首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma membrane Ca2+ pumps (PMCA) that expel Ca2+ from cells are encoded by four genes (PMCA1–4). In this study, we show that aortic endothelium and smooth muscle differ in their PMCA isoform mRNA expression: endothelium expressed predominantly PMCA1, and smooth muscle expressed PMCA4 and a lower level of PMCA1. In this study, we report a novel peptide (caloxin 1b1, obtained by screening for binding to extracellular domain 1 of PMCA4), which inhibited PMCA extracellularly, selectively, and had a higher affinity for PMCA4 than PMCA1. It inhibited the PMCA Ca2+-Mg2+-ATPase activity in leaky erythrocyte ghosts (mainly PMCA4) with a Ki value of 46 ± 5 µM, making it 10x more potent than the previously reported caloxin 2a1. It was isoform selective because it inhibited the PMCA1 Ca2+-Mg2+-ATPase in human embryonic kidney-293 cells with a higher Ki value (105 ± 11 µM) than for PMCA4. Caloxin 1b1 was selective in that it did not inhibit other ATPases. Because caloxin 1b1 had been selected to bind to an extracellular domain of PMCA, it could be added directly to cells and tissues to examine its effects on smooth muscle and endothelium. In deendothelialized aortic rings, caloxin 1b1 (200 µM) produced a contraction. It also increased the force of contraction produced by a submaximum concentration of phenylephrine. In aortic rings with endothelium intact, precontracted with phenylephrine and relaxed partially with a submaximum concentration of carbachol, caloxin 1b1 increased the force of contraction rather than potentiating the endothelium-dependent relaxation. In cultured cells, caloxin 1b1 increased the cytosolic [Ca2+] more in arterial smooth muscle cells than in endothelial cells. Thus caloxin 1b1 is the first highly selective extracellular PMCA inhibitor that works better on vascular smooth muscle than on endothelium. coronary artery; rat aorta; smooth muscle; endothelium  相似文献   

2.
Physiological and pathologicalCa2+ loads are thought to be takenup by mitochondria via a process dependent on aerobic metabolism. Wesought to determine whether human diploid fibroblasts from a patientwith an inherited defect in pyruvate dehydrogenase (PDH) exhibit adecreased ability to sequester cytosolicCa2+ into mitochondria.Mobilization of Ca2+ stores withbradykinin (BK) increased the cytosolicCa2+ concentration([Ca2+]c)to comparable levels in control and PDH-deficient fibroblasts. Innormal fibroblasts transfected with plasmid DNA encodingmitochondrion-targeted apoaequorin, BK elicited an increase inCa2+-dependent aequorinluminescence corresponding to an increase in the mitochondrialCa2+ concentration([Ca2+]mt)of 2.0 ± 0.2 µM. The mitochondrial uncoupling agent carbonyl cyanidep-(trifluoromethoxy)phenylhydrazoneblocked the BK-induced [Ca2+]mtincrease, although it did not affect the[Ca2+]ctransient. Basal[Ca2+]cand[Ca2+]mtin control and PDH-deficient cells were similar. However, confocalimaging of the potential-sensitive dye JC-1 indicated that thepercentage of highly polarized mitochondria was reduced from 30 ± 1% in normal cells to 19 ± 2% in the PDH-deficient fibroblasts. BK-elicited[Ca2+]mttransients in PDH-deficient cells were reduced to 4% of control, indicating that PDH-deficient mitochondria have a decreased ability totake up cytosolic Ca2+. Thus cellswith compromised aerobic metabolism have a reduced capacity tosequester Ca2+.

  相似文献   

3.
Stretch-induced Ca(2+) release via an IP(3)-insensitive Ca(2+) channel   总被引:6,自引:0,他引:6  
Various mechanicalstimuli increase the intracellular Ca2+ concentration([Ca2+]i) in vascular smooth muscle cells(VSMC). A part of the increase in [Ca2+]i isdue to the release of Ca2+ from intracellular stores. Wehave investigated the effect of mechanical stimulation produced bycyclical stretch on the release of Ca2+ from theintracellular stores. Permeabilized VSMC loaded with 45Ca2+ were subjected to 7.5% average (15%maximal) cyclical stretch. This resulted in an increase in45Ca2+ rate constant by 0.126 ± 0.0035. Inhibition of inositol 1,4,5-trisphosphate (IP3),ryanodine, and nicotinic acid adenine dinucleotide phosphate channels(NAADP) with 50 µg/ml heparin, 50 µM ruthenium red, and 25 µMthio-NADP, respectively, did not block the increase in45Ca2+ efflux in response to cyclical stretch.However, 10 µM lanthanum, 10 µM gadolinium, and 10 µMcytochalasin D but not 10 µM nocodazole inhibited the increase in45Ca2+ efflux. This supports the existence of anovel stretch-sensitive intracellular Ca2+ store in VSMCthat is distinct from the IP3-, ryanodine-, and NAADP-sensitive stores.

