首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Peptides and peptidomimetics often exhibit poor oral bioavailability due to their metabolic instability and low permeation across the intestinal mucosa. N-Methylation has been used successfully in peptide-based drug design in an attempt to improve the metabolic stability of a peptide-based lead compound. However, the effect of N-methylation on the absorption of peptides through the intestinal mucosa is not well understood, particularly when transporters, i.e. the oligopeptide transporter (OPT) and P-glycoprotein (P-gp), modulate the passive diffusion of these types of molecules. To examine this, terminally free and terminally modified (N-acetylated and C-amidated) analogs of H-Ala-Phe-Ala-OH with N-methyl groups on either the Ala-Phe or Phe-Ala peptide bond were synthesized. Transport studies using Caco-2 cell monolayers, an in vitro model of the intestinal mucosa, showed that N-methylation of the Ala-Phe peptide bond of H-Ala-Phe-Ala-OH stabilized the molecule to protease degradation, and the resulting analog exhibited significant substrate activity for OPT. However, N-methylation of the Phe-Ala peptide bond of H-Ala-Phe-Ala-OH did not stabilize the molecule to protease degradation, and the substrate activity of the resulting molecule for OPT could not be determined. Interestingly, N-methylation of the Phe-Ala peptide bond of the terminally modified tripeptide Ac-Ala-Phe-Ala-NH2 decreased the substrate activity of the molecule for the efflux transporter P-gp. In contrast, N-methylation of the Ala-Phe peptide bond of the terminally modified tripeptide Ac-Ala-Phe-Ala-NH2 increased the substrate activity of the molecule for P-gp.  相似文献   

3.
Backbone cyclization (BC) and N-methylation have been shown to enhance the activity and/or selectivity of biologically active peptides and improve metabolic stability and intestinal permeability. In this study, we describe the synthesis, structure-activity relationship (SAR) and intestinal metabolic stability of a backbone cyclic peptide library, BL3020, based on the linear alpha-Melanocyte stimulating hormone analog Phe-D-Phe-Arg-Trp-Gly. The drug lead, BL3020-1, selected from the BL3020 library (compound 1) has been shown to inhibit weight gain in mice following oral administration. Another member of the BL3020 library, BL3020-17, showed improved biological activity towards the mMC4R, in comparison to BL3020-1, although neither were selective for MC4R or MC5R. N-methylation, which restrains conformational freedom while increasing metabolic stability beyond that which is imparted by BC, was used to find analogs with increased selectivity. N-methylated backbone cyclic libraries were synthesized based on the BL3020 library. SAR studies showed that all the N-methylated backbone cyclic peptides demonstrated reduced biological activity and selectivity for all the analyzed receptors. N-methylation of active backbone cyclic peptides destabilized the active conformation or stabilized an inactive conformation, rendering the peptides biologically inactive. N-methylation of backbone cyclic peptides maintained stability to degradation by intestinal enzymes.  相似文献   

4.
Peptide inhibitors of E. collagenolyticum bacterial collagenase, HS-CH2-CH2-CO-Pro-Yaa (Yaa = Ala, Leu, Nle), have been N-methylated at the Yaa position. The N-methylation slightly increases the inhibitory potency of the modified peptides as compared to the parent compounds. The conformational effects of the N-methylation have been investigated by both 1H 2D-NMR and molecular mechanics energy minimization. Three low-energy conformers have been predicted for the unmethylated parent compounds (Yaa = Ala, Leu, Nle). They are characterized by the psi value of the central proline residue: psi Pro = 150 degrees (trans' conformation), psi Pro = 70 degrees (C7 conformation) and psi Pro = -50 degrees (cis' conformation). The N-methylation has been found to strongly increase the energy of the C7 conformer and to a less extent the energy of the cis' conformer. This leaves the trans' conformation as the only low-energy conformer. The ROESY experiments have established that both the N-methyl peptides and the parent compounds adopt the same preferred backbone conformation in water solution, i.e. the trans' conformation. Based on these results, the activities of the N-methyl peptides are discussed and a possible conformation of the inhibitor in the bound state is proposed.  相似文献   

