首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disposable cell culture vessels are extensively used at small scales for process optimization and validation, but they lack monitoring capabilities. Optical sensors that can be easily adapted for use in small‐scale vessels are commercially available for pH, dissolved oxygen (DO), and dissolved carbon dioxide (DCO2). However, their use has been limited due to the contamination and compatibility issues. We have developed a novel solution to these problems for DO monitoring. Oxygen diffusion through permeable vessel wall can be exploited for noninvasive monitoring. An optical oxygen sensor can be placed outside the oxygen permeable vessel wall thereby allowing oxygen diffusing through the vessel wall to be detected by the sensor. This way the sensor stays separate from the cell culture and there are no concerns about contaminants or leachants. Here we implement this method for two cell culture devices: polystyrene‐made T‐75 tissue culture flask and fluorinated ethylene propylene (FEP)‐made Vuelife® cell culture bag. Additionally, mammalian and microbial cell cultures were performed in Vuelife® cell culture bags, proving that a sensor placed outside can be used to track changes in cell cultures. This approach toward noninvasive monitoring will help in integrating cell culture vessels with sensors in a seamless manner. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:172–177, 2014  相似文献   

2.
A model was developed to describe toxicity from high concentrations of chlorinated aliphatic hydrocarbons (CAHs) on reductively dechlorinating cultures under batch‐growth conditions. A reductively dechlorinating anaerobic Evanite subculture (EV‐cDCE) was fed trichloroethene (TCE) and excess electron donor to accumulate cis‐1,2‐dichloroethene (cDCE) in batch‐fed reactors. A second Point Mugu (PM) culture was also studied in the cDCE accumulating batch‐fed experiment, as well as in a time‐ and concentration‐dependent cDCE exposure experiment. Both cultures accumulated cDCE to concentrations ranging from 9,000 to 12,000 µM before cDCE production from TCE ceased. Exposure to approximately 3,000 and 6,000 µM cDCE concentrations for 5 days during continuous TCE dechlorination exhibited greater loss in activity proportional to both time and concentration of exposure than simple endogenous decay. Various inhibition models were analyzed for the two cultures, including the previously proposed Haldane inhibition model and a maximum threshold inhibition model, but neither adequately fit all experimental observations. A concentration‐dependent toxicity model is proposed, which simulated all the experimental observations well. The toxicity model incorporates CAH toxicity terms that directly increase the cell decay coefficient in proportion with CAH concentrations. We also consider previously proposed models relating toxicity to partitioning in the cell wall (KM/B), proportional to octanol–water partitioning (KOW) coefficients. A reanalysis of previously reported modeling of batch tests using the Haldane model of Yu and Semprini, could be fit equally well using the toxicity model presented here, combined with toxicity proportioned to cell wall partitioning. A companion paper extends the experimental analysis and our modeling approach to a completely mixed reactor and a fixed film reactor. Biotechnol. Bioeng. 2010;107: 529–539. © 2010 Wiley Periodicals, Inc.  相似文献   

3.
The principal objective of this study was to assess the effects of culture modes including batch culture, pulse fed-batch culture, constant feeding rate fed-batch culture, and exponential fed-batch culture on the production of hyaluronic acid (HA) by Streptococcus zooepidemicus. Batch cultures had the highest levels of HA productivity, whereas fed-batch cultures were more favorable with regard to cell growth, and exponential fed-batch cultures evidenced the highest cell concentrations. A two-step culture model was proposed to enhance HA production: an exponential fed-batch culture was conducted prior to 8 h and then sucrose supplementation was applied for 8 h to start the batch fermentation of S. zooepidemicus. HA production and productivity were increased by 36 and 37% in the proposed two-step culture process as compared with that observed in the batch culture, respectively. The proposed two-step culture model can be applied in the production of secondary metabolites, and particularly of the exopolysaccharides.  相似文献   

