首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Primary cultures of 10-day embryonic chick neural retinas were used to investigate early aspects of the mechanism of hydrocortisone action on glutamine synthetase activity. As little as 2 hr of hydrocortisone exposure served to initiate significant increases in the glutamine synthetase activity levels assayed after 24 hr culture. Time course studies indicated that the increase in glutamine synthetase activity observed after 24 hr in culture resulted from a two-phase rise in activity and that cycloheximide was effective in suppressing the second-phase rise. Additional inhibition studies demonstrated that the second-phase increase in enzyme activity required continuous protein synthesis during the initial 6 hr. The evidence suggests a mechanism of hydrocortisone action involving the production of a protein which is important for the induction of glutamine synthetase activity by hydrocortisone. This work was supported by a National Science Foundation (U.S.A.) Training Grant.  相似文献   

2.
S H Kovacs 《In vitro》1977,13(1):24-30
Primary cultures of 10-day embryonic chick neural retinas were used to investigate early aspects of the mechanism of hydrocortisone action on glutamine synthetase activity. As little as 2 hr of hydrocortisone exposure served to initiate significant increases in the glutamine synthetase activity levels assayed after 24 hr culture. Time course studies indicated that the increase in glutamine synthetase activity observed after 24 hr in culture resulted from a two-phase rise in activity and that cycloheximide was effective in suppressing the second-phase rise. Additional inhibition studies demonstrated that the second-phase increase in enzyme activity required continuous protein synthesis during the initial 6 hr. The evidence suggests a mechanism of hydrocortisone action involving the production of a protein which is important for the induction of glutamine synthetase activity by hydrocortisone.  相似文献   

3.
The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked inhibition.  相似文献   

4.
P M Anderson 《Biochemistry》1986,25(19):5576-5582
Carbamoyl-phosphate synthetase from Escherichia coli is subject to allosteric activation by ornithine, allosteric inhibition by uridine 5'-phosphate (UMP), and reversible concentration-dependent self-association. Positive allosteric effectors, magnesium adenosine 5'-triphosphate (MgATP), K+, and inorganic phosphate facilitate association. The purpose of this study was to determine the state of association of carbamoyl-phosphate synthetase in the presence and absence of different substrates and effectors and to consider the basis for the observed effects of enzyme concentration on specific activity. Studies employing gel filtration chromatography have shown that when the concentration of carbamoyl-phosphate synthetase is low (less than 0.01 mg/mL), the enzyme exists as monomer under all conditions, including the presence of UMP in phosphate buffer and the presence of all substrates plus ornithine (conditions that support maximal catalytic activity). At higher enzyme concentrations (e.g., greater than 0.01 mg/mL) the specific activity increases with increasing enzyme concentration when MgATP is nonsaturating but is independent of enzyme concentration when MgATP is saturating or when ornithine is present with MgATP being either saturating or nonsaturating. These results indicate that the catalytic activity of this enzyme is not directly linked to oligomer formation. The theoretical properties and possible significance of a generalized model of enzyme association-dissociation in which the active monomeric form, in equilibrium with another monomeric form, is specifically subject to self-association but the different states of association have the same specific activity, are discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The regulation of glutamine synthetase activity by positive and negative effectors of enzyme activity singularly and in combinations was studied by using a homogeneous enzyme preparation from Bacillus licheniformis A5. Phosphorylribosyl pyrophosphate at concentrations greater than 2mM stimulated glutamine synthetase activity by approximately 70%. The concentration of phosphorylribosyl pyrophosphate required for half-maximal stimulation of enzyme activity was 0.4 mM. Results obtained from studies of fractional inhibition of glutamine synthetase activity were consistent with the presence of one allosteric site for glutamine binding (apparent I0.5, 2.2mM) per active enzyme unit at a glutamate concentration of 50 mM. At a glutamate concentration of 30 mM or less, the data were consistent with the enzyme containing two binding sites for glutamine (one of which was an allosteric site with an apparent I0.5 of 0.4 mM). Bases on an analysis of the response of glutamine synthetase activity to positive and negative effectors in vitro and to the intracellular concentration of these effectors in vivo, the primary modulators of glutamine synthetase activity in B. licheniformis A5 appear to be glutamine and alanine (apparent I0.5, 5.2mM).  相似文献   

