首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amino acid alterations were designed at the C terminus of the hinge segment (amino acids approximately 51-59) that links two functional domains within lactose repressor protein (LacI). Gly was introduced between Gly(58) and Lys(59) to generate Gly(58+1); Gln(60) was changed to Gly or Pro, and up to three additional glycines were inserted following Gln(60) --> Gly. All mutant proteins exhibited purification behavior, CD spectra, assembly state, and inducer binding properties similar to wild-type LacI and only small differences in trypsin proteolysis patterns. In contrast, significant differences were observed in DNA binding properties. Gly(58+1) exhibited a decrease of approximately 100-fold in affinity for O(1) operator, and sequential Gly insertion C-terminal to Gln(60) --> Gly resulted in progressively decreased affinity for O(1) operator, approaching nonspecific levels for insertion of >/=2 glycines. Where sufficient affinity for O(1) operator existed, decreased binding to O(1) in the presence of inducer indicated no disruption in the allosteric response for these proteins. Collectively, these results indicate that flexibility and/or spacing between the core and N-terminal domains did not significantly affect folding or assembly, but these alterations in the hinge domain profoundly altered affinity of the lactose repressor protein for its wild-type target sequence.  相似文献   

2.
C M Falcon  K S Matthews 《Biochemistry》2001,40(51):15650-15659
The hinge domain encompasses amino acids 51-60 of lactose repressor (LacI) and plays an important role in its regulatory interaction with operator DNA. This segment makes both hinge-DNA and hinge-hinge' contacts that are critical to DNA binding. Furthermore, this small region serves as a central element in communicating the allosteric response to inducer. Introducing a disulfide bond between partner hinges within a dimer via the mutation V52C results in a protein that has increased affinity for O(1) operator DNA compared to wild-type LacI and abolishes allosteric response to inducer [Falcon, C. M., Swint-Kruse, L., and Matthews, K. S. (1997) J. Biol. Chem. 272, 26818]. We have established that this high affinity is maintained for the disulfide-linked protein even when symmetry and half-site spacing within the operator region are altered, whereas binding by the reduced protein, as for wild-type LacI, is severely diminished by these alterations. Interestingly, the allosteric response to inducer for V52C-oxidized remains intact for a small group of operator variants. Temperature studies demonstrate that the presence of the disulfide alters the thermodynamics of the protein-DNA interaction, with a DeltaC(p) of significantly smaller magnitude compared to wild-type LacI. The results presented here establish the hinge region as an important element not only for LacI high-affinity operator binding but also for the essential communication between ligand binding domains. Moreover, the results confirm that DNA sequence/conformation can profoundly influence allostery for this prototypic regulatory protein.  相似文献   

3.
The short 8–10 amino acid “hinge” sequence in lactose repressor (LacI), present in other LacI/GalR family members, links DNA and inducer‐binding domains. Structural studies of full‐length or truncated LacI‐operator DNA complexes demonstrate insertion of the dimeric helical “hinge” structure at the center of the operator sequence. This association bends the DNA ~40° and aligns flanking semi‐symmetric DNA sites for optimal contact by the N‐terminal helix‐turn‐helix (HtH) sequences within each dimer. In contrast, the hinge region remains unfolded when bound to nonspecific DNA sequences. To determine ability of the hinge helix alone to mediate DNA binding, we examined (i) binding of LacI variants with deletion of residues 1–50 to remove the HtH DNA binding domain or residues 1–58 to remove both HtH and hinge domains and (ii) binding of a synthetic peptide corresponding to the hinge sequence with a Val52Cys substitution that allows reversible dimer formation via a disulfide linkage. Binding affinity for DNA is orders of magnitude lower in the absence of the helix‐turn‐helix domain with its highly positive charge. LacI missing residues 1–50 binds to DNA with ~4‐fold greater affinity for operator than for nonspecific sequences with minimal impact of inducer presence; in contrast, LacI missing residues 1–58 exhibits no detectable affinity for DNA. In oxidized form, the dimeric hinge peptide alone binds to O1 and nonspecific DNA with similarly small difference in affinity; reduction to monomer diminished binding to both O1 and nonspecific targets. These results comport with recent reports regarding LacI hinge interaction with DNA sequences.  相似文献   

