共查询到20条相似文献,搜索用时 0 毫秒
1.
Soboleva TA Jans DA Johnson-Saliba M Baker RT 《The Journal of biological chemistry》2005,280(1):745-752
The oncogenic deubiquitylating enzyme (DUB) Unp/Usp4, which binds to the retinoblastoma family of tumor suppressor proteins, was originally described as a nuclear protein. However, more recent studies have shown it to be cytoplasmic. In addition, analysis of its subcellular localization has been complicated by the existence of the paralog Usp15. In this study, we resolved this controversy by investigating the localization of exogenously expressed Usp4 (using red fluorescent protein-Usp4) and of endogenous Usp4 (using highly specific antibodies that can distinguish Usp4 from Usp15). We found that by inhibiting nuclear export with leptomycin B, both exogenous and endogenous Usp4 accumulate in the nucleus. Further, using a Rev-green fluorescent protein-based export assay, we confirmed the existence of a nuclear export signal ((133)VEVYLLELKL(142)) in Usp4. In addition, a functional nuclear import signal ((766)QPQKKKK(772)) was also identified, which was specifically recognized by importin alpha/beta. Finally, we show that the equilibrium of Usp4 subcellular localization varies between different cell types. Usp4 is thus the first DUB reported to have nucleocytoplasmic shuttling properties. The implications of this shuttling for its function as a DUB are discussed. 相似文献
2.
Kessler BM Fortunati E Melis M Pals CE Clevers H Maurice MM 《Journal of proteome research》2007,6(11):4163-4172
3.
M Pantaleon M Kanai-Azuma J S Mattick K Kaibuchi P L Kaye S A Wood 《Mechanisms of development》2001,109(2):151-160
FAM is a developmentally regulated substrate-specific deubiquitylating enzyme. It binds the cell adhesion and signalling molecules beta-catenin and AF-6 in vitro, and stabilises both in mammalian cell culture. To determine if FAM is required at the earliest stages of mouse development we examined its expression and function in preimplantation mouse embryos. FAM is expressed at all stages of preimplantation development from ovulation to implantation. Exposure of two-cell embryos to FAM-specific antisense, but not sense, oligodeoxynucleotides resulted in depletion of the FAM protein and failure of the embryos to develop to blastocysts. Loss of FAM had two physiological effects, namely, a decrease in cleavage rate and an inhibition of cell adhesive events. Depletion of FAM protein was mirrored by a loss of beta-catenin such that very little of either protein remained following 72h culture. The residual beta-catenin was localised to sites of cell-cell contact suggesting that the cytoplasmic pool of beta-catenin is stabilised by FAM. Although AF-6 levels initially decreased they returned to normal. However, the nascent protein was mislocalised at the apical surface of blastomeres. Therefore FAM is required for preimplantation mouse embryo development and regulates beta-catenin and AF-6 in vivo. 相似文献
4.
The ubiquitin E3 ligase MARCH7 is differentially regulated by the deubiquitylating enzymes USP7 and USP9X 总被引:2,自引:0,他引:2
Nathan JA Sengupta S Wood SA Admon A Markson G Sanderson C Lehner PJ 《Traffic (Copenhagen, Denmark)》2008,9(7):1130-1145
Protein modification by one or more ubiquitin chains serves a critical signalling function across a wide range of cellular processes. Specificity within this system is conferred by ubiquitin E3 ligases, which target the substrates. Their activity is balanced by deubiquitylating enzymes (DUBs), which remove ubiquitin from both substrates and ligases. The RING-CH ligases were initially identified as viral immunoevasins involved in the downregulation of immunoreceptors. Their cellular orthologues, the Membrane-Associated RING-CH (MARCH) family represent a subgroup of the classical RING genes. Unlike their viral counterparts, the cellular RING-CH proteins appear highly regulated, and one of these in particular, MARCH7, was of interest because of a potential role in neuronal development and lymphocyte proliferation. Difficulties in detection and expression of this orphan ligase lead us to search for cellular cofactors involved in MARCH7 stability. In this study, we show that MARCH7 readily undergoes autoubiquitylation and associates with two deubiquitylating enzymes – ubiquitin-specific protease (USP)9X in the cytosol and USP7 in the nucleus. Exogenous expression and short interfering RNA depletion experiments demonstrate that MARCH7 can be stabilized by both USP9X and USP7, which deubiquitylate MARCH7 in the cytosol and nucleus, respectively. We therefore demonstrate compartment-specific regulation of this E3 ligase through recruitment of site-specific DUBs. 相似文献
5.
