首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
Netrin G proteins represent a small family of synaptic cell adhesion molecules related to netrins and to the polymerization domains of laminins. Two netrin G proteins are encoded in vertebrate genomes, netrins G1 and G2, which are known to bind the leucine-rich repeat proteins netrin G ligand (NGL)-1 and NGL-2, respectively. Netrin G proteins share a common multi-domain architecture comprising a laminin N-terminal (LN) domain followed by three laminin epidermal growth factor-like (LE) domains and a C′ region containing a glycosylphosphatidylinositol anchor. Here, we use deletion analysis to show that the LN domain region of netrin Gs contains the binding site for NGLs to which they bind with 1:1 stoichiometry and sub-micromolar affinity. Netrin Gs are alternatively spliced in their LE domain regions, but the binding region, the LN domain, is identical in all splice forms. We determined the crystal structure for a fragment comprising the LN domain and domain LE1 of netrin G2 by sulfur single-wavelength anomalous diffraction phasing and refined it to 1.8 Å resolution. The structure reveals an overall architecture similar to that of laminin α chain LN domains but includes significant differences including a Ca2+ binding site in the LN domain. These results reveal the minimal binding unit for interaction of netrin Gs with NGLs, define structural features specific to netrin Gs, and suggest that netrin G alternative splicing is not involved in NGL recognition.  相似文献   

2.
Technologies for fabricating functional tissue architectures by patterning cells precisely are highly desirable for tissue engineering. Although several cell patterning methods such as microcontact printing and lithography have been developed, these methods require specialized surfaces to be used as substrates, the fabrication of which is time consuming. In the present study, we demonstrated a simple and rapid cell patterning technique, using magnetite nanoparticles and magnetic force, which enables us to allocate cells on arbitrary surfaces. Magnetite cationic liposomes (MCLs) developed in our previous study were used to magnetically label the target cells. When steel plates placed on a magnet were positioned under a cell culture surface, the magnetically labeled cells lined on the surface where the steel plate was positioned. Patterned lines of single cells were achieved by adjusting the number of cells seeded, and complex cell patterns (curved, parallel, or crossing patterns) were successfully fabricated. Since cell patterning using magnetic force may not limit the property of culture surfaces, human umbilical vein endothelial cells (HUVECs) were patterned on Matrigel, thereby forming patterned capillaries. These results suggest that the novel cell patterning methodology, which uses MCLs, is a promising approach for tissue engineering and studying cell-cell interactions in vitro.  相似文献   

3.
The mechanism by which vesicles spontaneously form supported lipid bilayer membranes on glass surfaces is becoming better understood and this knowledge is the basis of a technology of patterning membrane arrays and controlling composition. Controlled interactions between supported membranes and cells, particularly from the immune system, provide direct insight into cell-cell surface interactions.  相似文献   

4.
Saccharomyces cerevisiae contains three nonessential genes (NGL1, NGL2, and NGL3) that encode proteins containing a domain with similarity to a Mg(2+)-dependent endonuclease motif present in the mRNA deadenylase Ccr4p. We have investigated a possible role of these proteins in rRNA processing, because for many of the pre-rRNA processing steps, the identity of the responsible nuclease remains elusive. Analysis of RNA isolated from cells in which the NGL2 gene has been inactivated (ngl2delta) demonstrates that correct 3'-end formation of 5.8S rRNA at site E is strictly dependent on Ngl2p. No role in pre-rRNA processing could be assigned to Ngl1p and Ngl3p. The 3'-extended 5.8S rRNA formed in the ngl2delta mutant is slightly shorter than the 6S precursor previously shown to accumulate upon combined deletion of the 3' --> 5' exonuclease-encoding REX1 and REX2 genes or upon depletion of the exosomal subunits Rrp40p or Rrp45p. Thus, our data add a further component to the set of nucleases required for correct 3'-end formation of yeast 5.8S rRNA.  相似文献   