4.
Nilsson MT  Widersten M 《Biochemistry》2004,43(38):12038-12047
A single-chain derivative of the lambda Cro repressor (scCro) has been randomly mutated in amino acid residues critical for specific DNA recognition to create libraries of protein variants. Utilizing phage display-afforded affinity selection, scCro variants have been isolated for binding to synthetic DNA ligands. Isolated scCro variants were analyzed functionally, both in fusion with phage particles and after expression of the corresponding free proteins. The binding properties with regard to specificity and affinity in binding to different DNA ligands were investigated by inhibition studies and determination of equilibrium dissociation constants for formed complexes. Variant proteins with altered DNA-sequence specificity were identified, which favored binding of targeted synthetic DNA sequences over a consensus operator sequence, bound with high affinity by wild-type Cro. The specificities were relatively modest (2-3-fold, as calculated from K(D) values), which can be attributed to the inherent properties in the design of the selection system; one half-site of the synthetic DNA sequences maintains the consensus operator sequence, and one "subunit" of the variant single-chain Cro dimers was conserved as wild-type sequence. The anticipated interaction between the wild-type subunit and the consensus DNA half-site of target DNA ligands is, hence, expected to contribute to the overlap in sequence discrimination. The binding affinity for the synthetic DNA sequences, however, was improved 10-30-fold in selected variant proteins as compared to "wild-type" scCro.  相似文献   

5.
6.
Swint-Kruse L  Zhan H  Matthews KS 《Biochemistry》2005,44(33):11201-11213
Protein structural change underlies many signal transduction processes. Although end-state structures are known for various allosteric proteins, intermediates are difficult to observe. Recently, targeted molecular dynamics simulation (TMD) was used to examine the conformational transition and predict relevant intermediates for wild-type lactose repressor (LacI). A catalog of involved residues suggests that the transition of this homodimer is asymmetric and that K84 is a prominent participant in the dynamic N-subdomain interface. Previous experiments indicated that hydrophobic substitutions at position 84 engender slowed, biphasic inducer binding kinetics, which might reflect the same phenomena observed in TMD. Here, we report biochemical confirmation that DNA and inducer binding remain allosterically linked in K84A and K84L, albeit with a differential smaller than that found in wild-type LacI. Other features of these mutant proteins are consistent with an allosteric conformational shift that approximates that of the wild type. As a consequence, these repressors can be utilized to explore an unanswered question about LacI function: How many inducers (one or two per dimer) are required to diminish operator affinity? The biphasic natures of the K84L and K84A inducer association rates allow direct correlation between the two distinct inducer binding events and operator release. Indeed, the kinetics of operator release for the K84A and K84L closely parallel those for the second inducer binding event. Together with implications from previous equilibrium results for wild-type and mutant proteins, these kinetic data demonstrate that binding of two inducers per dimeric DNA binding unit is required to release the operator in these variant LacI proteins.  相似文献   

7.
Many mutations that impact protein function occur at residues that do not directly contact ligand. To understand the functional contributions from the sequence that links the DNA-binding and regulatory domains of the LacI/GalR homologues, we have created a chimeric protein (LLhP), which comprises the LacI DNA-binding domain, the LacI linker, and the PurR regulatory domain. Although DNA binding site residues are identical in LLhP and LacI, thermodynamic measurements of DNA binding affinity show that LLhP does not discriminate between alternative DNA ligands as well as LacI. In addition, small-angle scattering experiments show that LLhP is more compact than LacI. When DNA is released, LacI shows a 20 A increase in length that was previously attributed to unfolding of the linker. This change is not seen in apo-LLhP, even though the linker sequences of the two proteins are identical. Together, results indicate that long-range functional and structural changes are propagated across the interface that forms between the linker and regulatory domain. These changes could be mediated via the side chains of several linker residues that contact the regulatory domains of the naturally occurring proteins, LacI and PurR. Substitution of these residues in LLhP leads to a range of functional effects. Four variants exhibit altered affinity for DNA, with no changes in selectivity or allosteric response. Another two result in proteins that bind operator DNA with very low affinity and no allosteric response, similar to LacI binding nonspecific DNA sequences. Two more substitutions simultaneously diminish affinity, enhance allostery, and profoundly alter DNA ligand selectivity. Thus, positions within the linker can be varied to modulate different aspects of repressor function.  相似文献   