  相似文献   

4.
Recent studies on the role of nitric oxide (NO) ingastrointestinal smooth muscle have raised the possibility thatNO-stimulated cGMP could, in the absence of cGMP-dependent proteinkinase (PKG) activity, act as aCa2+-mobilizing messenger[K. S. Murthy, K.-M. Zhang, J.-G. Jin, J. T. Grider, and G. M. Makhlouf. Am. J. Physiol. 265 (Gastrointest. Liver Physiol. 28):G660-G671, 1993]. This notion was examined indispersed gastric smooth muscle cells with 8-bromo-cGMP (8-BrcGMP) andwith NO and vasoactive intestinal peptide (VIP), which stimulate endogenous cGMP. In muscle cells treated with cAMP-dependent protein kinase (PKA) and PKG inhibitors (H-89 and KT-5823), 8-BrcGMP (10 µM),NO (1 µM), and VIP (1 µM) stimulated45Ca2+release (21 ± 3 to 30 ± 1% decrease in45Ca2+cell content); Ca2+ releasestimulated by 8-BrcGMP was concentration dependent with anEC50 of 0.4 ± 0.1 µM and athreshold of 10 nM. 8-BrcGMP and NO increased cytosolic freeCa2+ concentration([Ca2+]i)and induced contraction; both responses were abolished after Ca2+ stores were depleted withthapsigargin. With VIP, which normally increases[Ca2+]iby stimulating Ca2+ influx,treatment with PKA and PKG inhibitors caused a further increase in[Ca2+]ithat reverted to control levels in cells pretreated with thapsigargin. Neither Ca2+ release norcontraction induced by cGMP and NO in permeabilized muscle cells wasaffected by heparin or ruthenium red.Ca2+ release induced by maximallyeffective concentrations of cGMP and inositol 1,4,5-trisphosphate(IP3) was additive, independent of which agent was applied first. We conclude that, in the absence ofPKA and PKG activity, cGMP stimulatesCa2+ release from anIP3-insensitive store and that itseffect is additive to that of IP3.

  相似文献   

5.
We investigated the roles and relationships of plasma membrane Ca2+-ATPase (PMCA), sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2, and Na+/Ca2+ exchanger (NCX) in bladder smooth muscle contractility in Pmca-ablated mice: Pmca4-null mutant (Pmca4–/–) and heterozygous Pmca1 and homozygous Pmca4 double gene-targeted (Pmca1+/–Pmca4–/–) mice. Gene manipulation did not alter the amounts of PMCA1, SERCA2, and NCX. To study the role of each Ca2+ transport system, contraction of circular ring preparations was elicited with KCl (80 mM) plus atropine, and then the muscle was relaxed with Ca2+-free physiological salt solution containing EGTA. We measured the contributions of Ca2+ clearance components by inhibiting SERCA2 (with 10 µM cyclopiazonic acid) and/or NCX (by replacing NaCl with N-methyl-D-glucamine/HCl plus 10 µM KB-R7943). Contraction half-time (time to 50% of maximum tension) was prolonged in the gene-targeted muscles but marginally shortened when SERCA2 or NCX was inhibited. The inhibition of NCX significantly inhibited this prolongation, suggesting that NCX activity might be augmented to compensate for PMCA4 function in the gene-targeted muscles under nonstimulated conditions. Inhibition of SERCA2 and NCX as well as gene targeting all prolonged the relaxation half-time. The contribution of PMCA to relaxation was calculated to be 25–30%, with that of SERCA2 being 20% and that of NCX being 70%. PMCA and SERCA2 appeared to function additively, but the function of NCX might overlap with those of other components. In summary, gene manipulation of PMCA indicates that PMCA, in addition to SERCA2 and NCX, plays a significant role in both excitation-contraction coupling and the Ca2+ extrusion-relaxation relationship, i.e., Ca2+ homeostasis, of bladder smooth muscle. ATP2B; sarco(endo)plasmic reticulum Ca2+-ATPase 2; Na+/Ca2+ exchanger; homeostasis  相似文献   

