by a facile microwave hydrothermal technique and demonstrated as a high‐performance anode material for lithium‐ion batteries. The α‐MoO3/SWCNH composite displays superior electrochemical properties (654 mAh g?1 at 1 C), excellent rate capability (275 mAh g?1 at 5 C), and outstanding cycle life (capacity retention of >99% after 3000 cycles at 1 C) without any cracking of the electrode. The presence of SWCNHs in the composite enhances the electrochemical properties of α‐MoO3 by acting as a lithium storage material, electronic conductive medium, and buffer against pulverization.  相似文献   

9.
N‐Glycans of human proteins possess both α2,6‐ and α2,3‐linked terminal sialic acid (SA). Recombinant glycoproteins produced in Chinese hamster overy (CHO) only have α2,3‐linkage due to the absence of α2,6‐sialyltransferase (St6gal1) expression. The Chinese hamster ST6GAL1 was successfully overexpressed using a plasmid expression vector in three recombinant immunoglobulin G (IgG)‐producing CHO cell lines. The stably transfected cell lines were enriched for ST6GAL1 overexpression using FITC‐Sambucus nigra (SNA) lectin that preferentially binds α2,6‐linked SA. The presence of α2,6‐linked SA was confirmed using a novel LTQ Linear Ion Trap Mass Spectrometry (LTQ MS) method including MSn fragmentation in the enriched ST6GAL1 Clone 27. Furthermore, the total SA (mol/mol) in IgG produced by the enriched ST6GAL1 Clone 27 increased by 2‐fold compared to the control. For host cell engineering, the CHOZN® GS host cell line was transfected and enriched for ST6GAL1 overexpression. Single‐cell clones were derived from the enriched population and selected based on FITC‐SNA staining and St6gal1 expression. Two clones (“ST6GAL1 OE Clone 31 and 32”) were confirmed for the presence of α2,6‐linked SA in total host cell protein extracts. ST6GAL1 OE Clone 32 was subsequently used to express SAFC human IgG1. The recombinant IgG expressed in this host cell line was confirmed to have α2,6‐linked SA and increased total SA content. In conclusion, overexpression of St6gal1 is sufficient to produce recombinant proteins with increased sialylation and more human‐like glycoprofiles without combinatorial engineering of other sialylation pathway genes. This work represents our ongoing effort of glycoengineering in CHO host cell lines for the development of “bio‐better” protein therapeutics and cell culture vaccine production. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:334–346, 2015  相似文献   

10.
Although glucocorticoids strongly affect numerous biological processes including cell growth, development, and homeostasis, their effects on migration of human mesenchymal stem cells (hMSCs) are unclear. Therefore, we investigated the role of dexamethasone (DEX) and its related signaling pathways on migration of hMSCs. We found that DEX, at 10?8 to 10?6 M, significantly increased migration after a 24 h incubation, and DEX (10?6 M) increased migration at >12 h. Moreover, DEX (10?6 M) increased the level of glucocorticoid receptor (GR)‐α mRNA and protein expression, but not GR‐β mRNA. The increases in DEX‐induced migration were inhibited by the GR antagonist mifepristone (10?7 M). In addition, DEX increased integrin‐linked kinase (ILK) and α‐parvin expression but did not change PINCH‐1/2 expression in lysate. DEX also increased formations of complex with ILK and α‐parvin, and ILK and PINCH‐1/2 as shown by immunoprecipitation, which were all inhibited by mifepristone. DEX‐induced migration was blocked by ILK and α‐parvin small interfering(si)RNAs. In addition, DEX increased focal adhesion kinase (FAK) and paxillin expression, which were attenuated by ILK and α‐parvin siRNAs. DEX‐induced cell migration was inhibited by FAK/paxillin siRNAs. DEX also increased β1‐integrin expression, which was blocked by FAK/paxillin siRNAs. In addition, DEX‐induced cell migration was inhibited by β1‐integrin siRNA. Downregulation of ILK, α‐parvin, FAK/paxillin and β1‐integrin expression by siRNAs decreased DEX‐induced filamentous(F)‐actin organization and migration of hMSCs. In conclusion, DEX partially stimulates hMSC migration by the expression of β1‐integrin through formation of a PINCH‐1/2/ILK/α‐parvin complex (PIP complex), and FAK and paxillin expression. J. Cell. Physiol. 226: 683–692, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
David E. Kenny 《Zoo biology》2001,20(4):245-250
After the loss of an African elephant (Loxodonta africana) in February 1989 at the Denver Zoological Gardens (DZG) with very low circulating serum α‐tocopherol, a long‐term study was initiated with three Asian elephants (Elephas maximus) to evaluate the effect of an oral micellized, water‐soluble, natural source d‐α‐tocopherol supplement. Baseline α‐tocopherol levels were evaluated and found to be approximately 3.75‐fold less than those reported for semi‐free‐ranging Asian Nepalese work camp and free‐ranging African elephants. The DZG elephants were then administered a liquid d‐α‐tocopherol (Emcelle®) at 2.2 IU/kg body weight orally once daily. Serum samples were obtained and analyzed at 1, 2, 8, and 12 months and then annually for 96 months. The oral vitamin E supplement significantly elevated serum levels above baseline and were found to be comparable with levels reported for semi–free‐ranging and free‐ranging elephants. Zoo Biol 20:245–250, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