5.
The ability to control cell patterning on artificial substrates with various physicochemical properties is of essence for important implications in cytology and biomedical fields.Despite extensive progress,the ability to control the cell-surface interaction is complicated by the complexity in the physiochemical features ofbioactive surfaces.In particular,the manifestation of special wettability rendered by the combination of surface roughness and surface chemistry further enriches the cell-surface interaction.Herein we investigated the cell adhesion behaviors of Circulating Tumor Cells (CTCs) on topographically patterned but chemically homogeneous surfaces.Hamessing the distinctive cell adhesion on surfaces with different topography,we further explored the feasibility of controlled cell patterning using periodic lattices of alternative topographies.We envision that our method provides a designer's toolbox to manage the extracellular environment.  相似文献   

6.

Background

The interest in microfluidics and surface patterning is increasing as the use of these technologies in diverse biomedical applications is substantiated. Controlled molecular and cellular surface patterning is a costly and time-consuming process. Methods for keeping multiple separate experimental conditions on a patterned area are, therefore, needed to amplify the amount of biological information that can be retrieved from a patterned surface area. We describe, in three examples of biomedical applications, how this can be achieved in an open microfluidic system, by hydrodynamically guiding sample fluid over biological molecules and living cells immobilized on a surface.

Results

A microfluidic format of a standard assay for cell-membrane integrity showed a fast and dose-dependent toxicity of saponin on mammalian cells. A model of the interactions of human mononuclear leukocytes and endothelial cells was established. By contrast to static adhesion assays, cell-cell adhesion in this dynamic model depended on cytokine-mediated activation of both endothelial and blood cells. The microfluidic system allowed the use of unprocessed blood as sample material, and a specific and fast immunoassay for measuring the concentration of C-reactive protein in whole blood was demonstrated.

Conclusion

The use of hydrodynamic guiding made multiple and dynamic experimental conditions on a small surface area possible. The ability to change the direction of flow and produce two-dimensional grids can increase the number of reactions per surface area even further. The described microfluidic system is widely applicable, and can take advantage of surfaces produced by current and future techniques for patterning in the micro- and nanometer scale.
  相似文献   

7.
The present work reports on the preparation of glass surfaces coated with NPPOC-protected aminooxy groups and their use for the patterning of oligonucleotides on glass slides and in capillary tubes. The method involves the use of surfaces coated with amino groups using (gamma-aminopropyl)triethoxy silane and subsequent grafting of the aminooxy groups by using the activated ester 1. The NPPOC-protected aminooxy groups on the surfaces can be cleaved upon irradiation. The free aminooxy groups so obtained are subsequently reacted with aldehyde-containing oligonucleotides to achieve efficient surface patterning.  相似文献   

8.
Proper cell-cell and cell-ECM interactions are vital for cell migration and patterning of the vertebrate embryo. MMPs and their inhibitors, RECK and TIMPs, are all differentially expressed during embryogenesis to regulate such ECM remodeling and cell interactions. MT1-MMP, RECK, and TIMP-2 are unique amongst other ECM-regulating proteins as they act in the pericellular space. Past studies have shown that RECK and TIMP-2 interact with MT1-MMP on the cell surface, thereby influencing cell behaviour as well as the microenvironment immediately surrounding the cells. We investigated the localization of RECK, TIMP-2, and MT1-MMP proteins throughout early X. laevis development using immunohistochemistry. We found that during neural tube formation, axis elongation, and organogenesis, RECK, TIMP-2, and MT1-MMP proteins show highly similar localization patterns, particularly in the ectoderm and in the dorsal-ventral differentiation of the neural tube. Our data suggests they function together during patterning events in early Xenopus development.  相似文献   