5.
N-Methylation is a common strategy for improving oral bioavailability of peptide-based lead structures. Herein, we present a detailed study on how the degree of N-methylation affects the absorption–distribution–metabolism–excretion–toxicity (ADMET) properties such as solubility, membrane transport, proteolytic stability, and general cell toxicity of the investigated peptides. As representative structures we chose hexapeptides 18. These peptides, corresponding to N-methylated analogues of residues 16–21 and 32–37 of the Aβ-peptide, pathological hallmark of Alzheimer’s disease (AD), have previously been shown to inhibit aggregation of Aβ fibrils in vitro. This study suggests that poly-N-methylated peptides are non-toxic and have enhanced proteolytic stability over their non-methylated analogues. Furthermore, solubility in aqueous solution is seen to increase with increased degree of N-methylation, while membrane transport was found to be low for all investigated hexapeptides. The present results, together with those reported in the literature, suggest that poly-N-methylated peptides, especially shorter or equal to six residues, can be suitable candidates for drug design.  相似文献   

6.
There are many natural peptides with multiple N-methylamino acids that exhibit potent attractive biological activities. N-methylation of a peptide bond(s) is also one of the standard approaches in medicinal chemistry of bioactive peptides, to improve the potency and physicochemical properties, especially membrane permeability. In this study, we investigated a facile synthesis process of N-methylated peptides via simultaneous N-methylation of several peptide bonds in the presence of peptide bonds that were not to be methylated. As a model study, we investigated the synthesis of the antiproliferative depsipeptide, IB-01212. We used a pseudoproline to protect the non-methylated peptide bond during a simultaneous N-methylation with MeI–Ag2O. Using further manipulations including a dimerization/cyclization process, IB-01212 and its derivatives were successfully synthesized. A preliminary structure–activity relationship study demonstrated that the symmetric structure contributed to the potent cytotoxic activity of IB-01212.  相似文献   

7.
The aim of this study was to evaluate two in vitro models, Caco-2 monolayer and rat intestinal mucosa, regarding their linear correlation with in vivo bioavailability data of therapeutic peptide drugs after oral administration in rat and human. Furthermore the impact of molecular mass (Mm) of the according peptides on their permeability was evaluated. Transport experiments with commercially available water soluble peptide drugs were conducted using Caco-2 cell monolayer grown on transwell filter membranes and with freshly excised rat intestinal mucosa mounted in Using type chambers. Apparent permeability coefficients (P (app)) were calculated and compared with in vivo data derived from the literature. It was shown that, besides a few exceptions, the Mm of peptides linearly correlates with permeability across rat intestinal mucosa (R (2) = 0.86; y = -196.22x + 1354.24), with rat oral bioavailability (R (2) = 0.64; y = -401.90x + 1268.86) as well as with human oral bioavailability (R (2) = 0.91; y = -359.43x + 1103.83). Furthermore it was shown that P (app) values of investigated hydrophilic peptides across Caco-2 monolayer displayed lower permeability than across rat intestinal mucosa. A correlation between P (app) values across rat intestinal mucosa and in vivo oral bioavailability in human (R (2) = 0.98; y = 2.11x + 0.34) attests the rat in vitro model to be a very useful prediction model for human oral bioavailability of hydrophilic peptide drugs. Presented correlations encourage the use of the rat in vitro model for the prediction of human oral bioavailabilities of hydrophilic peptide drugs.  相似文献   