6.
In the presence of complete growth media (Eagle's MEM), human diploid WI-38 cells have a low level of glutamine synthetase activity. The activity could be increased by depriving the cells of exogenous glutamine; addition of hydrocortisone to either glutamine-deficient or complete medium had no effect on the activity of the enzyme. Cell growth ceased under conditions that enhanced glutamine synthetase activity, and hydrocortisone could not reverse this inhibition.  相似文献   

7.
Human synovial fibroblast prostaglandin synthetase activity is inhibited by many different non-steroidal anti-inflammatory agents. Aspirin, indomethacin and phenylbutazone significantly inhibit both PGE1, PGE2 and PGF and PGF synthesis; whereas penicillamine and aurothioglucose are more potent inhibitors of the F prostaglandins. Histidine and antimalarials do not inhibit, to a significant degree, human synovial prostaglandin synthetase activity. Hydrocortisone has no direct effect on prostaglandin synthetase activity. No changes in synthetase activity are observed when synovial cells are incubated with hydrocortisone, and the prostaglandin synthetase system subsequently isolated and assayed. The proposed inhibitory effects of hydrocortisone on prostaglandin production by synovium may be the result of an alteration of enzyme substrate or cofactor concentration rather than a direct effect on prostaglandin synthetase.  相似文献   

8.
Glutamine synthetase activity was investigated in developing primary astroglial cultures established from newborn mouse cerebral hemispheres. Between the 2nd and 4th week of culture there was little change in activity under our standard culturing conditions; however, when hydrocortisone (10 microM) was added to the cultures for 48 h, the enzyme activity increased two- to fourfold, depending upon the age of the culture, with maximum response in 2-week-old cultures. The addition of dibutyryl cyclic AMP (dBcAMP) to the culture medium caused morphological differentiation of the astroglial cells but eliminated the response of the cells to hydrocortisone. Culturing in elevated serum levels, which delays morphological differentiation and inhibits astroglial cytodifferentiation after exposure to dBcAMP, shifted the time of maximal response to hydrocortisone from 2 to 3 weeks and prevented the abolishment of glutamine synthetase induction by dBcAMP. The induction of glutamine synthetase by hydrocortisone was prevented by actinomycin D (0.5 microgram/ml), indicating its dependence upon RNA and protein synthesis. The present work thus confirms reports in the literature that hydrocortisone induces glutamine synthetase in neural tissues, but differs from the findings of Moscona and co-workers in the chick retina that intact tissues are required for the induction to occur.  相似文献   

9.
The regulatory role of the allosteric site of CTP synthetase on flux through the enzyme in situ and on pyrimidine nucleotide triphosphate (NTP) pool balance was investigated using a mutant mouse T lymphoblast (S49) cell line which contains a CTP synthetase refractory to complete inhibition by CTP. Measurements of [3H]uridine incorporation into cellular pyrimidine NTP pools as a function of time indicated that CTP synthesis in intact wild type cells was markedly inhibited in a cooperative fashion by small increases in CTP pools, whereas flux across the enzyme in mutant cells was much less affected by changes in CTP levels. The cooperativity of the allosteric inhibition of the enzyme was greater in situ than in vitro. Exogenous manipulation of levels of GTP, an activator of the enzyme, indicated that GTP had a moderate effect on enzyme activity in situ, and changes in pools of ATP, a substrate of the enzyme, had small effects on CTP synthetase activity. The consequences of incubation with actinomycin D, cycloheximide, dibutyryl cyclic AMP, and 6-azauridine on the flux across CTP synthetase and on NTP pools differed considerably between wild type and mutant cells. Under conditions of growth arrest, an intact binding site for CTP on CTP synthetase was required to maintain a balance between the CTP and UTP pools in wild type cells. Moreover, wild type cells failed to incorporate H14CO3- into pyrimidine pools following growth arrest. In contrast, mutant cells incorporated the radiolabel at a high rate indicating loss of a regulatory function. These results indicated that uridine nucleotides are important regulators of pyrimidine nucleotide synthesis in mouse S49 cells, and CTP regulates the balance between UTP and CTP pools.  相似文献   