8.
9.
A new protein domain for binding to DNA through the minor groove.   总被引:2,自引:0,他引:2       下载免费PDF全文
R Freire  M Salas    J M Hermoso 《The EMBO journal》1994,13(18):4353-4360
Protein p6 of the Bacillus subtilis phage phi 29 binds with low sequence specificity to DNA through the minor groove, forming a multimeric nucleoprotein complex that activates the initiation of phi 29 DNA replication. Deletion analysis suggested that the N-terminal part of protein p6, predicted to form an amphipathic alpha-helix, is involved in DNA binding. We have constructed site-directed mutants at the polar side of the putative alpha-helix. DNA binding and activation of initiation of phi 29 DNA replication were impaired in most of the mutant proteins obtained. A 19 amino acid peptide comprising the N-terminus of protein p6 interacted with a DNA fragment containing high-affinity signals for protein p6 binding with approximately 50-fold higher affinity than the peptide corresponding to an inactive mutant. Both wild-type peptide and protein p6 recognized the same sequences in this DNA fragment. This result, together with distamycin competition experiments, suggested that the wild-type peptide also binds to DNA through the minor groove. In addition, CD spectra of the wild-type peptide showed an increase in the alpha-helical content when bound to DNA. All these results indicate that an alpha-helical structure located in the N-terminal region of protein p6 is involved in DNA binding through the minor groove.  相似文献   

10.
M I Moraitis  H Xu  K S Matthews 《Biochemistry》2001,40(27):8109-8117
Purine repressor (PurR) binding to specific DNA is enhanced by complexing with purines, whereas lactose repressor (LacI) binding is diminished by interaction with inducer sugars despite 30% identity in their protein sequences and highly homologous tertiary structures. Nonetheless, in switching from low- to high-affinity DNA binding, these proteins undergo a similar structural change in which the hinge region connecting the DNA and effector binding domains folds into an alpha-helix and contacts the DNA minor groove. The differences in response to effector for these proteins should be manifest in the polyelectrolyte effect which arises from cations displaced from DNA by interaction with positively charged side chains on a protein and is quantitated by measurement of DNA binding affinity as a function of ion concentration. Consistent with structural data for these proteins, high-affinity operator DNA binding by the PurR-purine complex involved approximately 15 ion pairs, a value significantly greater than that for the corresponding state of LacI (approximately 6 ion pairs). For both proteins, however, conversion to the low-affinity state results in a decrease of approximately 2-fold in the number of cations released per dimeric DNA binding site. Heat capacity changes (DeltaC(p)) that accompany DNA binding, derived from buried apolar surface area, coupled folding, and restriction of motional freedom of polar groups in the interface, also reflect the differences between these homologous repressor proteins. DNA binding of the PurR-guanine complex is accompanied by a DeltaC(p) (-2.8 kcal mol(-1) K(-1)) more negative than that observed previously for LacI (-0.9 to -1.5 kcal mol(-1) K(-1)), suggesting that more extensive protein folding and/or enhanced structural rigidity may occur upon DNA binding for PurR compared to DNA binding for LacI. The differences between these proteins illustrate plasticity of function despite high-level sequence and structural homology and undermine efforts to predict protein behavior on the basis of such similarities.  相似文献   

