首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
Abstract

A low-cost Kodo millet bran residue was utilized as feedstock for the production of D (?) lactic acid (DLA) using Lactobacillus delbrueckii NBRC3202 under anaerobic condition. Data culled from a series of batch fermentation processes with different initial Kodo millet bran residue hydrolysate (KMBRH) and DLA concentrations were used for kinetic model development. Both simulated and experimental data were in good agreement for cell growth, KMBRH utilization, and DLA formation. The values of kinetic constants specific growth rate, (μm = 0.17?h?1); growth (αP = 0.96?g.g?1) and non-growth (βP = 1.19?g.g?1.h?1) associated constant for DLA production and the maximum specific KMBRH utilization rate, (qG, max = 1.18?g.g?1.h?1) were in good agreement with the literature reports. Kinetic analysis elucidated that L. delbrueckii growth was predominantly influenced by KMBRH limitation and highly sensitive to DLA inhibition. Fed-batch fermentation studies demonstrated the existence of substrate and product inhibition paving the scope for process intensification.  相似文献   

2.
The inhibition of substrate and products on the growth of Actinobacillus succinogenes in fermentation using glucose as the major carbon source was studied. A. succinogenes tolerated up to 143 g/L glucose and cell growth was completely inhibited with glucose concentration over 158 g/L. Significant decrease in succinic acid yield and prolonged lag phase were observed with glucose concentration above 100 g/L. Among the end-products investigated, formate was found to have the most inhibitory effect on succinic acid fermentation. The critical concentrations of acetate, ethanol, formate, pyruvate and succinate were 46, 42, 16, 74, 104 g/L, respectively. A growth kinetic model considering both substrate and product inhibition is proposed, which adequately simulates batch fermentation kinetics using both semi-defined and wheat-derived media. The model accurately describes the inhibitory kinetics caused by both externally added chemicals and the same chemicals produced during fermentation. This paper provides key insights into the improvement of succinic acid production and the modelling of inhibition kinetics.  相似文献   

3.
Summary Synchronization ofPlasmodium falciparum cultured in vitro results in a one-step growth pattern that allows the study of stage-specific metabolic activities of the parasites. Lactic acid (LA) was selected as a metabolic marker, and the concentration of this end product found in spent media was correlated with the different erythrocytic stages of the parasites. When the medium was changed at 12 h intervals, cultures containing predominantly trophozoites produced 3.66±0.55 μmol LA per 12 h per 107 parasitized cells (n=26), an amount of LA that is about 8 to 20 times higher than that found in corresponding cultures containing predominantly ring forms. Depending on the stage of development, parasitized red blood cells produced between 5 and 100 times more LA than uninfected erythrocytes (3.72±0.62 μmol LA per 12 hours per 109 red blood cells) (n=41) when cultured under identical conditions. The intraerythrocytic development of the parasites was not impaired by exposure to extracellular concentrations of LA up to 12 mM over a 12 h period. The growth resulting in such cultures was described as uninhibited and was characterized by a multiplication index of 10 or higher. Above the threshold of 12 mM of LA, progressive inhibition of parasite development occurred. The stage-specific LA production reported can be used to predict the amount of LA that will have accumulated at the end of a subsequent 12 h incubation period during synchronized in vitro growth ofPlasmodium falciparum. Using these values, it is possible to establish an optimal medium exchange schedule, thereby assuring uninhibited growth and a correspondingly high parasite yield. J. W. Z. was supported during part of this study by a long-term fellowship of the European Molecular Biology Organization, Heidelberg, West Germany, followed by a Research Associateship from the National Research Council, Washington, D.C. The project was supported by grants from the Medical Research Council to J. G. S. and by the Naval Research and Development Command, Work Unit No. 3M 162 770 A871 AE 312. The opinions or assertions contained herein are the private ones of the authors and are not to be construed as official or reflecting the views of the U.S. Navy Department or the naval service at large.  相似文献   