10.
林肯链霉菌谷氨酰胺合成酶活力调节的研究   总被引:1,自引:0,他引:1  
对不同氮源生长条件下林肯链霉菌无细胞粗提液中谷氨酰胺合成酶 (GS)的研究结果表明 ,高浓度NH+4阻遏了GS的生物合成。从不同氮源生长条件下林肯链霉菌中分离纯化了GS ,其性质没有差别。以受腺苷化调节的产气克雷伯氏菌GS作对照 ,林肯链霉菌GS没有明显的氨休克作用 ,经蛇毒磷酸二酯酶处理后 ,其活力没有变化。这些结果都说明林肯链霉菌GS不存在腺苷化共价修饰这一调节方式。反馈抑制作用是林肯链霉菌GS的一种重要的调节方式 ,这种抑制作用是以累积的方式进行的 ,这表明各种抑制剂对GS作用位点不同 ,各种抑制剂对GS的抑制作用是相互独立的。由此推测 ,林肯链霉菌GS是一种变构酶。  相似文献   

11.
The Escherichia coli B mutant strain CL1136 accumulates glycogen at a 3.4- to 4-fold greater rate than the parent E. coli B strain and contains an ADPglucose synthetase with altered kinetic and allosteric properties. The enzyme from CL1136 is less dependent on the allosteric activator, fructose 1,6-bisphosphate, for activity and less sensitive to inhibition by AMP than the parent strain enzyme. The structural gene, glgC, for the allosteric mutant enzyme was selected by colony hybridization and cloned into the bacterial plasmid pBR322 by insertion of the chromosomal DNA at the PstI site. One recombinant plasmid, designated pKG3, was isolated from the genomic library of CL1136 containing glgC. The cloned ADPglucose synthetase from the mutant CL1136 was expressed and characterized with respect to kinetic and allosteric properties and found to be identical to the enzyme purified from the CL1136 strain. The mutant glgC was then subcloned into pUC118/119 for dideoxy sequencing of both strands. The mutant glgC sequence was found to differ from the wild-type at the deduced amino acid residue 67 where a single point mutation resulted in a change from arginine to cysteine.  相似文献   

12.
The effect of glucocorticoid hormone administration on the nuclear poly(ADP-ribose) synthetase activity of chick embryoliver was investigated. Compared with the values obtained with control nuclei, the enzyme activity was markedly reduced in the nuclei of liver prepared from chick embryo treated with 0.1 mg hydrocortisone for 12 hours or longer. The possible relationship between the reduction of poly(ADP-ribose) synthetase activity and decrease in DNA synthesis is discussed.  相似文献   

13.
After the urea cycle was proposed, considerable efforts were put forth to identify critical intermediates. This was then followed by studies of dietary and nutritional control of urea cycle enzyme activity and allosteric effectors of urea cycle enzymes. Correlation of urea cycle enzyme activity with isolated cell experiments indicated conditions where enzyme activity would be rate limiting. At physiological levels of ammonia the activation of carbamoyl-phosphate synthetase (EC 6.3.4.16) by N-acetylglutamate (NAG) is important. Various levels of NAG corresponded well with changes in the rate of citrulline and urea synthesis. Arginine was found to be an allosteric activator of N-acetylglutamate synthetase (EC 2.3.1.1). Therefore, it was possible that the rate of carbamoyl phosphate synthesis was dependent on the level of urea cycle intermediates, particularly arginine. Evidence for arginine in the regulation of NAG synthesis is not as clear as for NAG on carbamoyl phosphate synthetase I. The concentration of hepatic arginine is not necessarily an indication of the mitochondrial concentration. Only mitochondrial arginine stimulates the N-acetylglutamate synthetase. Recent studies indicate that the mitochondrial concentration of arginine is higher than the cytosolic concentration and is well above the Ka for N-acetylglutamate synthetase. Therefore, it appears that changes in arginine concentration are not physiologically important in regulating levels of NAG. However, it is possible that responses to the effector may vary with time after eating, and it may be this responsiveness that controls the level of NAG and thereby urea synthesis.  相似文献   