9.
Patterned scaffold surfaces provide a platform for highly defined cellular interactions, and have recently taken precedence in tissue engineering. Despite advances in patterning techniques and improved tissue growth, no clinical studies have been conducted for implantation of patterned biomaterials. Four major clinical application fields where patterned materials hold great promise are antimicrobial surfaces, cardiac constructs, neurite outgrowth, and stem cell differentiation. Specific examples include applications of patterned materials to (i) counter infection by antibiotic resistant bacteria, (ii) establish proper alignment and contractile force of regrown cardiac cells for repairing tissue damaged by cardiac infarction, (iii) increase neurite outgrowth for central nervous system wound repair, and (iv) host differentiated stem cells while preventing reversion to a pluripotent state. Moreover, patterned materials offer unique advantages for artificial implants which other constructs cannot. For example, by inducing selective cell adhesion using topographical cues, patterned surfaces present cellular orientation signals that lead to functional tissue architectures. Mechanical stimuli such as modulus, tension, and material roughness are known to influence tissue growth, as are chemical stimuli for cell adhesion. Scaffold surface patterns allow for control of these mechanical and chemical factors. This review identifies research advances in scaffold surface patterning, in light of pressing clinical needs requiring organization of cellular interactions.  相似文献   

10.
Since protein patterning on 2D surfaces has emerged as an important tool in cell biology, the development of easy patterning methods has gained importance in biology labs. In this paper we present a simple, rapid and reliable technique to fabricate thin layers of UV curable polymer with through holes. These membranes are as easy to fabricate as microcontact printing stamps and can be readily used for stencil patterning. We show how this microfabrication scheme allows highly reproducible and highly homogeneous protein patterning with micron sized resolution on surfaces as large as 10 cm(2). Using these stencils, fragile proteins were patterned without loss of function in a fully hydrated state. We further demonstrate how intricate patterns of multiple proteins can be achieved by stacking the stencil membranes. We termed this approach microserigraphy.  相似文献   

11.
The occurrence of mannitol-terminating oligosaccharides (2-substituted or 2,6-disubstituted) among the O-glycans released by alkaline borohydride treatment from glycoproteins of the nervous system has prompted the development of a microscale method to analyze the core-branching pattern and sequence by the neoglycolipid (NGL) technology, analogous to a method previously described for GalNAcol-terminating oligosaccharides (M. S. Stoll, E. F. Hounsell, A. M. Lawson, W. Chai, and T. Feizi, Eur. J. Biochem. 189, 499-507, 1990). The approach involves the selective cleavage at the core mannitol by mild periodate treatment and analysis of the reaction products as NGLs by in situ TLC/liquid secondary ion mass spectrometry. Oxidation conditions have been optimized using as reference compounds 2-, 3-, 4-, or 6-monosubstituted mannobi-itols, 3,6-disubstituted mannitol-terminating pentasaccharides, and 2-mono- and 2,6-disubstituted mannitol-terminating neutral and sialylated oligosaccharides isolated from brain glycopeptides. When a 2:1 molar ratio of periodate to alditol is used, the core mannitol is cleaved at the C3-C4 threo-diol bond and in the absence of a threo-diol cleavage occurs to a lesser extent at erythro-diols. Saccharide ring diols are not cleaved under these conditions, and it is also shown that the side chain of sialic acid on the oligosaccharide is largely unaffected. Substituents at 2- and 6-positions of the core mannitol can be identified, and the method is applicable to neutral and sialylated oligosaccharide alditols. Typically, the starting material is 5 nmol of oligosaccharide and 0.5-1 nmol of derivatives is applied for analysis. By this strategy, the core-branching pattern and position of sialic acid of two branched monosialylated mannitol-terminating oligosaccharide isomers have been determined.  相似文献   

