首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
昆虫杆状病毒表达载体系统在疫苗研究中的应用进展   总被引:1,自引:0,他引:1  
昆虫杆状病毒表达载体系统(Baculovirus expression vector system,BEVS)已成功应用于多种蛋白的表达,并为疫苗开发提供了充足的原材料。相比其他表达系统,BEVS具有许多优势:杆状病毒专一寄生于无脊椎动物,安全性高;重组蛋白表达水平高;可对重组蛋白进行正确折叠和翻译后修饰,获得具有生物活性的蛋白;适应于多基因表达如病毒样颗粒(Virus-like particle)的复杂设计;适用于大规模无血清培养等。为了更好地理解BEVS在疫苗研究中的应用前景,文中将从BEVS的发展及其在疫苗研究中的应用等方面进行综述。  相似文献   

2.
杆状病毒表达系统研究进展   总被引:3,自引:0,他引:3  
介绍了杆状病毒表达系统的构建策略,载体发展情况及其表达外源基因的影响因素.杆状病毒表达系统在基因工程、药物开发、疫苗生产等方面发挥了越来越重要的作用,其表达效率高,表达产物与天然产物有相似的结构和活性,且对人畜无害,为当今基因工程研究中最有发展前途的表达系统.  相似文献   

3.
The baculovirus‐insect cell expression system is widely used in producing recombinant proteins. This review is focused on the use of this expression system in developing bioprocesses for producing proteins of interest. The issues addressed include: the baculovirus biology and genetic manipulation to improve protein expression and quality; the suppression of proteolysis associated with the viral enzymes; the engineering of the insect cell lines for improved capability in glycosylation and folding of the expressed proteins; the impact of baculovirus on the host cell and its implications for protein production; the effects of the growth medium on metabolism of the host cell; the bioreactors and the associated operational aspects; and downstream processing of the product. All these factors strongly affect the production of recombinant proteins. The current state of knowledge is reviewed. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:1–18, 2014  相似文献   

4.
BACKGROUND: The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) has been explored as a gene delivery vehicle for a variety of mammalian cell lines. However, the transient expression nature due to its incapability to replicate in mammalian cells and insufficient transduction efficiency limit its application. METHODS: Recombinant baculovirus vectors containing genetic elements from Epstein-Barr virus (EBV), OriP and EBNA-1, which are essential for the episomal maintenance of the EBV genome in latently infected cells, were constructed and tested for their ability to sustain and express transgene (enhanced green fluorescence protein (egfp)) in mammalian cells. RESULTS: The recombinant baculovirus containing OriP and EBNA-1 genes driven by the cytomegalovirus (CMV) promoter was capable of persisting in a significant proportion of infected mammalian cells, HEK293, Vero, Cos-7, and Hone-1, without any selective pressure. In HEK293, the expression of EGFP lasted for 60 days with markedly enhanced expression level. The persistence of baculovirus genome correlated with the expression of EBNA-1. CONCLUSIONS: The improved baculovirus vector could mediate prolonged and enhanced foreign gene expression in some mammalian cells. Furthermore, an adequate level of the EBNA-1 protein was essential for the maintenance of the OriP-containing baculovirus genome. The new vector has potential for use in gene therapy.  相似文献   

5.
A mathematical model has been developed that predicts the cell population dynamics and production of recombinant protein and infective extracellular virus progeny by insect cells after infection with baculovirus in batch suspension culture. Infection in the model is based on the rate of virus attachment to suspended insect cells under culture conditions. The model links the events following infection with the sequence of gene expression in the baculovirus replicative cycle. Substrate depletion is used to account for the decrease in product yield observed when infecting at high cell densities. Model parameters were determined in shaker flasks for two media: serum-supplemented IPL-41 medium and serum free Sf900II medium. There was good agreement between model predictions and the results from an independent series of experiments performed to validate the mode. The model predicted: (1) the optimal time of infection at high multiplicity of infection: (2) the timing and magnitude of recombinant protein production in a 2-L bioreactor; and (3) the timing and magnitude of recombinant protein production at multiplicities of infection from 0.01 to 100 plaque-forming units per cell. Through its ability to predict optimal infection strategies in batch suspension culture, the model has use in the design and optimization of large-scale systems for the production of recombinant products using the baculovirus expression vector system. (c) 1994 John Wiley & Sons, Inc.  相似文献   