14.
Pantothenate synthetase catalyzes the ATP-dependent condensation of pantoate and beta-alanine to yield pantothenate, the essential precursor to coenzyme A. Bacterial and plant pantothenate synthetases are dimeric enzymes that share significant sequence identity. Here we show that the two-step reaction mechanism of pantothenate synthetase is conserved between the enzymes from Arabidopsis thaliana and Escherichia coli. Strikingly, though, the Arabidopsis enzyme exhibits large allosteric effects, whereas the Escherichia coli enzyme displays essentially non-allosteric behavior. Our data suggest that specific subunit contacts were selected and maintained in the plant lineage of the pantothenate synthetase protein family and that the resulting allosteric interactions are balanced for efficient catalysis at low pantoate levels. This is supported by mutations in the putative subunit interface of Arabidopsis pantothenate synthetase, which strongly attenuated or otherwise modified its allosteric properties but did not affect the dimeric state of the enzyme. At the molecular level, plant pantothenate synthetases exemplify functional adaptation through allostery and without alterations to the active site architecture. We propose that the allosteric behavior confers a selective advantage in the context of the subcellular compartmentation of pantothenate biosynthesis in plants.  相似文献   

15.
P M Anderson 《Biochemistry》1977,16(4):583-586
Carbamyl-phosphate synthetase from Escherichia coli is an allosteric enzyme which undergoes reversible association reactions in phosphate buffer. The positive allosteric effectors, ornithine, inosine 5'-monophosphate (IMP), and ammonia, facilitate oligomer formation, whereas uridine 5'-monophosphate (UMP), a negative effector, prevents or decreases oligomer formation. When the enzyme is immobilized by reaction with activated Sepharose, under conditions where the enzyme exists only as a monomer, nearly full catalytic activity is retained and the effects of ornithine, IMP, and UMP on the catalytic activity as a function of MgATP concentration are not significantly altered. Gel-filtration chromatography on Sephadex G-200 of catalytic quantities of the enzyme in the presence of all substrates showed that the elution volume was the same as that measured for the enzyme under conditions where it is known to exist in the monomer form. The specific activity of the enzyme does not increase when the concentration of the enzyme is increased 100-fold from a concentration at which the enzyme exists as monomer to a level at which the enzyme exists predominantly as oligomer. These results indicate that the monomer form of the enzyme is the principle active species and that oligomer formation is not directly related to enzyme activity or enzyme regulation.  相似文献   

16.
Abstract— The activity of fatty acid synthetase was studied in the brain and liver of the developing rat. Synthetase activity in brain was considerably higher in foetal and suckling rats than in older animals However, except for a small transient rise in the perinatal period, activity in liver was low until weaning when a dramatic rise occurred. Activity in brain varied according to the quantity of dietary fat only in long-term experiments, whereas in liver nutritional influences clearly predominated in determining the rapid developmental changes of synthetase activity. Administration of hydrocortisone diminished hepatic activity but did not change brain synthetase. In the hypothyroid state activity in brain and liver was consistently decreased. However, in the hyperthyroid state hepatic activity increased but activity in brain did not change. The relatively high activity of fatty acid synthetase during brain development has been discussed in relation to the critical role of this enzyme system in brain metabolism. The effect of the hypothyroid state on the activity of brain synthetase suggests the possibility of hormonal control of this enzyme activity. The responses of hepatic synthetase to the hormonal influences delineate a specific step by which these compounds may exert their effect on fatty acid biosynthesis.  相似文献   

17.
Glycogen synthetase from skeletal muscle is rapidly inactivated by DEPC. In the presence of the substrate UDPG only 50% of the enzyme activity is lost. The concomitant addition of both UDPG and the allosteric activator glucose-6-phosphate almost completely prevents the inactivation by DEPC. Since glucose-6-phosphate alone does not prevent the inactivation by DEPC, it is concluded that it is effective through a potentiation of the effects of UDPG, possibly through a conformational change of the enzyme.  相似文献   