6.
Hypotonicswelling increases the intracellular Ca2+ concentration([Ca2+]i) in vascular smooth muscle cells(VSMC). The source of this Ca2+ is not clear. To study thesource of increase in [Ca2+]i in response tohypotonic swelling, we measured [Ca2+]i infura 2-loaded cultured VSMC (A7r5 cells). Hypotonic swelling produced a40.7-nM increase in [Ca2+]i that was notinhibited by EGTA but was inhibited by 1 µM thapsigargin. Priordepletion of inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ stores with vasopressin did not inhibit the increasein [Ca2+]i in response to hypotonic swelling.Exposure of 45Ca2+-loaded intracellular storesto hypotonic swelling in permeabilized VSMC produced an increase in45Ca2+ efflux, which was inhibited by 1 µMthapsigargin but not by 50 µg/ml heparin, 50 µM ruthenium red, or25 µM thio-NADP. Thus hypotonic swelling of VSMC causes a release ofCa2+ from the intracellular stores from a novel sitedistinct from the IP3-, ryanodine-, and nicotinic acidadenine dinucleotide phosphate-sensitive stores.

  相似文献   

7.
TheNa+/Ca2+ exchanger participates inCa2+ homeostasis in a variety of cells and has a key rolein cardiac muscle physiology. We studied in this work the exchanger ofamphibian skeletal muscle, using both isolated inside-out transversetubule vesicles and single muscle fibers. In vesicles, increasingextravesicular (intracellular) Na+ concentrationcooperatively stimulated Ca2+ efflux (reverse mode), withthe Hill number equal to 2.8. In contrast to the stimulation of thecardiac exchanger, increasing extravesicular (cytoplasmic)Ca2+ concentration ([Ca2+]) inhibited thisreverse activity with an IC50 of 91 nM. Exchanger-mediated currents were measured at 15°C in single fibers voltage clamped at90 mV. Photolysis of a cytoplasmic caged Ca2+ compoundactivated an inward current (forward mode) of 23 ± 10 nA(n = 3), with an average current density of 0.6 µA/µF. External Na+ withdrawal generated an outwardcurrent (reverse mode) with an average current density of 0.36 ± 0.17 µA/µF (n = 6) but produced a minimal increasein cytosolic [Ca2+]. These results suggest that, inskeletal muscle, the main function of the exchanger is to removeCa2+ from the cells after stimulation.

  相似文献   

8.
Stimulation of cardiac L-typeCa2+ channels by cAMP-dependentprotein kinase (PKA) requires anchoring of PKA to a specificsubcellular environment by A-kinase anchoring proteins (AKAP). Thisstudy evaluated the possible requirement of AKAP in PKA-dependentregulation of L-type Ca2+ channelsin vascular smooth muscle cells using the conventional whole cellpatch-clamp technique. Peak Ba2+current in freshly isolated rabbit portal vein myocytes wassignificantly increased by superfusion with either 0.5 µM isoproterenol (131 ± 3% of the control value,n = 11) or 10 µM 8-bromoadenosine3',5'-cyclic monophosphate (8-BrcAMP; 114 ± 1%,n = 8). The PKA-induced stimulatory effects ofboth isoproterenol and 8-BrcAMP were completely abolished by a specificPKA inhibitor KT-5720 (0.2 µM) or by dialyzing cells with Ht 31 (100 µM), a peptide that inhibits the binding of PKA to AKAP. In contrast,Ht 31 did not block the excitatory effect of the catalytic subunit ofPKA when dialyzed into the cells. These data suggest that stimulationof Ca2+ channels in vascularmyocytes by endogenous PKA requires localization of PKA through bindingto AKAP.