12.
Intense efforts are underway to identify inhibitors of the enzyme gamma‐glutamyl transpeptidase 1 (GGT1) which cleaves extracellular gamma‐glutamyl compounds and contributes to the pathology of asthma, reperfusion injury and cancer. The glutamate analog, 6‐diazo‐5‐oxo‐norleucine (DON), inhibits GGT1. DON also inhibits many essential glutamine metabolizing enzymes rendering it too toxic for use in the clinic as a GGT1 inhibitor. We investigated the molecular mechanism of human GGT1 (hGGT1) inhibition by DON to determine possible strategies for increasing its specificity for hGGT1. DON is an irreversible inhibitor of hGGT1. The second order rate constant of inactivation was 0.052 mM ?1 min?1 and the K i was 2.7 ± 0.7 mM . The crystal structure of DON‐inactivated hGGT1 contained a molecule of DON without the diazo‐nitrogen atoms in the active site. The overall structure of the hGGT1‐DON complex resembled the structure of the apo‐enzyme; however, shifts were detected in the loop forming the oxyanion hole and elements of the main chain that form the entrance to the active site. The structure of hGGT1‐DON complex revealed two covalent bonds between the enzyme and inhibitor which were part of a six membered ring. The ring included the OG atom of Thr381, the reactive nucleophile of hGGT1 and the α‐amine of Thr381. The structure of DON‐bound hGGT1 has led to the discovery of a new mechanism of inactivation by DON that differs from its inactivation of other glutamine metabolizing enzymes, and insight into the activation of the catalytic nucleophile that initiates the hGGT1 reaction.  相似文献   

13.
Carbohydrate hydrolyzing α‐glucosidases are commonly found in microorganisms present in the human intestine microbiome. We have previously reported crystal structures of an α‐glucosidase from the human gut bacterium Blaubia (Ruminococcus) obeum (Ro‐αG1) and its substrate preference/specificity switch. This novel member of the GH31 family is a structural homolog of human intestinal maltase‐glucoamylase (MGAM) and sucrase–isomaltase (SI) with a highly conserved active site that is predicted to be common in Ro‐αG1 homologs among other species that colonize the human gut. In this report, we present structures of Ro‐αG1 in complex with the antidiabetic α‐glucosidase inhibitors voglibose, miglitol, and acarbose and supporting binding data. The in vitro binding of these antidiabetic drugs to Ro‐αG1 suggests the potential for unintended in vivo crossreaction of the α‐glucosidase inhibitors to bacterial α‐glucosidases that are present in gut microorganism communities. Moreover, analysis of these drug‐bound enzyme structures could benefit further antidiabetic drug development.  相似文献   

14.
15.
Mucins form a group of heavily O‐glycosylated biologically important glycoproteins that are involved in a variety of biological functions, including modulating immune response, inflammation, and adhesion. Mucins are also involved in cancer and metastasis and often express diagnostic cancer antigens. Recently, a modified porcine submaxillary mucin (Tn‐PSM) containing GalNAcα1‐O‐Ser/Thr residues was shown to bind to soybean agglutinin (SBA) with ~106‐fold enhanced affinity relative to GalNAcα1‐O‐Ser, the pancarcinoma carbohydrate antigen. In this study, dynamic force spectroscopy is used to investigate molecular pairs of SBA and Tn‐PSM. A number of force jumps that demonstrate unbinding or rebinding events were observed up to a distance equal to 2.0 μm, consistent with the length of the mucin chain. The unbinding force increased from 103 to 402 pN with increasing force loading rate. The position of the activation barrier in the energy landscape of the interaction was 0.1 nm. The lifetime of the SBA–TnPSM complex in the absence of applied force was determined to be in the range 1.3–1.9 s. Kinetic parameters describing the rate of dissociation of other sugar lectin interactions are in the range 3.3 × 10?3–2.5 × 10?3 s. The long lifetime of the SBA‐TnPSM complex is compatible with a binding model in which lectin molecules “bind and jump” from α‐GalNAc residue to α‐GalNAc residue along the polypeptide chain of Tn‐PSM before dissociating. These findings have important implications for the molecular recognition properties of mucins. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 719–728, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