8.
9.
The mean dimensions of thecis N-methyl peptide unit have been arrived at by analysing the crystal structure data on compounds containing such units. These dimensions can be used as standard in conformational studies on cyclic peptides. While the bonds meeting at C are almost coplanar, those meeting at N show a slight pyramidal disposition. A comparison of the dimensions of the normal and N-methylatedcis peptide units show that there are perceptible differences in the parameters connected with N. In addition, the flexibility of thecis peptide unit has been analysed by studying the distribution of the parameters in different classes of compounds such as cyclic di, tri and higher peptides. The salient features are: (i) The angle CαCN in cyclic dipeptide and the angle CδNCα in higher peptides tend to be lower, when the peptide unit is associated with a prolyl residue; (ii) in cyclic tripeptides the internal anglesviz., CαCN and CNCα are significantly larger thereby increasing the intra-annular space; (iii) the bond Cα-C is distinctly shorter when it occurs in cyclic dipeptides. The results lead to the conclusion that thecis peptide unit takes up aneed-based flexibility in its dimension.  相似文献   

10.
Cyclic peptides and cyclotides are becoming common identities within the present efforts seen in peptide engineering – as we seek approaches to achieve potent biological activity, pharmacological selectivity, structurally stability and oral bioavailability. Yet this unique family of peptides has faced uncommon hurdles in their discovery, synthesis and bioengineering, retaining to characteristics that truly deviate these from their linear counterparts. In this mini-review we take a board spectrum approach to introduce this novel family of biomolecules and the troubles that they face in their sequence and disulfide connectivity assignment, together highlighting the present combined strategies involved in cyclic peptide/cyclotide synthesis and modification. These efforts have circumvented otherwise impossible hurdles in their manipulation and production that are only now advancing cyclic peptides/cyclotides as research probes and future pharmaceutical templates.  相似文献   

11.
The use of high-throughput methods in drug discovery allows the generation and testing of a large number of compounds, but at the price of providing redundant information. Evolutionary combinatorial chemistry combines the selection and synthesis of biologically active compounds with artificial intelligence optimization methods, such as genetic algorithms (GA). Drug candidates for the treatment of central nervous system (CNS) disorders must overcome the blood-brain barrier (BBB). This paper reports a new genetic algorithm that searches for the optimal physicochemical properties for peptide transport across the blood-brain barrier. A first generation of peptides has been generated and synthesized. Due to the high content of N-methyl amino acids present in most of these peptides, their syntheses were especially challenging due to over-incorporations, deletions and DKP formations. Distinct fragmentation patterns during peptide cleavage have been identified. The first generation of peptides has been studied by evaluation techniques such as immobilized artificial membrane chromatography (IAMC), a cell-based assay, log Poctanol/water calculations, etc. Finally, a second generation has been proposed.  相似文献   

12.
Studies utilizing NMR spectroscopy have shown that adenosine cyclic 3',5'-phosphate dependent protein kinase (A-kinase) probably binds Leu-Arg-Arg-Ala-Ser-Leu-Gly (peptide 1) in one of two extended coil conformations (A or B). The relative reactivities of a series of N-methylated peptides based on the structure of peptide 1 might, therefore, be related to how well each can assume the A or B conformation. From estimates of the magnitude of steric interactions that would be induced by N-methylation of an amide in peptide 1 that is locked in either conformation, the ability of each peptide to form that conformation was predicted. The ability of A-kinase to catalyze phosphorylation of the N-methylated peptides correlated well with the ability of each peptide to form conformation A, but not conformation B. In accord with these findings, the reactivity of an unreactive N-methylated peptide was partially restored by a second change, which allowed the peptide to assume conformation A. These results suggest that, when bound in the enzymatic active site, peptide 1 has a conformation that resembles structure A much more closely than structure B.  相似文献   

13.
The effect of peptide conformational constraint on the peptide permeation across the model membranes was examined by determining the permeability of pairs of cyclic and acyclic peptides related to c[d-Pen2, d-Pen5] enkephalin (DPDPE). The peptides were cyclized by formation of an intramolecular disulfide bridge between the second and fifth residues composed of either d-penicillamine or cysteine. In each case the acyclic peptide was three to seven times more permeable than corresponding cyclic peptide. The possibility that the differences in permeability of cyclic and acyclic peptides is based on the greater conformational freedom of the acyclic peptides in the presence of membrane was examined in more detail by isothermal titration calorimetric studies of Trp6-DPDPE and its acyclic analog. The membrane binding of the acyclic peptide is a more exothermic process than binding of its cyclic Trp6-DPDPE. The transfer of acyclic peptide from water to membrane is an enthalpy driven process, whereas the transfer of the cyclic peptide is driven by entropy.  相似文献   