Mouchantaf R Azakir BA McPherson PS Millard SM Wood SA Angers A 《The Journal of biological chemistry》2006,281(50):38738-38747
Itch is a ubiquitin ligase that has been implicated in the regulation of a number of cellular processes. We previously have identified Itch as a binding partner for the endocytic protein Endophilin and found it to be localized to endosomes. Using affinity purification coupled to mass spectrometry, we have now identified the ubiquitin-protease FAM/USP9X as a binding partner of Itch. The association between Itch and FAM/USP9X was confirmed in vitro by glutathione S-transferase pulldown and in vivo through coimmunoprecipation. Itch and FAM partially colocalize in COS-7 cells at the trans-Golgi network and in peripheral vesicles. We mapped the FAM-binding domain on Itch to the WW domains, a region known to be involved in substrate recognition. However, transient overexpression of FAM/USP9X resulted in the deubiquitylation of Itch. Moreover, we show that Itch auto-ubiquitylation leads to its degradation in the proteasome. By examining the amounts of Itch and FAM in various cell lines and rat tissues, a positive correlation was found in the expression of both proteins. This observation suggests that the levels of FAM expression could have an influence on Itch in cells. Experimental decrease in FAM levels by RNA interference leads to a significant reduction in intracellular levels of endogenous Itch, which can be prevented by treatment with the proteasome inhibitor lactacystin. Accordingly, overexpression of FAM/USP9X resulted in a marked increase in endogenous Itch levels. These results demonstrate an intriguing interplay between a ubiquitin ligase and a ubiquitin protease, based on direct interaction between the two proteins. 相似文献
6.
A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14 总被引:1,自引:0,他引:1
Borodovsky A Kessler BM Casagrande R Overkleeft HS Wilkinson KD Ploegh HL 《The EMBO journal》2001,20(18):5187-5196
A C-terminally modified ubiquitin (Ub) derivative, ubiquitin vinyl sulfone (UbVS), was synthesized as an active site-directed probe that irreversibly modifies a subset of Ub C-terminal hydrolases (UCHs) and Ub-specific processing proteases (UBPs). Specificity of UbVS for deubiquitylating enzymes (DUBs) is demonstrated not only by inhibition of [(125)I]UbVS labeling with N-ethylmaleimide and Ub aldehyde, but also by genetic analysis. [(125)I]UbVS modifies six of the 17 known and putative yeast deubiquitylating enzymes (Yuh1p, Ubp1p, Ubp2p, Ubp6p, Ubp12p and Ubp15p), as revealed by analysis of corresponding mutant strains. In mammalian cells, greater numbers of polypeptides are labeled, most of which are likely to be DUBs. Using [(125)I]UbVS as a probe, we report the association of an additional DUB with the mammalian 26S proteasome. In addition to the 37 kDa enzyme reported to be part of the 19S cap, we identified USP14, a mammalian homolog of yeast Ubp6p, as being bound to the proteasome. Remarkably, labeling of 26S-associated USP14 with [(125)I]UbVS is increased when proteasome function is impaired, suggesting functional coupling between the activities of USP14 and the proteasome. 相似文献
7.
Kim MS Kim YK Kim YS Seong M Choi JK Baek KH 《Biochemical and biophysical research communications》2005,330(3):797-804
The ubiquitin-mediated protein degradation pathway has been emphasized for the regulation of numerous cellular mechanisms and the significance of deubiquitination, mediated by deubiquitinating (DUB) enzymes, has been emerging as an essential regulatory step to control these cellular mechanisms. Previously, we demonstrated a human DUB enzyme, HeLa DUB-1, expressed in human ovarian cancer cells. Here, we report human USP36, which has the extension of the C-terminal region of HeLa DUB-1 and has conserved amino acid domains as previously shown in other DUBs. Human USP36, encoding a DUB enzyme, was isolated from ovarian cancer cells using RT-PCR and characterized. We identified DUB enzyme activity of USP36 by analyzing its capability to cleave the ubiquitin. Interestingly, structural and immunoprecipitation analyses revealed for the first time that USP36 contains the PEST motif and is polyubiquitinated. 相似文献
8.