  相似文献   

9.
The role of mitochondria inCa2+ homeostasis is controversial.We employed the Ca2+-sensitive dyerhod 2 with novel, high temporal and spatial resolution imaging toevaluate changes in the matrix freeCa2+ concentration of individualmitochondria([Ca2+]m)in agonist-stimulated, primary cultured aortic myocytes. Stimulation with 10 µM serotonin (5-HT) evoked modest cytosolicCa2+ transients[cytosolic freeCa2+ concentration([Ca2+]cyt)<500 nM; measured with fura 2] and triggered contractions inshort-term cultured myocytes. However, 5-HT triggered a large mitochondrial rhod 2 signal (indicating pronounced elevation of [Ca2+]m)in only 4% of cells. This revealed heterogeneity in the responses ofindividual mitochondria, all of which stained with MitoTracker GreenFM. In contrast, stimulation with 100 µM ATP evoked large cytosolicCa2+ transients (>1,000 nM) andinduced pronounced, reversible elevation of[Ca2+]m(measured as rhod 2 fluorescence) in 60% of cells. This mitochondrial Ca2+ uptake usually lagged behindthe cytosolic Ca2+ transient peakby 3-5 s, and[Ca2+]mdeclined more slowly than did bulk[Ca2+]cyt.The uptake delay may prevent mitochondria from interfering with rapidsignaling events while enhancing the mitochondrial response to large,long-duration elevations of[Ca2+]cyt.The responses of arterial myocytes to modest physiological stimulationdo not, however, depend on such marked changes in [Ca2+]m.  相似文献   

10.
The effects ofcyclopiazonic acid (CPA) were investigated on isolated skeletal musclefibers of frog semitendinosus muscle. CPA (0.5-10 µM) enhancedisometric twitch but produced little change in resting tension. Athigher concentrations (10-50 µM), CPA depressed twitch andinduced sustained contracture without affecting resting and actionpotentials. In Triton-skinned fibers, CPA had no significant effect onmyofibrillar Ca2+ sensitivity butdecreased maximal activated force at concentrations >5 µM. Inintact cells loaded with the Ca2+fluorescence indicator indo 1, CPA (2 µM) induced an increase inCa2+-transient amplitude (10 ± 2.5%), which was associated with an increase in time to peak and inthe time constant of decay. Consequently, peak force was increased by35 ± 4%, and both time to peak and the time constant of relaxationwere prolonged. It is concluded that CPA effects, at a concentration ofup to 2 µM, were associated with specific inhibition of sarcoplasmicreticulumCa2+-adenosinetriphosphatase inintact skeletal muscle and that inhibition of the pump directlyaffected the handling of intracellularCa2+ and force production.

  相似文献   

11.
ATP induces dephosphorylation of myosin light chain in endothelial cells   总被引:1,自引:0,他引:1  
In cultured porcine aortic endothelial monolayers, theeffect of ATP on myosin light chain (MLC) phosphorylation, whichcontrols the endothelial contractile machinery, was studied. ATP (10 µM) reduced MLC phosphorylation but increased cytosolicCa2+ concentration ([Ca2+]i).Inhibition of the ATP-evoked [Ca2+]i rise byxestospongin C (10 µM), an inhibitor of the inositol trisphosphate-dependent Ca2+ release from endoplasmicreticulum, did not affect the ATP-induced dephosphorylation of MLC. MLCdephosphorylation was prevented in the presence of calyculin A (10 nM),an inhibitor of protein phosphatases PP-1 and PP-2A. Thus ATP activatesMLC dephosphorylation in a Ca2+-independent manner. In thepresence of calyculin A, MLC phosphorylation was incremented afteraddition of ATP, an effect that could be abolished when cellswere loaded with the Ca2+ chelator1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acidacetoxymethyl ester (10 µM). Thus ATP also activates aCa2+-dependent kinase acting on MLC. In summary, ATPsimultaneously stimulates a functional antagonism toward bothphosphorylation and dephosphorylation of MLC in which thedephosphorylation prevails. In endothelial cells, ATP is the firstphysiological mediator identified to activate MLC dephosphorylation bya Ca2+-independent mechanism.