12.
Jung JW  Jung SH  Kim HS  Yuk JS  Park JB  Kim YM  Han JA  Kim PH  Ha KS 《Proteomics》2006,6(4):1110-1120
We modified gold arrays with a glutathione (GSH) surface, and investigated high-throughput protein interactions with a spectral surface plasmon resonance (SPR) biosensor. We fabricated the GSH exterior on gold surfaces by successive modification with aminoethanethiol, 4-maleimidobutyric acid N-hydroxysuccinimide ester and GSH. We immobilized GST-Rac1, GST-RhoA, the GST-Rho-binding domain of rhotekin and the GST-p21-binding domain of PAK1 onto the GSH surface, and observed specific antigen-antibody interactions on the GST-fusion protein arrays. We determined the expression of GST-fusion proteins in Escherichia coli on the GSH surface with the SPR biosensor. We then analyzed the interactions of tissue transglutaminase (tTGase), a Ca2+-dependent enzyme, with RhoA and Rac1 on the GST-fusion protein arrays with the SPR biosensor. We found that tTGase interacted with RhoA and Rac1 in a Ca2+-dependent manner, indicating that the interactions were dependent on tTGase activity. In addition, transamidation of Rac1 by tTGase was dependent on Ca2+ concentration. We obtained similar results with GST pull-down assays. Thus, protein arrays prepared on the GSH surface provide a useful system for the high-throughput analysis of GST-fusion protein expression and activity-dependent protein interactions with the spectral SPR biosensors.  相似文献   

13.
Yu T  Ober CK 《Biomacromolecules》2003,4(5):1126-1131
Hydrogels have gained broad acceptance as a class of biocompatible materials. In this paper, we report the topographic patterning and regiospecific functionalization of hydrogel surfaces. Both photolithography and soft lithography are combined in a hybrid process to form these topographic features. By functionalization of a base layer surface followed by lithographic patterning steps, it is possible to introduce chemical functions to specific regions of the patterned surface. The model systems investigated were based on 2-hydroxyethyl methacrylate (HEMA), which is well-known for its low toxicity and widespread use in biomedical applications. Tests of Ni-NTA modified hydrogel surfaces showed successful binding of fluorescently labeled proteins to selected regions of the patterned hydrogel surface. These processes can be expanded to a wide range of monomer systems.  相似文献   

14.
Molecular surfaces are widely used for characterizing molecules and displaying and quantifying their interaction properties. Here we consider molecular surfaces defined as isocontours of a function (a sum of exponential functions centered on each atom) that approximately represents electron density. The smoothness is advantageous for surface mapping of molecular properties (e.g., electrostatic potential). By varying parameters, these surfaces can be constructed to represent the van der Waals or solvent-accessible surface of a molecular with any accuracy. We describe numerical algorithms to operate on the analytically defined surfaces. Two applications are considered: (1) We define and locate extremal points of molecular properties on the surfaces. The extremal points provide a compact representation of a property on a surface, obviating the necessity to compute values of the property on an array of surface points as is usually done; (2) a molecular surface patch or interface is projected onto a flat surface (by introducing curvilinear coordinates) with approximate conservation of area for analysis purposes. Applications to studies of protein-protein interactions are described.  相似文献   

15.
The C2C12 cell line is frequently used as a model of skeletal muscle differentiation. In our serum-free defined culture system, differentiation of C2C12 cells into myotubes required surface-bound signals such as substrate-adsorbed vitronectin or laminin. On the basis of this substrate requirement of myotube formation, we developed a photolithography-based method to pattern C2C12 myotubes, where myotubes formed exclusively on vitronectin surface patterns. We have determined that the optimal line width to form single myotubes is approximately 30 mum. To illustrate a possible application of this method, we patterned myotubes on the top of commercial substrate-embedded microelectrodes. In contrast to previous experiments where cell patterning was achieved by selective attachment of the cells to patterned surfaces in a medium that contained all of the factors necessary for differentiation, this study illustrates that surface patterning of a signaling molecule, which is essential for skeletal muscle differentiation in a defined system, can result in the formation of aligned myotubes on the patterns. This technique is being developed for applications in cell biology, tissue engineering, and robotics.  相似文献   

16.
A method for protein and cell patterning on polyelectrolyte-coated surfaces using simple micromolding in capillaries (MIMIC) is described. MIMIC produced two distinctive regions. One contained polyethylene glycol (PEG) microstructures fabricated using photopolymerization that provided physical, chemical, and biological barriers to the nonspecific binding of proteins, bacteria, and fibroblast cells. The second region was the polyelectrolyte (PEL) coated surface that promoted protein and cell immobilization.