6.
In recent years, the number of complex but clinically effective biologicals such as multi‐specific antibody formats and fusion proteins has increased dramatically. However, compared to classical monoclonal antibodies (mAbs), these rather artificially designed therapeutic proteins have never undergone millions of years of evolution and thus often turn out to be difficult‐to‐express using mammalian expression systems such as Chinese hamster ovary (CHO) cells. To provide access to these sophisticated but effective drugs, host cell engineering of CHO production cell lines represents a promising approach to overcome low production yields. MicroRNAs (miRNAs) have recently gained much attention as next‐generation cell engineering tools. However, only very little is known about the capability of miRNAs to specifically increase production of difficult‐to‐express proteins. In a previous study we identified miR‐143 amongst others to improve protein production in CHO cells. Thus, the aim of the present study was to examine if miR‐143 might be suitable to improve production of low yield protein candidates. Both transient and stable overexpression of miR‐143 significantly improved protein production without negatively affecting cell growth and viability of different recombinant CHO cells. In addition, mitogen‐activated protein kinase 7 (MAPK7) was identified as a putative target gene of miR‐143‐3p in CHO cells. Finally, siRNA‐mediated knock‐down of MAPK7 could be demonstrated to phenocopy pro‐productive effects of miR‐143. In summary, our data suggest that miR‐143 might represent a novel genetic element to enhance production of difficult‐to‐express proteins in CHO cells which may be partly mediated by down‐regulation of MAPK7. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1046–1058, 2017  相似文献   

7.
The structural protein genes of HIV-1 and HIV-2 have been expressed inSpodoptera frugiperda (SF) cells using baculovirus expression system. The noncoding flanking sequences of HIV structural genes were removed and a putative ribosome binding site was placed in front of the open reading frame of each gene by using crossover linker mutagenesis. The coding sequences of thegag, pol, env, andvif proteins were inserted intoAutographa californica nuclear polyhedrosis virus (AcNPV) so that HIV genes were under the control of the AcNPV polyhedrin promoter. All recombinant AcNPV-infected SF cells express high levels of HIV structural proteins. Detailed strategies of recombinant AcNPV construction for high level protein expression are presented.  相似文献   

8.
杆状病毒表达系统的发展   总被引:3,自引:0,他引:3  
杆状病毒是近年来被广泛用于高效表达外源蛋白的载体系统,本文就杆状病毒表达系统的生物学特性、转染载体、重组病毒的筛选、基因表达调控及其发展应用等方面作一概述。  相似文献   

9.
Baculoviruses have a unique bi-phasic life cycle and powerful promoters, which greatly facilitates their use for recombinant protein expression in insect cells. We have developed an expression system that utilizes homologous recombination in insect cells between a transfer plasmid containing a gene to be expressed and a replication-deficient virus (bacmid). Only recombinant virus can replicate facilitating the rapid production of multiple recombinant viruses using robotic liquid handlers. The bacmid has also been genetically optimized for improved protein expression and stability. We describe the application of this system for high level production of recombinant proteins.  相似文献   

10.
ABSTRACT

Tomato thymidine kinase 1 (ToTK1) is a deoxyribonucleoside kinase (dNK) that has been subject to study because of its potential to phosphorylate the nucleoside analogue 3-azido-2,3-dideoxythymidine (azidothymidine, AZT) equally well as its natural substrate thymidine (dThd). The combination of ToTK1 and AZT has been tested in two animal studies for its efficiency and use in suicide gene therapy for malignant glioma. The determination of the 3D structure of ToTK1 might shed light on the structure–function relationships of nucleoside activation by this enzyme and thereby show routes toward further improvement of ToTK1 and other TK1-like dNKs for suicide gene therapy. Here we report the successful expression of both full-length ToTK1 and a C-terminal truncated ToTK1 in Spodoptera frugiperda and Trichoplusia ni insect cells using the baculovirus expression vector system. This constitutes a further step on the road to determine the 3D structure of the first TK1 of plant origin, but also an enzyme with great potential for dNK-mediated suicide gene therapy.  相似文献   

11.
Insect expression systems based on baculovirus are widely used for generating recombinant proteins. Here, the infectivity of baculoviruses under the physiological stresses of ‘freeze–thaw’ and sonication and the baculoviral contamination of recombinant proteins after protein purification were evaluated. Our findings suggest that Nonidet P‐40 (NP‐40) treatment of baculoviruses completely abolishes their infectivity and that recombinant proteins purified with affinity beads do not include infectious baculoviruses. We therefore suggest that baculovirus is completely inactivated by NP‐40 treatment and that recombinant proteins are unlikely to be contaminated with infectious baculoviruses after their affinity purification.
  相似文献   

12.
Continuous protein production with baculovirus expression vectors in insect-cell bioreactors is characterized by a dramatic drop in heterologous protein production within a few weeks. This is mainly due to the spontaneous deletion of the heterologous gene(s) from the baculovirus genome and/or to the rapid accumulation of defective interfering baculoviruses (DIs). Cell culture experiments with bacmid-derived baculoviruses showed that spontaneous deletions in the foreign bacterial artificial chromosome (BAC) sequences readily occurred. These deletions correlated with a low density of baculovirus homologous (repeat) regions (hrs), which are located dispersed throughout the baculovirus genome and are believed to act as origins of viral DNA replication (oris). To test the hypothesis that deletions are more likely to occur in regions with a low ori density, the properties of bacmid-derived baculoviruses with an additional hr in the unstable BAC sequences were compared to the standard bacmid-derived baculovirus in a continuous cascaded insect-cell bioreactor configuration. All viruses were equipped with a green fluorescent protein (GFP) gene and a gene encoding the classical swine fever virus E2 glycoprotein (CSFV-E2). The insertion of an extra hr in the BAC vector led to improved genetic stability of adjacent sequences, resulting in prolonged protein expression. The maintenance of the BAC sequences appeared to be dependent on the orientation of the inserted hr. The advantages of the utilization of hrs to improve the stability of baculovirus expression vectors for the large-scale protein production in insect-cell bioreactors are discussed.  相似文献   