  相似文献   

12.
We have used fluo3-loaded mouse pancreatic acinar cells to investigate the relationshipbetween Ca2+ mobilization andintracellular pH (pHi). TheCa2+-mobilizing agonist ACh (500 nM) induced a Ca2+ release in theluminal cell pole followed by spreading of the Ca2+ signal toward the basolateralside with a mean speed of 16.1 ± 0.3 µm/s. In the presence of anacidic pHi, achieved by blockade of theNa+/H+exchanger or by incubation of the cells in aNa+-free buffer, a slowerspreading of ACh-evoked Ca2+ waveswas observed (7.2 ± 0.6 µm/s and 7.5 ± 0.3 µm/s,respectively). The effects of cytosolic acidification on thepropagation rate of ACh-evokedCa2+ waves were largely reversibleand were not dependent on the presence of extracellularCa2+. A reduction in the spreadingspeed of Ca2+ waves could also beobserved by inhibition of the vacuolarH+-ATPase with bafilomycinA1 (11.1 ± 0.6 µm/s), whichdid not lead to cytosolic acidification. In contrast, inhibition of theendoplasmic reticulum Ca2+-ATPaseby 2,5-di-tert-butylhydroquinone ledto faster spreading of the ACh-evokedCa2+ signals (25.6 ± 1.8 µm/s), which was also reduced by cytosolic acidification or treatmentof the cells with bafilomycin A1.Cytosolic alkalinization had no effect on the spreading speed of theCa2+ signals. The data suggestthat the propagation rate of ACh-induced Ca2+ waves is decreased byinhibition of Ca2+ release fromintracellular stores due to cytosolic acidification or toCa2+ pool alkalinizationand/or to a decrease in the proton gradient directed from theinositol 1,4,5-trisphosphate-sensitiveCa2+ pool to the cytosol.

  相似文献   

13.
Sarco(endo)plasmic reticulum Ca2+ (SERCA) pumps are important for cell signaling. Three different genes, SERCA1, 2, and 3, encode these pumps. Most tissues, including vascular smooth muscle, express a splice variant of SERCA2 (SERCA2b), whereas SERCA3a is widely distributed in tissues such as vascular endothelium, tracheal epithelium, mast cells, and lymphoid cells. SERCA2b protein is readily inactivated by peroxynitrite that may be formed during cardiac ischemia reperfusion or during immune response after infection. Here, we compared the peroxynitrite sensitivity of SERCA2b and SERCA3a by using microsomes prepared from HEK-293T cells overexpressing the pumps. We incubated the microsomes with different concentrations of peroxynitrite and determined Ca2+ uptake, Ca2+-Mg2+-ATPase, Ca2+-dependent formation of acylphosphate intermediate, and protein mobility in Western blots. Ca2+ uptake, Ca2+-Mg2+-ATPase, and Ca2+-dependent formation of acylphosphate intermediate were inactivated for both SERCA2b and SERCA3a, but the latter was more resistant to the inactivation. Western blots showed that SERCA2b and SERCA3a proteins oligomerized after treatment with peroxynitrite, but each with a slightly different pattern. Compared with monomers, the oligomers may be less efficient in forming the acylphosphate intermediate and in conducting the remainder of the steps in the reaction cycle. We conclude that the resistance of SERCA3a to peroxynitrite may aid the cells expressing them in functioning during exposure to oxidative stress. free radicals; Ca2+-Mg2+-ATPase; ischemia; coronary artery; vascular smooth muscle; sarco(endo)plasmic reticulum Ca2+ pumps  相似文献   

14.
Thrombinreceptor is activated by thrombin-mediated cleavage of the receptor'sNH2 terminus between Arg-41 andSer-42, generating a new NH2terminus that functions as a "tethered ligand" by binding tosites on the receptor. We prepared antibodies (Abs) directed againstspecific receptor domains to study the tethered ligand-receptor interactions required for signaling the increase in endothelial permeability to albumin. We used polyclonal Abs directed against thepeptide sequences corresponding to the extracellularNH2 terminus [residues70-99 (AbDD) and 1-160 (AbEE)] and extracellular loops 1 and 2 [residues 161-178 (AbL1) and 244-265(AbL2)] of the seven-transmembrane thrombin receptor. Receptoractivation was determined by measuring changes in cytosolicCa2+ concentration([Ca2+]i)in human dermal microvascular endothelial cells (HMEC) loaded withCa2+-sensitive fura2-acetoxymethyl ester dye. The transendothelial 125I-labeled albumin clearancerate (a measure of endothelial permeability) was determined across theconfluent HMEC monolayers. AbEE (300 µg/ml), directed against theentire extracellular NH2-terminal extension, inhibited the thrombin-induced increases in[Ca2+]iand the endothelial 125I-albuminclearance rate (>90% reduction in both responses). AbDD (300 µg/ml), directed against a sequence within theNH2-terminal extension, inhibited70% of the thrombin-induced increase in[Ca2+]iand 60% of the increased125I-albumin clearance rate. AbL2(300 µg/ml) inhibited these responses by 70 and 80%, respectively.However, AbL1 (300 µg/ml) had no effect on either response. Weconclude that NH2-terminalextension and loop 2 are critical sites for thrombin receptoractivation in endothelial cells and thus lead to increased[Ca2+]iand transendothelial permeability to albumin.