The difference in surface functionality between the PEL region and background PEG microstructures resulted in simple patterning of biomolecules. Fluorescein isothiocyanate-tagged bovine serum albumin, E. coli expressing green fluorescence protein (GFP), and fibroblast cells were successfully bound to the exposed PEL surfaces at micron scale. Compared with the simple adsorption of protein, fluorescence intensity was dramatically improved (by about six-fold) on the PEL-modified surfaces. Although animal cell patterning is prerequisite for adhesive protein layer to survive on desired area, the PEL surface without adhesive proteins provides affordable microenvironment for cells.

The simple preparation of functionalized surface but universal platform can be applied to various biomolecules such as proteins, bacteria, and cells.  相似文献   


17.
Proper craniofacial development requires the orchestrated integration of multiple specialized tissue interactions. Recent analyses suggest that craniofacial development is not dependent upon neural crest pre-programming as previously thought but is regulated by a more complex integration of cell and tissue interactions. In the absence of neural crest cells it is still possible to obtain normal arch patterning indicating that neural crest is not responsible for patterning all of arch development. The mesoderm, endoderm and surface ectoderm tissues play a role in the patterning of the branchial arches, and there is now strong evidence that Hoxa2 acts as a selector gene for the pathways that govern second arch structures.  相似文献   

18.
The efficient surface patterning of oligonucleotides was accomplished onto the inner wall of fused-silica capillary tubes as well as on the surface of glass slides through oxime bond formation. The robustness of the method was demonstrated by achieving the surface immobilization of up to three different oligonucleotide sequences inside the same capillary tube. The method involves the preparation of surfaces grafted with reactive aminooxy functionalities masked with the photocleavable protecting group, 2-(2-nitrophenyl) propyloxycarbonyl group (NPPOC). Briefly, NPPOC-aminooxy silane 1 was prepared and used to silanize the glass surfaces. The NPPOC group was cleaved under brief irradiation to unmask the reactive aminooxy group on surfaces. These reactive aminooxy groups were allowed to react with aldehyde-containing oligonucleotides to achieve an efficient surface immobilization. The advantage associated with the present approach is that it combines the high-coupling efficiency of oxime bond formation with the convenience associated with the use of photolabile groups. The present strategy thus offers an alternative approach for the immobilization of biomolecules in the microchannels of "labs on a chip" devices.  相似文献   

19.
The patterning of biomolecules on semiconducting surfaces is of central importance in the fabrication of novel biodevices. In the process of patterning, it is required that the biomolecule preserves its properties and the substrate is not damaged by the chemicals, the temperatures or the patterning beams involved in the procedure. Recently, both DUV and electron beam microlithography have been used in order to deposit protein layers in predefined patterns. Various approaches have been used, some involving photoresists. Contrast between exposed and unexposed regions, resolution of adjacent features and sensitivity to dose variation, are the key issues. The approach followed in this paper consists of a direct patterning of a biotin layer, deposited on an amino-silane primed silicon nitride surface, using an electron beam. After irradiation, the surface is covered by bovine serum albumin (BSA), which acts as a blocking material to protect the exposed areas from streptavidin adsorption. Using 20 keV e-beam energy and doses, in the range 100-1000 microC/cm(2), submicrometer dense lines of 1-microm pitch have been obtained. The results have been tested by fluorescence optical microscopy.  相似文献   

20.
Hox genes, neural crest cells and branchial arch patterning.   总被引:6,自引:0,他引:6  
Proper craniofacial development requires the orchestrated integration of multiple specialized tissue interactions. Recent analyses suggest that craniofacial development is not dependent upon neural crest pre-programming as previously thought but is regulated by a more complex integration of cell and tissue interactions. In the absence of neural crest cells it is still possible to obtain normal arch patterning indicating that neural crest is not responsible for patterning all of arch development. The mesoderm, endoderm and surface ectoderm tissues play a role in the patterning of the branchial arches, and there is now strong evidence that Hoxa2 acts as a selector gene for the pathways that govern second arch structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号