4.
Yun JS  Wee YJ  Kim JN  Ryu HW 《Biotechnology letters》2004,26(20):1613-1616
Rice and wheat brans, without additional nutrients and hydrolyzed by alpha-amylase and amyloglucosidase, were fermented to DL-lactic acid using a newly isolated strain of Lactobacillus sp. RKY2. In batch fermentations at 36 degrees C and pH 6, the amount of lactic acid in fermentation broth reached 129 g l(-1) by supplementation of rice bran with whole rice flour. The maximum productivity was 3.1 g lactic acid l(-1) h(-1) in rice bran medium supplemented with whole rice flour or whole wheat flour.  相似文献   

5.
The effects of adding D2SO4, and p-toluenesulfonic acid-d to D-cellobiose dissolved in D2O were investigated at 23 °C by plotting 13C NMR chemical shift changes (Δδ) against the acid to D-cellobiose molar ratio. 13C Chemical shifts of all 18 carbon signals from α and β anomers of D-cellobiose showed gradual decreases due to increasing acidity in aqueous D2SO4 medium. The C-1 of the α anomer showed a slightly higher response to increasing D+ concentration in the surrounding. In the aqueous p-toluenesulfonic acid-d medium, C-6′ and C-4′ carbons of both α, and β anomeric forms of D-cellobiose are significantly affected by increasing the sulfonic acid concentrations, and this may be due to a 1:1 interaction of p-toluenesulfonic acid-d with the C-6′, C-4′ region of the cellobiose molecule.  相似文献   

6.
Allelopathic potential of Ophiopogon japonicus was investigated. The methanolic extract of O. japonicus roots strongly inhibited root and hypocotyls growth of lettuce. Sequential partitioning of the methanol extract with organic solvents showed that the diethyl ether and n-butanol extract possess strong plant growth inhibitory activities. The allelopathic constituents of the diethyl ether extract were isolated and identified as salicylic acid and p-hydroxybenzoic acid by NMR spectroscopy. Both of these phenolic acids were found in the aqueous extracts of leaves as well. The concentration of salicylic acid in roots and leaves were estimated as 0.011 and 0.02%, respectively, and it inhibited the root and shoot of tested plants by 50% even at less than 3 ppm. The p-hydroxybenzoic acid on the other hand was in less abundance (0.005%) and inhibited the plant growth to a lesser extent. The biological activity of commercially available O-methyl derivatives of these phenolic acids was also determined to establish structure–activity relationship. Among these, salicylic acid was found to be the most active one. These results suggest that Ophiopogon japonicus produces plant growth inhibitors, which are responsible for its potential allelopathic activity.  相似文献   

7.
A kinetic study on esterification between d-glucose and l-phenylalanine catalysed by lipases from Rhizomucor miehei (RML) and Candida rugosa (CRL) in organic media investigated in detail showed that both the lipases followed a Ping-Pong Bi-Bi mechanism with two distinct types of competitive inhibitions. Graphical double reciprocal plots and computer simulation studies showed that competitive double substrate inhibition took place at higher concentrations leading to dead-end inhibition in the case of RML and in the case of CRL, inhibition only by d-glucose at higher concentrations leading to dead-end lipase–d-glucose complexes. An attempt to obtain the best fit of these kinetic models through curve-fitting yielded in good approximation, the apparent values of important kinetic parameters, RML: k cat = 2.24 ± 0.23 mM h−1 (mg protein)−1, K m l-phenylalanine = 95.6 ± 9.7 mM, K m d-glucose = 80.0 ± 8.5 mM, K i l-phenylalanine = 90.0 ± 9.2 mM, K i d-glucose = 13.6 ± 1.42 mM; CRL: k cat = 0.51 ± 0.06 mM h−1 (mg protein)−1, K m l-phenylalanine = 10.0 ± 0.98 mM, K m d-glucose = 6.0 ± 0.64 mM, K i d-glucose = 8.5 ± 0.81 mM.  相似文献   