16.
The resolution methods applying (?)‐(4R,5R)‐4,5‐bis(diphenylhydroxymethyl)‐2,2‐dimethyldioxolane (“TADDOL”), (?)‐(2R,3R)‐α,α,α',α'‐tetraphenyl‐1,4‐dioxaspiro[4.5]decan‐2,3‐dimethanol (“spiro‐TADDOL”), as well as the acidic and neutral Ca2+ salts of (?)‐O,O'‐dibenzoyl‐ and (?)‐O,O'‐di‐p‐toluoyl‐(2R,3R)‐tartaric acid were extended for the preparation of 1‐n‐butyl‐3‐methyl‐3‐phospholene 1‐oxide in optically active form. In one case, the intermediate diastereomeric complex could be identified by single‐crystal X‐ray analysis. The absolute P‐configuration of the enantiomers of the phospholene oxide was also determined by comparing the experimentally obtained and calculated CD spectra. Chirality 26:174–182, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
One skin cancer prevention strategy that we are developing is based on synthesizing and testing melanocortin analogs that reduce and repair DNA damage resulting from exposure to solar ultraviolet (UV) radiation, in addition to stimulating pigmentation. Previously, we reported the effects of tetrapeptide analogs of α‐melanocortin (α‐MSH) that were more potent and stable than the physiological α‐MSH, and mimicked its photoprotective effects against UV‐induced DNA damage in human melanocytes. Here, we report on a panel of tripeptide analogs consisting of a modified α‐MSH core His6‐d ‐Phe7‐Arg8, which contained different N‐capping groups, C‐terminal modifications, or arginine mimics. The most potent tripeptides in activating cAMP formation and tyrosinase of human melanocytes were three analogs with C‐terminal modifications. The most effective C‐terminal tripeptide mimicked α‐MSH in reducing hydrogen peroxide generation and enhancing nucleotide excision repair following UV irradiation. The effects of these three analogs required functional MC1R, as they were absent in human melanocytes that expressed non‐functional receptor. These results demonstrate activation of the MC1R by tripeptide melanocortin analogs. Designing small analogs for topical delivery should prove practical and efficacious for skin cancer prevention.  相似文献   

18.
Aim: To identify metabolites of α‐ketoglutarate (α‐KG) in Lactobacillus sanfranciscensis and Lactobacillus reuteri in modified MRS and sourdough. Methods and Results: Lactobacillus sanfranciscensis and L. reuteri were grown with additional α‐KG in mMRS and in wheat sourdough. In mMRS, α‐KG was used as an electron acceptor and converted to 2‐hydroxyglutarate (2‐OHG) by both organisms. Production of 2‐OHG was identified by high performance liquid chromatography (HPLC) and confirmed by gas chromatography (GC). Crude cell extracts of L. sanfranciscensis and L. reuteri grown with or without α‐KG exhibited OHG dehydrogenase activity of 6·3 ± 0·3, 2·3 ± 0·9, 1·2 ± 0·2, and 1·1 ± 0·1 mmol l?1 NADH (min x mg protein)?1, respectively. The presence of phenylalanine and citrate in addition to α‐KG partially redirected the use of α‐KG from electron acceptor to amino group acceptor. In wheat sourdoughs, α‐KG was predominantly used as electron acceptor and converted to 2‐OHG. Conclusions: Lactobacillus sanfranciscensis and L. reuteri utilize α‐KG as electron acceptor. Alternative use of α‐KG as amino group acceptor occurs in the presence of abundant amino donors and citrate. Significance and Impact of the Study: The use of α‐KG as electron acceptor in heterofermentative lactobacilli impacts the formation of flavour volatiles through the transamination pathway.  相似文献   

19.
True bugs (Hemiptera) are an important pest complex not controlled by Bt‐transgenic crops. An alternative source of resistance includes inhibitors of digestive enzymes, such as protease or amylase inhibitors. αAI‐1, an α‐amylase inhibitor from the common bean, inhibits gut‐associated α‐amylases of bruchid pests of grain legumes. Here we quantify the in vitro activity of α‐amylases of 12 hemipteran species from different taxonomic and functional groups and the in vitro inhibition of those α‐amylases by αAI‐1. α‐Amylase activity was detected in all species tested. However, susceptibility to αAI‐1 varied among the different groups. α‐Amylases of species in the Lygaeidae, Miridae and Nabidae were highly susceptible, whereas those in the Auchenorrhyncha (Cicadellidae, Membracidae) had a moderate susceptibility, and those in the Pentatomidae seemed to be tolerant to αAI‐1. The species with αAI‐1 susceptible α‐amylases represented families which include both important pest species but also predatory species. These findings suggest that αAI‐1‐expressing crops have potential to control true bugs in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号