13.
重组人可溶性CD14在昆虫细胞表达系统中的表达   总被引:4,自引:0,他引:4  
BAC-TO-BAC杆状病毒表达系统是一种快速、高效、便捷的表达系统.将人可溶性CD14(sCD14)基因克隆入pFASTBAC1转移质粒中,重组质粒转化DH10BAC感受态细胞,目的基因通过同源重组插入BacmidDNA中,后者转染sf21昆虫细胞获得重组杆状病毒.利用重组蛋白C-末端的6×His@Tag,经TALON金属螯合色谱将重组病毒感染昆虫细胞获得的无血清培养上清--步纯化得到重组蛋白,计算表明从1L培养基中可纯化到约8mg纯度大于95%的重组sCD14蛋白,免疫印迹结果表明重组蛋白具有与抗6×His单抗和抗CD14单抗结合的抗原性.疑胶迁移实验和细胞活性实验表明重组sCD14蛋白能在体外与LPS结合,并能增强LPS诱导THP-1细胞产生细胞毒性因子.  相似文献   

14.
Substrate limitation in the baculovirus expression vector system   总被引:1,自引:0,他引:1  
The inability to infect insect cell cultures at the highest achievable cell densities has imposed major limitations to both the fundamental understanding of the Baculovirus Expression Vector System (BEVS) as well as full exploitation of its potential productive capacity for recombinant (beta-galAcNPV) products. The current literature does not characterize and identify the exact nature of the observed limitations, which therefore has become the major objective and contribution of the following study. Critical densities for infection of Spodoptera frugiperda (Sf9) cells with nuclear polyhedrosis virus expressing beta-galactosidase (Autographa californica) grown in media both containing fetal calf serum (FCS) and free of serum were found to be at 2 x 10(6) and 5 x 10(6) cells/ml respectively. Medium exchange was found to completely reverse the effect if renewed up to 24 hours post-infection (HPI). The inevitable arrest of uninfected cell growth and decreased production of recombinant products at high cell densities of infection were both correlated to nutrient depletion. Cystine was found to be depleted in uninfected insect cell cultures at the onset of the stationary phase and in serum-free insect cell cultures infected with baculovirus above a cell density of 5 x 10(6) cells/ml. Neither glucose depletion nor accumulation of possible inhibitory metabolites such as alanine, ammonia, or lactate could be correlated to growth arrest or decreased recombinant product yields. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 32-44, 1997.  相似文献   

15.
Using pSXIVVI+X3 as an expressing vector, an occluded recombinant Trichoplusia ni nuclear polyhedrosis virus carrying the cDNA encoding plasminogen activators inhibitor-2 (PAI-2) under the control of the Syn and XIV promoters, has been constructed. SDS-PAGE and immunoblot analysis revealed that the virus-mediated PAI-2, with a molecular weight of ∼45 kDa, was synthesized in the Sf cells at a level of ∼16% of total intracellular protein and in the supernatant phase at a level of ∼64% of total extracellular protein secreted into the hemolymph of infected larvae. The expressed protein was similar to its authentic counterpart in terms of immunoreactivity and bioactivity. Received 5 May 1998/ Accepted in revised form 15 July 1998  相似文献   

16.
17.
18.
19.
Despite the development of high‐titer bioprocesses capable of producing >10 g L?1 of recombinant monoclonal antibody (MAb), some so called “difficult‐to‐express” (DTE) MAbs only reach much lower process titers. For widely utilized “platform” processes the only discrete variable is the protein coding sequence of the recombinant product. However, there has been little systematic study to identify the sequence parameters that affect expression. This information is vital, as it would allow us to rationally design genetic sequence and engineering strategies for optimal bioprocessing. We have therefore developed a new computational tool that enables prediction of MAb titer in Chinese hamster ovary (CHO) cells based on the recombinant coding sequence of the expressed MAb. Model construction utilized a panel of MAbs, which following a 10‐day fed‐batch transient production process varied in titer 5.6‐fold, allowing analysis of the sequence features that impact expression over a range of high and low MAb productivity. The model identified 18 light chain (LC)‐specific sequence features within complementarity determining region 3 (CDR3) capable of predicting MAb titer with a root mean square error of 0.585 relative expression units. Furthermore, we identify that CDR3 variation influences the rate of LC‐HC dimerization during MAb synthesis, which could be exploited to improve the production of DTE MAb variants via increasing the transfected LC:HC gene ratio. Taken together these data suggest that engineering intervention strategies to improve the expression of DTE recombinant products can be rationally implemented based on an identification of the sequence motifs that render a recombinant product DTE. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:188–197, 2014  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号