4.
Cell culture process development requires the screening of large numbers of cell lines and process conditions. The development of miniature bioreactor systems has increased the throughput of such studies; however, there are limitations with their use. One important constraint is the limited number of offline samples that can be taken compared to those taken for monitoring cultures in large‐scale bioreactors. The small volume of miniature bioreactor cultures (15 mL) is incompatible with the large sample volume (600 µL) required for bioanalysers routinely used. Spectroscopy technologies may be used to resolve this limitation. The purpose of this study was to compare the use of NIR, Raman, and 2D‐fluorescence to measure multiple analytes simultaneously in volumes suitable for daily monitoring of a miniature bioreactor system. A novel design‐of‐experiment approach is described that utilizes previously analyzed cell culture supernatant to assess metabolite concentrations under various conditions while providing optimal coverage of the desired design space. Multivariate data analysis techniques were used to develop predictive models. Model performance was compared to determine which technology is more suitable for this application. 2D‐fluorescence could more accurately measure ammonium concentration (RMSECV 0.031 g L?1) than Raman and NIR. Raman spectroscopy, however, was more robust at measuring lactate and glucose concentrations (RMSECV 1.11 and 0.92 g L?1, respectively) than the other two techniques. The findings suggest that Raman spectroscopy is more suited for this application than NIR and 2D‐fluorescence. The implementation of Raman spectroscopy increases at‐line measuring capabilities, enabling daily monitoring of key cell culture components within miniature bioreactor cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:337–346, 2017  相似文献   

5.
 A moderately thermophilic mixed culture, MT, and the thermophilic Sulfolobus acidocaldarius strain BC were studied for their response to arsenic in a defined medium and also in media containing a pyrite and an arsenical pyrite flotation concentrate. In defined medium, the individual constituents of the MT culture exhibited a high tolerance to arsenite and arsenate compared to S. acidocaldarius strain BC. When grown on increasing concentrations of the pyrite flotation concentrate, both cultures had similar specific leaching rates over the various concentrations of the mineral substrate. In contrast, S. acidocaldarius strain BC exhibited a decreasing specific leaching rate when grown on the arsenical pyrite while the MT culture was not affected. In addition, arsenic added to cultures of S. acidocaldarius strain BC growing with pyrite as a growth substrate inhibited further growth, while added arsenic had no effect on the MT culture growing on the pyrite. These data indicate that the moderately thermophilic, arsenic-resistant MT culture was able to leach arsenical pyrite more efficiently than was the S. acidocaldarius strain BC culture at high concentrations of the mineral. This emphasizes the fact that proper culture selection is an important parameter when developing commercial processes involving arsenic-containing minerals. Received: 21 June 1995/Received revision: 25 August 1995/Accepted: 7 September 1995  相似文献   

6.
We compared the performance of aerobic Cr(VI)-reducing bacteria isolated from Cr(VI)-contaminated soil in pure and mixed cultures of five isolated strains. The mixed culture had increased reduction rates compared to individual cultures. Cr(VI) reduction was observed in sterile soil inoculated with Pseudomonas fluorescens and in non-sterile soil with and without inoculation with P. fluorescens at initial pore water concentrations up to 1,600 mg Cr(VI)/L, whereas in culture the maximum inhibitory concentration was 500 mg Cr(VI)/L. Linear rates of Cr(VI) reduction in non-sterile soil amended with peptone were ~5 to 8 times higher than those observed in the mixed culture. Inoculation of non-sterile soil with P. fluorescens did not further enhance Cr(VI) reduction rates. Our results indicate that evaluation of Cr(VI) reduction capacity in Cr(VI)-contaminated soil for in-situ bioremediation purposes should not be done solely in pure culture. Although the latter may be used initially to assess the effects of process parameters (e.g., pH, temperature), the rate and extent of Cr(VI) reduction should be determined in soil for bioremediation design purposes.  相似文献   

7.
The emergence of medicinal indications for stem cell therapies has seen a need to develop the manufacturing capacity for adherent cells such as mesenchymal stem cells (MSCs). One such development is in the use of microcarriers, which facilitate enhanced cell densities for adherent stem cell cultures when compared with 2D culture platforms. Given the variety of stem cell expansion systems commercially available, novel methods of non‐invasive and automated monitoring of cell number, confluence, and aggregation, within disparate environments, will become imperative to process control, ensuring reliable and consistent performance. The in situ epi‐illumination of mouse embryonic fibroblasts and human mesenchymal stem cells attached to Cytodex 1 and 3 microcarriers was achieved using a bespoke microscope. Robust image processing techniques were developed to provide quantitative measurements of confluence, aggregate recognition, and cell number, without the need for fluorescent labeling or cell detachment. Large datasets of cells counted on individual microcarriers were statistically analyzed and compared with NucleoCounter measurements, with an average difference of less than 7% observed from days 0 to 6 of a 12‐day culture noted, prior to the onset of aggregation. The developed image acquisition system and post‐processing methodologies were successfully applied to dynamically moving colonized microcarriers. The proposed system offers a novel method of cell identification at the individual level, to consistently and accurately assess viable cell number, confluence, and cell distribution, while also minimizing the variability inherent in the current invasive means by which cells adhered to microcarriers are analyzed. Biotechnol. Bioeng. 2017;114: 2032–2042. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