Hetfeld BK Helfrich A Kapelari B Scheel H Hofmann K Guterman A Glickman M Schade R Kloetzel PM Dubiel W 《Current biology : CB》2005,15(13):1217-1221
The COP9 signalosome (CSN) is a conserved protein complex found in all eukaryotic cells and involved in the regulation of the ubiquitin (Ub)/26S proteasome system. It binds numerous proteins, including the Ub E3 ligases and the deubiquitinating enzyme Ubp12p, the S. pombe ortholog of human USP15. We found that USP15 copurified with the human CSN complex. Isolated CSN complex exhibited protease activity that deubiquitinated poly-Ub substrates and was completely inhibited by o-phenanthroline (OPT), a metal-chelating agent. Surprisingly, the recombinant USP15 was also not able to cleave isopeptide bonds of poly-Ub chains in presence of OPT. Detailed analysis of USP sequences led to the discovery of a novel zinc (Zn) finger in USP15 and related USPs. Mutation of a single conserved cysteine residue in the predicted Zn binding motif resulted in the loss of USP15 capability to degrade poly-Ub substrates, indicating that the Zn finger is essential for the cleavage of poly-Ub chains. Moreover, pulldown experiments demonstrated diminished binding of tetra-Ub to mutated USP15. Cotransfection of USP15 and the Ub ligase Rbx1 revealed that the wild-type deubiquitinating enzyme, but not the USP15 mutant with a defective Zn finger, stabilized Rbx1 toward the Ub system, most likely by reversing poly/autoubiquitination. In summary, a functional Zn finger of USP15 is needed to maintain a conformation essential for disassembling poly-Ub chains, a prerequisite for rescuing the E3 ligase Rbx1. 相似文献
9.
A conserved late endosome-targeting signal required for Doa4 deubiquitylating enzyme function 下载免费PDF全文
Enzyme specificity in vivo is often controlled by subcellular localization. Yeast Doa4, a deubiquitylating enzyme (DUB), removes ubiquitin from membrane proteins destined for vacuolar degradation. Doa4 is recruited to the late endosome after ESCRT-III (endosomal sorting complex required for transport III) has assembled there. We show that an N-terminal segment of Doa4 is sufficient for endosome association. This domain bears four conserved elements (boxes A-D). Deletion of the most conserved of these, A or B, prevents Doa4 endosomal localization. These mutants cannot sustain ubiquitin-dependent proteolysis even though neither motif is essential for deubiquitylating activity. Ubiquitin-specific processing protease 5 (Ubp5), the closest paralogue of Doa4, has no functional overlap. Ubp5 concentrates at the bud neck; its N-terminal domain is critical for this. Importantly, substitution of the Ubp5 N-terminal domain with that of Doa4 relocalizes the Ubp5 enzyme to endosomes and provides Doa4 function. This is the first demonstration of a physiologically important DUB subcellular localization signal and provides a striking example of the functional diversification of DUB paralogues by the evolution of alternative spatial signals. 相似文献
10.
Li K Ossareh-Nazari B Liu X Dargemont C Marmorstein R 《Journal of molecular biology》2007,372(1):194-204
Yeast Ubp3 and its co-factor Bre5 form a deubiquitylation complex to regulate protein transport between the endoplasmic reticulum and Golgi compartments of the cell. A novel N-terminal domain of the Ubp3 catalytic subunit forms a complex with the NTF2-like domain of the Bre5 regulatory subunit. Here, we report the X-ray crystal structure of an Ubp3-Bre5 complex and show that it forms a symmetric hetero-tetrameric complex in which the Bre5 NTF2-like domain dimer interacts with two L-shaped beta-strand-turn-alpha-helix motifs of Ubp3. The Ubp3 N-terminal domain binds within a hydrophobic cavity on the surface of the Bre5 NTF2-like domain subunit with conserved residues within both proteins interacting predominantly through antiparallel beta-sheet hydrogen bonds and van der Waals contacts. Structure-based mutagenesis and functional studies confirm the significance of the observed interactions for Ubp3-Bre5 association in vitro and Ubp3 function in vivo. Comparison of the structure to other protein complexes with NTF2-like domains shows that the Ubp3-Bre5 interface is novel. Together, these studies provide new insights into Ubp3 recognition by Bre5 and into protein recognition by NTF2-like domains. 相似文献
11.