  相似文献   

15.
Inisolated rat pancreatic -cells, the nitric oxide (NO) donor NOC-7 at1 µM reduced the amplitude of the oscillations of cytosolicCa2+ concentration ([Ca2+]c)induced by 11.1 mM glucose, and at 10 µM terminated them. In thepresence of NG-nitro-L-arginine(L-NNA), however, NOC-7 at 0.5 and 1 µM increased theamplitude of the [Ca2+]c oscillations,although the NO donor at 10 µM still suppressed them. Aqueous NOsolution also had a dual effect on the[Ca2+]c oscillations. The soluble guanylatecyclase inhibitor LY-83583 and the cGMP-dependent protein kinaseinhibitor KT5823 inhibited the stimulatory effect of NO, and8-bromo-cGMP increased the amplitude of the[Ca2+]c oscillations. Patch-clamp analyses inthe perforated configuration showed that 8-bromo-cGMP inhibited wholecell ATP-sensitive K+ currents in the isolated ratpancreatic -cells, suggesting that the inhibition by cGMP ofATP-sensitive K+ channels is, at least in part, responsiblefor the stimulatory effect of NO on the[Ca2+]c oscillations. In the presence ofL-NNA, the glucose-induced insulin secretion from isolatedislets was facilitated by 0.5 µM NOC-7, whereas it was suppressed by10 µM NOC-7. These results suggest that NO facilitatesglucose-induced [Ca2+]c oscillations of-cells and insulin secretion at low concentrations, which effectsare mediated by cGMP, whereas NO inhibits them in a cGMP-independentmanner at high concentrations.

  相似文献   

16.
The effects of the cAMP pathway on theCa2+ response elicited byphospholipase C-coupled receptor stimulations were studied in ratparotid cells. Although 1 µM isoproterenol (Iso) itself had no effect on the cytosolicCa2+ concentration, thepretreatment with Iso potentiatedCa2+ responses evoked byphenylephrine. The potentiating effect of Iso was attributed to ashifting of the concentration-response curves of phenylephrine to theleft and an increase in the maximal response. Half-maximal potentiationoccurred at 3 nM Iso. Iso also potentiated theCa2+ response elicited bycarbachol. The potentiating effect of Iso was mimicked by forskolin (10 µM) and dibutyryl adenosine 3',5'-cyclic monophosphate (2 mM) and was blocked by 10 µM H-89. Iso potentiated thephenylephrine-induced Ca2+response in the absence of extracellularCa2+, but Iso did not increase theinositol trisphosphate (IP3)production induced by phenylephrine. These results suggest that thepotentiation of the Ca2+ responsecan be attributed to a sensitization ofIP3 receptors by cAMP-dependentprotein kinase.

  相似文献   

17.
Calcium entry in nonexcitable cells occurs throughCa2+-selective channels activatedsecondarily to store depletion and/or through receptor- orsecond messenger-operated channels. In amphibian liver, hormones thatstimulate the production of adenosine 3',5'-cyclic monophosphate (cAMP) also regulate the opening of an ion gate in theplasma membrane, which allows a noncapacitative inflow ofCa2+. To characterize thisCa2+ channel, we studied theeffects of inhibitors of voltage-dependent Ca2+ channels and of nonselectivecation channels on 8-bromoadenosine 3',5'-cyclicmonophosphate (8-BrcAMP)-dependentCa2+ entry in single axolotlhepatocytes. Ca2+ entry provokedby 8-BrcAMP in the presence of physiologicalCa2+ followed first-order kinetics(apparent Michaelis constant = 43 µM at the cellsurface). Maximal values of cytosolicCa2+ (increment ~300%) werereached within 15 s, and the effect was transient (half time of 56 s).We report a strong inhibition of cAMP-dependentCa2+ entry by nifedipine[half-maximal inhibitory concentration(IC50) = 0.8 µM], byverapamil (IC50 = 22 µM), andby SK&F-96365 (IC50 = 1.8 µM).Depolarizing concentrations of K+were without effect. Gadolinium and the anti-inflammatory compound niflumate, both inhibitors of nonselective cation channels, suppressed Ca2+ influx. This "profile"indicates a novel mechanism ofCa2+ entry in nonexcitable cells.