8.
Many high‐value added recombinant proteins, such as therapeutic glycoproteins, are produced using mammalian cell cultures. In order to optimize the productivity of these cultures it is important to monitor cellular metabolism, for example the utilization of nutrients and the accumulation of metabolic waste products. One metabolic waste product of interest is lactic acid (lactate), overaccumulation of which can decrease cellular growth and protein production. Current methods for the detection of lactate are limited in terms of cost, sensitivity, and robustness. Therefore, we developed a whole‐cell Escherichia coli lactate biosensor based on the lldPRD operon and successfully used it to monitor lactate concentration in mammalian cell cultures. Using real samples and analytical validation we demonstrate that our biosensor can be used for absolute quantification of metabolites in complex samples with high accuracy, sensitivity, and robustness. Importantly, our whole‐cell biosensor was able to detect lactate at concentrations more than two orders of magnitude lower than the industry standard method, making it useful for monitoring lactate concentrations in early phase culture. Given the importance of lactate in a variety of both industrial and clinical contexts we anticipate that our whole‐cell biosensor can be used to address a range of interesting biological questions. It also serves as a blueprint for how to capitalize on the wealth of genetic operons for metabolite sensing available in nature for the development of other whole‐cell biosensors. Biotechnol. Bioeng. 2017;114: 1290–1300. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

9.
The co-culture of Bacillus subtilis IFO 3335 with Rhizopus peka P8 or Rhizopus oligosporus P12 in liquid medium was found to increase production of antibiotic activity and to alter the spectrum of activity relative to the pure cultures. However, a mixed culture of Rhizopus arrhizus P7 and Rhizopus oryzae P17 did not produce antibiotic activity. The concentration, ratio, and time of addition of B. subtilis to the R. peka culture was found to influence antibiotic yields. Solid-state fermentations using mixed cultures of R. peka and B. subtilis were investigated. The growth of Escherichia coli IFO 3792 as a target bacterium was inhibited by the mixed culture. These results suggest the possibility of biopreservation of fermented foods by novel co-culture systems.  相似文献   

10.
Biodegradation of sulfamethoxazole by individual and mixed bacteria   总被引:1,自引:0,他引:1  
Antibiotic compounds, like sulfamethoxazole (SMX), have become a concern in the aquatic environment due to the potential development of antibacterial resistances. Due to excretion and disposal, SMX has been frequently detected in wastewaters and surface waters. SMX removal in conventional wastewater treatment plants (WWTPs) ranges from 0% to 90%, and there are opposing results regarding its biodegradability at lab scale. The objective of this research was to determine the ability of pure cultures of individual and mixed consortia of bacteria (Bacillus subtilis, Pseudomonas aeruginosa, Pseudomonas putida, Rhodococcus equi, Rhodococcus erythropolis, Rhodococcus rhodocrous, and Rhodococcus zopfii) known to exist in WWTP activated sludge to remove SMX. Results showed that R. equi alone had the greatest ability to remove SMX leading to 29% removal (with glucose) and the formation of a metabolite. Degradation pathways and metabolite structures have been proposed based on the potential enzymes produced by R. equi. When R. equi was mixed with other microorganisms, a positive synergistic effect was not observed and the maximum SMX removal achieved was 5%. This indicates that pure culture results cannot be extrapolated to mixed culture conditions, and the methodology developed here to study the biodegradability of compounds under controlled mixed culture conditions offers an alternative to conventional studies using pure bacterial cultures or inocula from activated sludge sources consisting of unknown and variable microbial populations.  相似文献   