14.
Antimicrobial resistance among Gram-negative bacteria is a growing problem, fueled by the paucity of new antibiotics that target these microorganisms. One novel family of macrocyclic β-hairpin-shaped peptidomimetics was recently shown to act specifically against Pseudomonas spp. by a novel mechanism of action, targeting the outer membrane protein LptD, which mediates lipopolysaccharide transport to the cell surface during outer membrane biogenesis. Here we explore the mode of binding of one of these β-hairpin peptidomimetics to LptD in Pseudomonas aeruginosa, by examining the effects on antimicrobial activity following N-methylation of individual peptide bonds. An N-methyl scan of the cyclic peptide revealed that residues on both sides of the β-hairpin structure at a non-hydrogen bonding position likely mediate hydrogen-bonding interactions with the target LptD. Structural analyses by NMR spectroscopy further reinforce the conclusion that the folded β-hairpin structure of the peptidomimetic is critical for binding to the target LptD. Finally, new NMe analogues with potent activity have been identified, which opens new avenues for optimization in this family of antimicrobial peptides.  相似文献   

15.
Kokkoni N  Stott K  Amijee H  Mason JM  Doig AJ 《Biochemistry》2006,45(32):9906-9918
The key pathogenic event in the onset of Alzheimer's disease (AD) is believed to be the aggregation of the beta-amyloid (Abeta) peptide into toxic oligomers. Molecules that interfere with this process may therefore act as therapeutic agents for the treatment of AD. N-Methylated peptides (meptides) are a general class of peptide aggregation inhibitors that act by binding to one face of the aggregating peptide but are unable to hydrogen bond on the other face, because of the N-methyl group replacing a backbone NH group. Here, we optimize the structure of meptide inhibitors of Abeta aggregation, starting with the KLVFF sequence that is known to bind to Abeta. We varied the meptide length, N-methylation sites, acetylation, and amidation of the N and C termini, side-chain identity, and chirality, via five compound libraries. Inhibitor activity was tested by thioflavin T binding, affinity chromatography, electron microscopy, and an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide toxicity assay. We found that inhibitors should have all d chirality, have a free N terminus but an amidated C terminus, and have large, branched hydrophobic side chains at positions 1-4, while the side chain at position 5 was less important. A single N-methyl group was necessary and sufficient. The most active compound, d-[(chGly)-(Tyr)-(chGly)-(chGly)-(mLeu)]-NH(2), was more active than all previously reported peptide inhibitors. Its related non-N-methylated analogues were insoluble and toxic.  相似文献   

16.
In addition to our previously reported fluoro acrylamides Xa inhibitors 2 and 3, a series of potent and novel cyclic diimide amidine compounds has been identified. In efforts to improve their oral bioavailability, replacement of the amidine group with methyl amidrazone gives compounds of moderate potency (14, IC(50)=0.028 microM). In the amidoxime prodrug approach, the amidoxime compounds show good oral bioavailability in rats and dogs. High plasma level of prodrug 26 and significant concentration of active drug 26a were obtained upon oral administration of prodrug 26 in rats.  相似文献   

17.
We report the molecular basis for the differences in activity of cyclic and linear antimicrobial peptides. We iteratively performed atomistic molecular dynamics simulations and biophysical measurements to probe the interaction of a cyclic antimicrobial peptide and its inactive linear analogue with model membranes. We establish that, relative to the linear peptide, the cyclic one binds stronger to negatively charged membranes. We show that only the cyclic peptide folds at the membrane interface and adopts a β-sheet structure characterised by two turns. Subsequently, the cyclic peptide penetrates deeper into the bilayer while the linear peptide remains essentially at the surface. Finally, based on our comparative study, we propose a model characterising the mode of action of cyclic antimicrobial peptides. The results provide a chemical rationale for enhanced activity in certain cyclic antimicrobial peptides and can be used as a guideline for design of novel antimicrobial peptides.  相似文献   