11.
The interaction of proteins bound to sites widely separated on the genome is a recurrent motif in both prokaryotic and eukaryotic regulatory systems. Lac repressor mediates the formation of "DNA loops" by the simultaneous interaction of a single protein tetramer with two DNA-binding sites. The DNA-binding properties of a Lac repressor mutant (LacIadi) deficient in the association of protein dimers to tetramers was investigated. The results of quantitative footprint and gel mobility-shift titrations suggest that the wild-type Lac repressor (LacI+) binds cooperatively to two operator sites separated by 11 helical turns on a linear DNA restriction fragment by the formation of a "looped complex." LacIadi binds to this two-site operator non-cooperatively and without formation of a looped complex. These results demonstrate that the dimer-tetramer association of LacI+ is directly responsible for its cooperative binding and its ability to mediate formation of a looped complex. The Iadi mutation disrupts the monomer-dimer as well as eliminating the dimer-tetramer association equilibria while the DNA binding affinity of LacIadi to a single site is unchanged relative to the wild-type protein. These results suggest that DNA binding and dimer-tetramer association are functionally unlinked. The similarity of the DNA-binding properties of LacIadi and Gal repressor, a protein believed to function by mediating the formation of a looped complex, are discussed.  相似文献   

12.
13.
14.
The origin binding protein (OBP) of herpes simplex virus (HSV), which is essential for viral DNA replication, binds specifically to sequences within the viral replication origin(s) (for a review, see Challberg, M.D., and Kelly, T. J. (1989) Annu. Rev. Biochem. 58, 671-717). Using either a COOH-terminal OBP protein A fusion or the full-length protein, each expressed in Escherichia coli, we investigated the interaction of OBP with one HSV origin, OriS. Binding of OBP to a set of binding site variant sequences demonstrates that the 10-base pair sequence, 5' CGTTCGCACT 3', comprises the OBP-binding site. This sequence must be presented in the context of at least 15 total base pairs for high affinity binding, Ka = approximately 0.3 nM. Single base pair mutations in the central CGC sequence lower the affinity by several orders of magnitude, whereas a substitution at any of the other seven positions reduces the affinity by 10-fold or less. OBP binds with high affinity to duplex DNA containing mismatched base pairs. This property is exploited to analyze OBP binding to DNA heteroduplexes containing singly substituted mutant and wild-type DNA strands. For positions 2, 3, 5, 6, 7, 8, and 9, substitutions are tolerated on one or the other DNA strand, indicating that base-mediated interactions are limited to one base of each pair. For both Boxes I and II, these interactions are localized to one face of the DNA helix, forming a recognition surface in the major groove. In OriS, the 31 base pairs which separate Boxes I and II orient the two interaction surfaces to the same side of the DNA.  相似文献   

15.
Zhan H  Swint-Kruse L  Matthews KS 《Biochemistry》2006,45(18):5896-5906
A significant number of eukaryotic regulatory proteins are predicted to have disordered regions. Many of these proteins bind DNA, which may serve as a template for protein folding. Similar behavior is seen in the prokaryotic LacI/GalR family of proteins that couple hinge-helix folding with DNA binding. These hinge regions form short alpha-helices when bound to DNA but appear to be disordered in other states. An intriguing question is whether and to what degree intrinsic helix propensity contributes to the function of these proteins. In addition to its interaction with operator DNA, the LacI hinge helix interacts with the hinge helix of the homodimer partner as well as to the surface of the inducer-binding domain. To explore the hierarchy of these interactions, we made a series of substitutions in the LacI hinge helix at position 52, the only site in the helix that does not interact with DNA and/or the inducer-binding domain. The substitutions at V52 have significant effects on operator binding affinity and specificity, and several substitutions also impair functional communication with the inducer-binding domain. Results suggest that helical propensity of amino acids in the hinge region alone does not dominate function; helix-helix packing interactions appear to also contribute. Further, the data demonstrate that variation in operator sequence can overcome side chain effects on hinge-helix folding and/or hinge-hinge interactions. Thus, this system provides a direct example whereby an extrinsic interaction (DNA binding) guides internal events that influence folding and functionality.  相似文献   