11.
Interactions with the bacterial community are increasingly considered to have a significant influence on marine phytoplankton populations. Here we used a simplified dinoflagellate‐bacterium experimental culture model to conclusively demonstrate that the toxic dinoflagellate Gymnodinium catenatum H. W. Graham requires growth‐stimulatory marine bacteria for postgermination survival and growth, from the point of resting cyst germination through to vegetative growth at bloom concentrations (103 cells · mL?1). Cysts of G. catenatum were germinated and grown in unibacterial coculture with antibiotic‐resistant or antibiotic‐sensitive Marinobacter sp. DG879 or Brachybacterium sp., and with mixtures of these two bacteria. Addition of antibiotics to cultures grown with antibiotic‐sensitive strains of bacteria resulted in death of the dinoflagellate culture, whereas cultures grown with antibiotic‐resistant bacteria survived antibiotic addition and continued to grow beyond the 21 d experiment. Removal of either bacterial type from mixed‐bacterial dinoflagellate cultures (using an antibiotic) resulted in cessation of dinoflagellate growth until bacterial concentration recovered to preaddition concentrations, suggesting that the bacterial growth factors are used for dinoflagellate growth or are labile. Examination of published reports of axenic dinoflagellate culture indicate that a requirement for bacteria is not universal among dinoflagellates, but rather that species may vary in their relative reliance on, and relationship with, the bacterial community. The experimental model approach described here solves a number of inherent and logical problems plaguing studies of algal‐bacterium interactions and provides a flexible and tractable tool that can be extended to examine bacterial interactions with other phytoplankton species.  相似文献   

12.
Summary Dogwood anthracnose, caused by the fungus Discula destructiva Redlin, is a severe disease of flowering dogwood (Cornus florida L.) and Pacific dogwood (C. nuttallii Aud.). Disease control is inadequate in nurseries and landscapes and absent in the forest, and resistant cultivars are not commercially available. The ability to select tissues insensitive to culture filtrates from D. destructiva in vitro offers a novel and important approach for the selection of dogwood genotypes that are resistant to or tolerant of this devastating fungus. Embryo-derived dogwood callus cultures were established on Murashige and Skoog medium amended with benzyladenine (BA) and either 2,4-dichlorophenoxyacetic acid (2,4-D) or naphthaleneacetic acid (NAA). Selection for insensitivity to D. destructiva metabolites was done by placement of individual cultures on media amended with progressively higher concentrations of a partially purified culture filtrate (PPCF) containing lowmolecular-weight compounds. Following this selection process, cultures were challenged in a dose-response format with PPCF to determine whether the sensitivity of the callus to the culture filtrate had changed. During the selection period, the fresh weight of callus grown on medium containing 2,4-D and amended with PPCF was always less than that of callus grown on medium amended with the same concentration of potato-dextrose broth (PDB, negative control). Fresh weight of callus was greater on medium containing NAA amended with PPCF than on medium with the same concentration of PDB. Callus selected in the presence of NAA showed decreased sensitivity to toxic metabolites at higher concentrations of culture filtrate. The in vitro system described may assist in the identification of disease-resistant germplasm important to the long-term survival of flowering dogwood.  相似文献   

13.
The ability to control charge heterogeneity in monoclonal antibodies is important to demonstrate product quality comparability and consistency. This article addresses the control of C‐terminal lysine processing through copper supplementation to yeast hydrolysate powder, a raw material used in the cell culture process. Large‐scale production of a murine cell line exhibited variation in the C‐terminal lysine levels of the monoclonal antibody. Analysis of process data showed that this variation correlated well with shifts in cell lactate metabolism and pH levels of the production culture. Small‐scale studies demonstrated sensitivity of the cells to copper, where a single low dose of copper to the culture impacted cell lactate metabolism and C‐terminal lysine processing. Subsequent analytical tests indicated that the yeast hydrolysate powder, added to the basal media and nutrient feed in the process, contained varying levels of trace copper across lots. The measured copper concentrations in yeast hydrolysate lots correlated well with the variation in lactate and pH trends and C‐terminal lysine levels of the batches in manufacturing. Small‐scale studies further demonstrated that copper supplementation to yeast hydrolysate lots with low concentrations of copper can shift the metabolic performance and C‐terminal lysine levels of these cultures to match the control, high copper cultures. Hence, a strategy of monitoring, and if necessary supplementing, copper in yeast‐hydrolysate powders resulted in the ability to control and ensure product quality consistency. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:463–468, 2017  相似文献   