Overexpression and poor downregulation of ErbB receptor tyrosine kinases are associated with enhanced signaling and tumorigenesis. Attenuation of EGF-receptor (EGFR) signaling is mediated by endocytosis and ubiquitination by the E3-ligase Cbl. En route to lysosomes, but before incorporation of the EGFR into internal vesicles of MVBs, the EGFR undergoes Usp8-mediated deubiquitination. ErbB2 displays enhanced recycling back to the cell surface, and therefore we hypothesized that Usp8 is not part of the ErbB2 trafficking pathway. Here, we demonstrate, in the context of a chimeric EGFR-ErbB2 receptor, that (i) EGF induces pY1091 Cbl binding site-dependent K63-polyubiquitination of EGFR-ErbB2, (ii) Cbl is tyrosine phosphorylated upon stimulation of EGFR-ErbB2 wt and Y1091F mutant receptor, (iii) EGF-induced activation of EGFR-ErbB2 induces Usp8 tyrosine phosphorylation, and (iv) ubiquitination of the EGFR-ErbB2 wt and Y1091F mutant is enhanced upon coexpression of catalytically inactive Usp8-C748A in the presence and absence of EGF. We further show that Usp8 tyrosine phosphorylation upon stimulation of EGFR-ErbB2 is (a) independent of Y1091, (b) dependent on Src- and EGFR-ErbB2-kinase activity, (c) enhanced upon coexpression of Usp8-C748A, and (d) partly dependent on the Microtubule Interacting and Transport (MIT) domain of Usp8. Our findings demonstrate that Usp8 is part of the ErbB2 endosomal trafficking pathway. 相似文献
12.
《Journal of molecular biology》2019,431(19):3900-3912
Deubiquitinating enzymes have key roles in diverse cellular processes whose enzymatic activities are regulated by different mechanisms including post-translational modification. Here, we show that USP15 is phosphorylated, and its localization and activity are dependent on the phosphorylation status. Nuclear-cytoplasmic fractionation and mass spectrometric analysis revealed that Thr149 and Thr219 of human USP15, which is conserved among different species, are phosphorylated in the cytoplasm. The phosphorylation status of USP15 at these two positions alters the interaction with its partner protein SART3, consequently leading to its nuclear localization and deubiquitinating activity toward the substrate PRP31. Treatment of cells with purvalanol A, a cyclin-dependent kinase inhibitor, results in nuclear translocation of USP15. USP4, another deubiquitinating enzyme with a high sequence homology and domain structure as USP15, also showed purvalanol A-dependent changes in activity and localization. Collectively, our data suggest that modifications of USP15 and USP4 by phosphorylation are important for the regulation of their localization required for cellular function in the spliceosome. 相似文献
13.
Xiaohong Xia Chuyi Huang Yuning Liao Yuan Liu Jinchan He Zhenlong Shao Tumei Hu Cuifu Yu Lili Jiang Jinbao Liu Hongbiao Huang 《Cell death & disease》2021,12(4)
Breast cancer has the highest incidence and mortality in women worldwide. There are 70% of breast cancers considered as estrogen receptor α (ERα) positive. Therefore, the ERα-targeted therapy has become one of the most effective solution for patients with breast cancer. Whereas a better understanding of ERα regulation is critical to shape evolutional treatments for breast cancer. By exploring the regulatory mechanisms of ERα at levels of post-translational modifications, we identified the deubiquitinase USP15 as a novel protector for preventing ERα degradation and a critical driver for breast cancer progression. Specifically, we demonstrated that USP15 promoted the proliferation of ERα+, but not ERα- breast cancer, in vivo and in vitro. Meanwhile, USP15 knockdown notably enhanced the antitumor activities of tamoxifen on breast cancer cells. Importantly, USP15 knockdown induced the downregulation of ERα protein via promoting its K48-linked ubiquitination, which is required for proliferative inhibition of breast cancer cells. These findings not only provide a novel treatment for overcoming resistance to endocrine therapy, but also represent a therapeutic strategy on ERα degradation by targeting USP15-ERα axis.Subject terms: Breast cancer, Translational research 相似文献
14.
Selective protein degradation via the ubiquitin-proteasome system (UPS) plays an essential role in many major cellular processes, including host-pathogen interactions. We previously reported that the tightly regulated viral RNA-dependent RNA polymerase (RdRp) of the positive-strand RNA virus Turnip yellow mosaic virus (TYMV) is degraded by the UPS in infected cells, a process that affects viral infectivity. Here, we show that the TYMV 98K replication protein can counteract this degradation process thanks to its proteinase domain. In-vitro assays revealed that the recombinant proteinase domain is a functional ovarian tumour (OTU)-like deubiquitylating enzyme (DUB), as is the 98K produced during viral infection. We also demonstrate that 98K mediates in-vivo deubiquitylation of TYMV RdRp protein--its binding partner within replication complexes--leading to its stabilization. Finally, we show that this DUB activity contributes to viral infectivity in plant cells. The identification of viral RdRp as a specific substrate of the viral DUB enzyme thus reveals the intricate interplay between ubiquitylation, deubiquitylation and the interaction between viral proteins in controlling levels of RdRp and viral infectivity. 相似文献
15.