16.
17.
To analyze the DNA binding domain of E coli LexA repressor and to test whether the repressor binds as a dimer to DNA, negative dominant lexA mutations affecting the binding domain have been isolated. A large number of amino acid substitutions between amino acid positions 39 and 46 were introduced using cassette mutagenesis. Mutants defective in DNA binding were identified and then examined for dominance to lexA+. A number of substitutions weakened repressor function partially, whereas other substitutions led to a repressor with no demonstrable activity and a defective dominant phenotype. Since the LexA binding site has dyad symmetry, we infer that this dominance results from interaction of monomers of wild-type LexA protein with mutant monomers and that an oligomeric form of repressor binds to operator. The binding of LexA protein to operator DNA was investigated further using a mutant protein, LexA408, which recognizes a symmetrically altered operator mutant but not wild-type operator. A mixture of mutant LexA408 and LexA+ proteins, but neither individual protein, bound to a hybrid recA operator consisting of mutant and wild-type operator half sites. These results suggest that at least 1 LexA protein monomer interacts with each operator half site. We discuss the role of LexA oligomer formation in binding of LexA to operator DNA.  相似文献   

18.
The coat protein of the RNA bacteriophage MS2 is a specific RNA binding protein that represses translation of the viral replicase gene during the infection cycle. As an approach to characterizing the RNA-binding site of coat protein we have isolated a series of coat mutants that suppress the effects of a mutation in the translational operator. Each of the mutants exhibits a super-repressor phenotype, more tightly repressing both the mutant and wild-type operators than does the wild-type protein. The variant coat proteins were purified and subjected to filter binding assays to determine their affinities for the mutant and wild-type operators. Each protein binds the operators from 3 to 7.5-fold more tightly than normal coat protein. The amino acid substitutions seem to extend the normal binding site by introducing new interactions with RNA.  相似文献   

19.
Interaction of mutant lambda repressors with operator and non-operator DNA   总被引:6,自引:0,他引:6  
We have described a set of mutations that alter side-chains on the operator binding surface of lambda repressor. In this paper, we study the interactions of 12 purified mutant repressors with operator and non-operator DNA. The mutant proteins have operator affinities that are reduced from tenfold to greater than 10,000-fold compared to wild-type. Nine of the mutants have affinities for non-operator DNA that are similar to wild-type, two mutants show decreased non-specific binding, and one mutant has increased affinity for non-operator DNA. We discuss these findings in terms of the structural and energetic contributions of side-chain--DNA interactions, and show that certain contacts between the repressor and the operator backbone contribute both energy and specificity to the interaction.  相似文献   

20.
Two mutant lactose repressors, each containing a single tryptophan, were generated by site-specific mutagenesis. Tyrosine was substituted for tryptophan to be analogous to amber suppression mutants reported previously (Sommer, H., Lu, P., and Miller, J. H. (1976) J. Biol. Chem. 251, 3774-3779). Unlike the amber suppression mutants, plasmids containing the mutant sequences produce large quantities of stable, easily isolable protein. The binding properties of the site-specific mutant repressors (W201Y, W220Y) differ from those reported for the corresponding suppression mutants (A201, A220). Whereas minimal effects on operator dissociation rate from lambda plac DNA were noted for the suppression mutants, purified W201Y and W220Y proteins exhibit 10- and 5-fold reduced affinity for a 40-base pair operator, respectively, compared with wild-type. Inducer binding of the A201 and W201Y mutants was similar to that for wild-type repressor, but the inducer affinity of W220Y was approximately 2-fold lower than A220 (approximately 30-fold lower than wild-type). Fluorescence spectra and iodide quenching of the mutant proteins were similar to the suppression mutants, but the absorption coefficient differed significantly from the values reported previously. Acrylamide and iodide quenching results indicate that Trp201 is relatively buried whereas Trp220 is exposed to solvent; inducer binding reduces quenching of Trp220 significantly. CD spectra indicate that the mutant proteins have secondary structural features similar to those of wild-type. Inducer UV difference spectra showed that the major features reported for the wild-type isopropyl beta-D-thiogalactopyranoside difference spectrum were attributable to both tryptophans. In the presence of melibiose, a new minimum appeared in the difference spectra of wild-type and W201Y which was not evident when these proteins bound isopropyl beta-D-thiogalactopyranoside. It is possible that this new feature results from Trp220 involvement in a direct contact with the second sugar in disaccharide inducer molecules such as melibiose and 1,6-allolactose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号