18.
A series of novel catecholamine derivatives has been prepared in which one of the N-methyl substituents of isoproterenol has been extended by a spacer consisting of a chain of four methylenes which terminates with an amide linkage to a peptide, the point of attachment being via the aromatic amino group of p-aminophenylalanine. In one of the derivatives, two catecholamines are attached to the same peptide in this manner. The peptides, which range in size from three to eight amino acid residues and contain phenylalanine, glycine, and L-alpha-amino-delta-hydroxyvaleric acid, were synthesized via stepwise and fragment condensation techniques. The beta-adrenergic agonist activities of the derivatives were evaluated in vitro by measuring the intracellular accumulation of cyclic AMP in S49 mouse lymphoma cells.  相似文献   

19.
The deuterohemin-peptide conjugate, DhHP-6 (Dh-β-AHTVEK-NH2), is a microperoxidase mimetic, which has demonstrated substantial benefits in vivo as a scavenger of reactive oxygen species (ROS). In this study, specific multi-site N-methylated derivatives of DhHP-6 were designed and synthesized to improve metabolic stability and intestinal absorption, which are important factors for oral delivery of therapeutic peptides and proteins. The DhHP-6 derivatives were tested for (1) scavenging potential of hydrogen peroxide (H2O2); (2) permeability across Caco-2 cell monolayers and everted gut sacs; and (3) enzymatic stability in serum and intestinal homogenate. The results indicated that the activities of the DhHP-6 derivatives were not influenced by N-methylation, and that tri-N-methylation of DhHP-6 could significantly increase intestinal flux, resulting in a two- to threefold higher apparent permeability coefficient. In addition, molecules with N-methylation at selected sites (e.g., Glu residue) showed high resistance against proteolytic degradation in both diluted serum and intestinal preparation, with 50- to 140-fold higher half-life values. These findings suggest that the DhHP-6 derivatives with appropriate N-methylation could retain activity levels equivalent to that of the parent peptide, while showing enhanced intestinal permeability and stability against enzymatic degradation. The tri-N-methylated peptide Dh-β-AH(Me)T(Me)V(Me)EK-NH2 derived from this study may be developed as a promising candidate for oral administration.  相似文献   

20.
In an attempt to improve the membrane permeabilities of opioid peptides, we have synthesized cyclic prodrugs of [Leu5]-enkephalin and DADLE using a coumarinic acid or a phenylpropionic acid linker. The synthesis of the coumarinic acid- and phenylpropionic acid-based cyclic prodrugs followed similar strategies. Key intermediates were the compounds with the C-terminal amino acids of opioid peptides (L-Leu, [Leu5]-enkephalin; D-Leu, DADLE) attached to the phenol hydroxyl group and the remaining amino acids of the peptide linked via the N-terminal amino acid (L-Tyr) attached to the carboxylic acid groups of the prodrug moieties (coumarinic acid or propionic acid). Cyclization of these linear precursors gave the cyclic prodrugs in 30-50% yields. These cyclic prodrugs exhibited excellent transcellular permeation characteristics across Caco-2 cell monolayers, an in vitro model of the intestinal mucosa. To correlate the cellular permeabilities of these cyclic prodrugs with their physicochemical properties, we calculated their Stokes-Einstein molecular radii from their diffusion coefficients which were determined by NMR and we determined their membrane interaction potentials using immobilized artificial membrane (IAM) column chromatography. The cyclic prodrugs exhibited molecular radii similar to those of the parent compounds, [Leu5]-enkephalin and DADLE. However, these cyclic prodrugs were shown to have much higher membrane interaction potentials than their corresponding opioid peptides. Therefore, the enhanced cellular permeation of the cyclic prodrugs is apparently due to the alteration of their lipophilicity and hydrogen bonding potential, but not their molecular sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号