Zebrafish cops6 encodes a putative deubiquitylating enzyme (DUB) that belongs to the JAMM family. It consists of 297 amino acids and includes the Mov34/MPN/PAD-1 (PF01398) domain. Ubiquitylation is involved in many cellular processes and deconjugation of ubiquitin-modified substrates is important to maintain a sufficient amount of free ubiquitin in the cell. Here, we report our findings regarding the general function of the cops6 gene, as a continuation of our previous studies involving DUB knockdown screening. We have found that cops6 plays different roles in early embryonic development in the zebrafish, including dorsoventral patterning, convergent extension movement and brain formation. In addition, our findings indicate that cops6 plays an anti-apoptotic role during segmentation. Overall, the present study that consolidates our previous work on zebrafish DUB genes, corroborates the hypothesis of multi-functional roles for DUB genes during development. 相似文献
16.
17.
18.
Jia Lin Aidan P McCann Naphannop Sereesongsaeng Jonathan M Burden Alhareth A Alsad Roberta E Burden Ileana Micu Richard Williams Sandra Van Schaeybroeck Emma Evergren Paul Mullan Jeremy C Simpson Christopher J Scott James F Burrows 《EMBO reports》2022,23(4)
Expression of the deubiquitinase USP17 is induced by multiple stimuli, including cytokines (IL‐4/6), chemokines (IL‐8, SDF1), and growth factors (EGF), and several studies indicate it is required for cell proliferation and migration. However, the mechanisms via which USP17 impacts upon these cellular functions are unclear. Here, we demonstrate that USP17 depletion prevents peripheral lysosome positioning, as well as trafficking of lysosomes to the cell periphery in response to EGF stimulation. Overexpression of USP17 also increases secretion of the lysosomal protease cathepsin D. In addition, USP17 depletion impairs plasma membrane repair in cells treated with the pore‐forming toxin streptolysin O, further indicating that USP17 is required for lysosome trafficking to the plasma membrane. Finally, we demonstrate that USP17 can deubiquitinate p62, and we propose that USP17 can facilitate peripheral lysosome trafficking by opposing the E3 ligase RNF26 to untether lysosomes from the ER and facilitate lysosome peripheral trafficking, lysosome protease secretion, and plasma membrane repair. 相似文献
19.
Hölzl H Kapelari B Kellermann J Seemüller E Sümegi M Udvardy A Medalia O Sperling J Müller SA Engel A Baumeister W 《The Journal of cell biology》2000,150(1):119-130
Drosophila melanogaster embryos are a source for homogeneous and stable 26S proteasomes suitable for structural studies. For biochemical characterization, purified 26S proteasomes were resolved by two-dimensional (2D) gel electrophoresis and subunits composing the regulatory complex (RC) were identified by amino acid sequencing and immunoblotting, before corresponding cDNAs were sequenced. 17 subunits from Drosophila RCs were found to have homologues in the yeast and human RCs. An additional subunit, p37A, not yet described in RCs of other organisms, is a member of the ubiquitin COOH-terminal hydrolase family (UCH). Analysis of EM images of 26S proteasomes-UCH-inhibitor complexes allowed for the first time to localize one of the RC's specific functions, deubiquitylating activity.The masses of 26S proteasomes with either one or two attached RCs were determined by scanning transmission EM (STEM), yielding a mass of 894 kD for a single RC. This value is in good agreement with the summed masses of the 18 identified RC subunits (932 kD), indicating that the number of subunits is complete. 相似文献
20.
15-lipoxygenase-1: a prooxidant enzyme 总被引:2,自引:0,他引:2
Schewe T 《Biological chemistry》2002,383(3-4):365-374
Human and rabbit reticulocyte 15-lipoxygenase (15-lipoxygenase-1) and the leukocyte-type 12-lipoxygenases (12/15-lipoxygenases) of pig, beef, mouse and rat constitute a particular subfamily of mammalian lipoxygenases (reticulocyte-type lipoxygenases) with unique properties and functions. They catalyze enzymatic lipid peroxidation in complex biological structures via direct dioxygenation of phospholipids and cholesterol esters of biomembranes and plasma lipoproteins. Moreover, they are a source of free radicals initiating non-enzymatic lipid peroxidation and other oxidative processes. Expression and activity of reticulocyte-type lipoxygenases are highly regulated. Moreover, the susceptibility of intracellular membranes toward these lipoxygenases is controlled and may be increased together with lipoxygenase activity under conditions of oxidative stress. Thus, oxidative stress may favor a concerted package of lipoxygenase-mediated enzymatic and non-enzymatic lipid peroxidation and co-oxidative processes. Reaction of reticulocyte-type lipoxygenases with low-density lipoprotein renders the latter atherogenic and appears to be involved in the formation of atherosclerotic lesions. 相似文献