14.
Mammalian cells in culture rely on sources of carbohydrates to supply the energy requirements for proliferation. In addition, carbohydrates provide a large source of the carbon supply for supporting various other metabolic activities, including the intermediates involved in the protein glycosylation pathway. Glucose and galactose, in particular, are commonly used sugars in culture media for these purposes. However, there exists a very large repertoire of other sugars in nature, and many that have been chemically synthesized. These sugars are particularly interesting because they can be utilized by cells in culture in distinct ways. In the present work it has been found that many infrequently used sugars, and the corresponding cellular response towards them as substrates, led to differences in the protein N‐glycosylation profile of a recombinant glycoprotein. The selective media supplementation of raffinose, trehalose, turanose, palatinose, melezitose, psicose, lactose, lactulose, and mannose were found to be capable of redirecting N‐glycan oligosaccharide profiles. Despite this shifting of protein glycosylation, there were no other adverse changes in culture performance, including both cell growth and cellular productivity over a wide range of supplemented sugar concentrations. The approach presented highlights a potential means towards both the targeted shifting of protein glycosylation profiles and ensuring recombinant protein comparability, which up to this point in time has remained under‐appreciated for these under‐utilized compounds. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:511–522, 2017  相似文献   

15.
Three‐dimensional (3D) scaffold culture of pancreatic β‐cell has been proven to be able to better mimic physiological conditions in the body. However, one critical issue with culturing pancreatic β‐cells is that β‐cells consume large amounts of oxygen, and hence insufficient oxygen supply in the culture leads to loss of β‐cell mass and functions. This becomes more significant when cells are cultured in a 3D scaffold. In this study, in order to understand the effect of oxygen tension inside a cell‐laden collagen culture on β‐cell proliferation, a culture model with encapsulation of an oxygen‐generator was established. The oxygen‐generator was made by embedding hydrogen peroxide into nontoxic polydimethylsiloxane to avoid the toxicity of a chemical reaction in the β‐cell culture. To examine the effectiveness of the oxygenation enabled 3D culture, the spatial‐temporal distribution of oxygen tension inside a scaffold was evaluated by a mathematical modeling approach. Our simulation results indicated that an oxygenation‐aided 3D culture would augment the oxygen supply required for the β‐cells. Furthermore, we identified that cell seeding density and the capacity of the oxygenator are two critical parameters in the optimization of the culture. Notably, cell‐laden scaffold cultures with an in situ oxygen supply significantly improved the β‐cells' biological function. These β‐cells possess high insulin secretion capacity. The results obtained in this work would provide valuable information for optimizing and encouraging functional β‐cell cultures. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:221–228, 2017  相似文献   

16.
The bacterium Acetobacter suboyxdans and the yeast Saccharomyces carlsbergensis have been grown together on a synthetic medium in a chemostat. Mannitol, the only carbon source fed to the fermenter, is oxidized by the bacteria to fructose. The yeast, which cannot attack mannitol, breaks down the fructose nearly completely. Eight steady states and five transitory periods after changes in flow rate have been analyzed to study the kinetics of the mixed culture. Separate cell concentrations were determined by a modified Coulter counter apparatus. Both sugars were monitored. Both bacteria and yeast may be modeled using Monod's equation, the latter with some deviations. The yeast is unable to grow beyond the washout point of the bacteria, even though its maximum growth rate is much higher. The yield of both organisms decreases with increasing dilution rate, as does their average cell size. After step changes in dilution rate, repeated oscillations of both sugar and cell concentrations usually occur before steady-state conditions are reattained. They are generally in phase, with no definite sign of a lag. Oscillations of yeast and fructose concentrations are more pronounced. Periods average about 6 hr and are not correlated with fermentation conditions or equipment variables. Repeated oscillations are not found after step-downs in pure cultures of A. suboxydans, leading to the conclusion that the instability in mixed cultures may be caused by a feedback mechanism from the yeast to the bacteria.  相似文献   

17.
Gymnodinium acidotum Nygaard, a blue-green dinoflagellate previously shown to contain cryptophycean chloroplasts and other organelles, was observed from water and soil samples and in culture. The dinoflagellate excysts from soil samples as a mononucleated colorless cell that is positively phototactic. Colorless cells in unialgal culture remain colorless and can only be maintained less than one week whereas pigmented cells cultured unialgally grow for 10 days but then decline rapidly. Colorless cells cultured with Chroomonas spp. regain chloroplasts and have been maintained in mixed cultures for nine months. Fifty-seven percent of the dinoflagellates from mixed cultures are bi-nucleated, and three cells have been observed possibly ingesting cryptophytes. We suggest that cryptophycean chloroplasts are retained and possibly utilized by G. acidotum for at least ten days and then digested.  相似文献   