  相似文献   

18.
The regulationof intracellular Ca2+ signals in smooth muscle cells andarterial diameter by intravascular pressure was investigated in ratcerebral arteries (~150 µm) using a laser scanning confocal microscope and the fluorescent Ca2+ indicator fluo 3. Elevation of pressure from 10 to 60 mmHg increased Ca2+spark frequency 2.6-fold, Ca2+ wave frequency 1.9-fold, andglobal intracellular Ca2+ concentration([Ca2+]i) 1.4-fold in smooth muscle cells,and constricted arteries. Ryanodine (10 µM), an inhibitor ofryanodine-sensitive Ca2+ release channels, or thapsigargin(100 nM), an inhibitor of the sarcoplasmic reticulumCa2+-ATPase, abolished sparks and waves, elevated global[Ca2+]i, and constricted pressurized (60 mmHg) arteries. Diltiazem (25 µM), a voltage-dependentCa2+ channel (VDCC) blocker, significantly reduced sparks,waves, and global [Ca2+]i, and dilatedpressurized (60 mmHg) arteries. Steady membrane depolarization elevatedCa2+ signaling similar to pressure and increased transientCa2+-sensitive K+ channel current frequencye-fold for ~7 mV, and these effects were prevented by VDCCblockers. Data are consistent with the hypothesis that pressure inducesa steady membrane depolarization that activates VDCCs, leading to anelevation of spark frequency, wave frequency, and global[Ca2+]i. In addition, pressure inducescontraction via an elevation of global[Ca2+]i, whereas the net effect of sparks andwaves, which do not significantly contribute to global[Ca2+]i in arteries pressurized to between 10 and 60 mmHg, is to oppose contraction.

  相似文献   

19.
The ability of estradiol to affect phenylephrine-induced contraction and the subsequent increase in resting tone, associated with capacitative Ca2+ entry across the plasma membrane, was evaluated in rat aortic rings incubated in Ca2+-free solution. The incubation with estradiol (1–100 nM, 5 min) inhibited both the phenylephrine-induced contraction and the IRT. Neither cycloheximide (1 µM; inhibitor of protein synthesis) nor tamoxifen (1 µM; blocker of estrogenic receptors) modified the effects of estradiol. Estradiol (100 µM) also blocked the contractile response to serotonin (10 µM) but not to caffeine (10 mM). In addition, estradiol (100 µM) inhibited the contractile responses to cyclopiazonic acid (1 µM; selective Ca2+-ATPase inhibitor) associated with capacitative Ca2+ influx through non-L-type Ca2+ channels. Finally, estradiol inhibited the Ca2+-induced increases in intracellular free Ca2+ (after pretreatment with phenylephrine) in cultured rat aorta smooth muscle cells incubated in Ca2+-free solution. In conclusion, estradiol interfered in a concentration-dependent manner with Ca2+-dependent contractile effects mediated by the stimuli of 1-adrenergic and serotonergic receptors and inhibited the capacitative Ca2+ influx through both L-type and non-L-type Ca2+ channels. Such effects are in essence nongenomic and not mediated by the intracellular estrogenic receptor. estrogen; 1-adrenergic agonists  相似文献   

20.
The purpose ofthe present study was to determine whether cyclic ADP-ribose (cADPR)acts as a second messenger forCa2+ release through ryanodinereceptor (RyR) channels in tracheal smooth muscle (TSM). Freshlydissociated porcine TSM cells were permeabilized with -escin, andreal-time confocal microscopy was used to examine changes inintracellular Ca2+ concentration([Ca2+]i).cADPR (10 nM-10 µM) induced a dose-dependent increase in [Ca2+]i,which was blocked by the cADPR receptor antagonist 8-amino-cADPR (20 µM) and by the RyR blockers ruthenium red (10 µM) and ryanodine (10 µM), but not by the inositol 1,4,5-trisphosphate receptor blockerheparin (0.5 mg/ml). During steady-state[Ca2+]ioscillations induced by acetylcholine (ACh), addition of 100 nM and 1 µM cADPR increased oscillation frequency and decreased peak-to-troughamplitude. ACh-induced[Ca2+]ioscillations were blocked by 8-amino-cADPR; however, 8-amino-cADPR didnot block the[Ca2+]iresponse to a subsequent exposure to caffeine. These results indicatethat cADPR acts as a second messenger forCa2+ release through RyR channelsin TSM cells and may be necessary for initiating ACh-induced[Ca2+]ioscillations.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号