18.
Abstract— C-6 glial cells in culture were utilized to define the role of glucocorticoid in the regulation of palmitic acid synthesis and the important lipogenic enzymes, fatty acid synthetase and acetyl-CoA carboxylase. Particular emphasis was given to fatty acid synthetase which exhibited more than a 50% reduction in specific activity when cells were exposed to hydrocortisone (10 μg/ml) for 1 week. Coordinate changes in acetyl-CoA carboxylase activity and in palmitic acid (and sterol) synthesis from acetate accompanied the alterations in fatty acid synthetase. Immunochemical techniques were utilized to show that the decrease in synthetase activity involved an alteration in enzyme content, not in catalytic efficiency. The changes in content of fatty acid synthetase were caused by alterations in enzyme synthesis. Glucocorticoids may regulate fatty acid synthetase in C-6 glial cells by a mechanism similar to that suggested for adipose tissue. The inhibition of palmitic acid synthesis may be relevant to other effects of glucocorticoids on developing brain.  相似文献   

19.
Chronic glucocorticoid treatment results in skeletal muscle wasting. However, if the contractile activity of muscle is increased, this effect is abated. Because the gene encoding glutamine synthetase is known to be glucocorticoid inducible, it represents an appropriate model for testing whether glucocorticoids and endurance training can exert antagonistic effects on the expression of specific genes in muscle tissue. Our data confirm that administration of hydrocortisone 21-acetate to rats produces 2.4- and 5.9-fold increases in plantaris muscle glutamine synthetase enzyme activity and mRNA, respectively. Moreover, subjecting rats to a 12- to 16-wk exercise program diminishes the basal levels of these indices of glutamine synthetase expression to approximately 60% of the values observed in sedentary controls. Endurance training produces a similar effect on plantaris muscle glutamine synthetase expression in glucocorticoid-treated animals. These data demonstrate that the therapeutic effects of exercise in counteracting muscle atrophy are associated with attenuation of expression of a glucocorticoid-inducible gene in skeletal muscle.  相似文献   

20.
P M Anderson  J D Carlson 《Biochemistry》1975,14(16):3688-3694
Carbamyl phosphate synthetase from Escherichia coli reacts stoichiometrically (one to one) with [14C]cyanate to give a 14C-labeled complex which can be isolated by gel filtration. The formation of the complex is prevented if L-glutamine is present or if the enzyme is first reacted with 2-amino-4-oxo-5-chloropentanoic acid, a chloro ketone analog of glutamine which has been shown to react with a specific SH group in the glutamine binding site. The rate of complex formation is increased by ADP and decreased by ATP and HCO3-. The isolated complex is inactive with respect to glutamine-dependent synthetase activity. However, the reaction of cyanate with the enzyme is reversible. The rate of dissociation of the isolated complex is not affected by pH (over the pH range 6-10), is greatly increased by ATP and HCO3-, and is decreased by ADP. The allosteric effectors ornithine and UMP have no effect on either the rate of formation or the rate of dissociation of the complex; however, the apparent affinity of the enzyme for ATP is decreased by UMP and increased by ornithine. The site of reaction of cyanate with carbamyl phosphate synthetase, which is composed of a light and a heavy subunit, is with an SH group in the light subunit to give an S-carbamylcysteine residue. The binding of L-[14C]glutamine to the enzyme and the inhibition of glutamine-dependent synthetase activity by the chloroketone analog are both prevented by the presence of cyanate. The reaction with cyanate is considered to be with the same essential SH group which is located in the glutamine binding site and is alkylated by 2-amino-4-oxo-5-chloropentanoic acid. The bicarbonate-dependent effects of ATP suggest that formation of the activated carbon dioxide intermediate is accompanied by changes in the heavy subunit which functionally alter the properties of the glutamine binding site on the light subunit. The allosteric effects of ornithine and UMP are probably not related to this intersubunit interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号