18.
Summary Sustained oscillations of biomass, substrate and product concentrations are routinely observed in continuous cultures withZymomonas at low growth rate and high ethanol concentrations. After an extensive work, Jöbses et al. (1985–1987)5–7 proposed a two-compartment model to represent the phenomenon. However, the strong fluctuations of cell viability observed duringZymomonas cultures suggest that viability is a major parameter which unfortunately has never been completly taken into account. If a structuration of the cell population as viable, dead, and non viable cells (unable to divide but still able to produce ethanol) is introduced into a simple mathematical model, any situation from completly stable to completly unstable continuous cultures can be described. Experimental observations suggest that this approach may represent the biological reality more closely than the structured model proposed by Jöbseset al.  相似文献   

19.
A yogurt culture (Streptococcus thermophilus 15HA + Lactobacillus delbrueckii subsp. bulgaricus 2-11) was studied in conditions of aerobic batch fermentation (10–40% dissolved oxygen in milk). The growth and acidification of S. thermophilus 15HA were stimulated at 20% oxygen concentration and the lactic acid process in a mixed culture was shortened by 1 h (2.5 h for the aerobic culture and 3.5 h for the anaerobic mixed culture). Streptococcus thermophilus 15HA oxygen tolerance was significantly impaired at oxygen concentrations in the milk above 30%. Though S. thermophilus 15HA was able to overcome to some extent the impact of high oxygen concentration (40%), the lactic acid produced was insufficient to coagulate the milk casein (4.0 g lactic acid l−1 in the mixed culture and 3.8 g lactic acid l−1 in the pure culture). A dramatic decrease in the viable cell count of L. delbrueckii subsp. bulgaricus 2-11 in the pure and mixed cultures was recorded at 30% dissolved oxygen. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Growth kinetics, i.e., the relationship between specific growth rate and the concentration of a substrate, is one of the basic tools in microbiology. However, despite more than half a century of research, many fundamental questions about the validity and application of growth kinetics as observed in the laboratory to environmental growth conditions are still unanswered. For pure cultures growing with single substrates, enormous inconsistencies exist in the growth kinetic data reported. The low quality of experimental data has so far hampered the comparison and validation of the different growth models proposed, and only recently have data collected from nutrient-controlled chemostat cultures allowed us to compare different kinetic models on a statistical basis. The problems are mainly due to (i) the analytical difficulty in measuring substrates at growth-controlling concentrations and (ii) the fact that during a kinetic experiment, particularly in batch systems, microorganisms alter their kinetic properties because of adaptation to the changing environment. For example, for Escherichia coli growing with glucose, a physiological long-term adaptation results in a change in KS for glucose from some 5 mg liter−1 to ca. 30 μg liter−1. The data suggest that a dilemma exists, namely, that either “intrinsic” KS (under substrate-controlled conditions in chemostat culture) or μmax (under substrate-excess conditions in batch culture) can be measured but both cannot be determined at the same time. The above-described conventional growth kinetics derived from single-substrate-controlled laboratory experiments have invariably been used for describing both growth and substrate utilization in ecosystems. However, in nature, microbial cells are exposed to a wide spectrum of potential substrates, many of which they utilize simultaneously (in particular carbon sources). The kinetic data available to date for growth of pure cultures in carbon-controlled continuous culture with defined mixtures of two or more carbon sources (including pollutants) clearly demonstrate that simultaneous utilization results in lowered residual steady-state concentrations of all substrates. This should result in a competitive advantage of a cell capable of mixed-substrate growth because it can grow much faster at low substrate concentrations than one would expect from single-substrate kinetics. Additionally, the relevance of the kinetic principles obtained from defined culture systems with single, mixed, or multicomponent substrates to the kinetics of pollutant degradation as it occurs in the presence of alternative carbon sources in complex environmental systems is discussed. The presented overview indicates that many of the environmentally relevant apects in growth kinetics are still waiting to be discovered, established, and exploited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号