8.
Three groups of bee colonies were treated with lactic acid, the pesticide Perizin or lactic acid and Perizin in order to validate the applicability of lactic acid in Varroa mite control. The lactic acid treatment was conducted during winter. Eight ml of lactic acid (15%) per comb side were applied with a dosage gun. The treatment was highly efficient and 94.2%–99.8% of the mites in a colony were killed. Due to precise dosage the lactic acid treatment caused less bee mortality than a treatment with the pesticide Perizin. A lactic acid treatment at-0.2°C caused bee mortality comparable to a Perizin treatment. The number of queen losses after lactic acid treatment and after Perizin treatment was comparable. The number of bees, the size of the brood area, the amount of stored honey and Nosema infestation rates were not significantly different in lactic acid treated colonies and Perizin treated colonies in spring after treatment.  相似文献   

9.
The transport of [14C]phenylacetic acid (PAA) in intact plants and stem segments of light-grown pea (Pisum sativum L. cv. Alderman) plants was investigated and compared with the transport of [14C]indiol-3yl-acetic acid (IAA). Although PAA was readily taken up by apical tissues, unlike IAA it did not undergo long-distance transport in the stem. The absence of PAA export from the apex was shown not to be the consequence of its failure to be taken up or of its metabolism. Only a weak diffusive movement of PAA was observed in isolated stem segments which readily transported IAA. When [1-14C]PAA was applied to a mature foliage leaf in light, only 5.4% of the 14C recovered in ethanol extracts (89.6% of applied 14C) had been exported from the leaf after 6.0 h. When applied to the corresponding leaf, [14C]sucrose was readily exported (46.4% of the total recovered ethanol-soluble 14C after 6.0 h). [1-14C]phenylacetic acid applied to the root system was readily taken up but, after 5.0 h, 99.3% of the recovered 14C was still in the root system.When applied to the stem of intact plants (either in lanolin at 10 mg·g-1, or as a 10-4 M solution), unlabelled PAA blocked the transport through the stem of [1-14C]IAA applied to the apical bud, and caused IAA to accumulate in the PAA-treated region of the stem. Applications of PAA to the stem also inhibited the basipetal polar transport of [1-14C]IAA in isolated stem segments. These results are consistent with recent observations (C.F. Johnson and D.A. Morris, 1987, Planta 172, 400–407) that no carriers for PAA occur in the plasma membrane of the light-grown pea stem, but that PAA can inhibit the carrier-mediated efflux of IAA from cells. The possible functions of endogenous PAA are discussed and its is suggested that an important role of the compound may be to modulate the polar transport and-or accumulation by cells of IAA.Abbreviations IAA indol-3yl-acetic acid - NPA N-1-naphthylphthalamic acid - PAA phenylacetic acid - IIBA 2,3,5-triiodobenzoic acid  相似文献   

10.
Streptococcus thermophilusand Lactobacillus bulgaricus were co-immobilized in different systems with varying calcium (0.1–1.5M) and alginate (1–2<><>, w/v) concentrations. Highest lactic acid production was 35 g l1 when both bacteria were in high viscosity beads (1<><>, w/v alginate) hardened in 0.1 M CaCl2 .The gel bead composition affected size and distribution of entrapped lactic acid bacteria.  相似文献   

11.
Unbalanced growth induced by depletion of manganese ions was a prerequisite for production of ribonucleotides in a high salt mineral medium with the wildtype strain Brevibacterium ammoniagenes ATCC 6872. The concentration of manganese strictly controlled the overall deoxyribonucleic acid (DNA) synthesis, whereas ribonucleic acid (RNA), protein and cell wall synthesis remained essentially unimpaired in the manganese-lacking cells.The reversibility of inhibition of overall DNA synthesis was shown by enhanced incorporation (up to threefold compared to the cultures supplied with sufficient manganese) of [8-14C] adenine into alkali-stable, trichloroacetic acid-insoluble material after subsequent addition of 10 M MnCl2 to 15 h-old depleted cultures.The results of inhibitor studies on the restoration of overall DNA synthesis due to subsequent addition of manganese ions to depleted cultures suggest that ribonucleotide reduction is the primary target of the manganese starvation during nucleotide fermentation with Brevibacterium ammoniagenes ATCC 6872.  相似文献   

12.
In this work, we have investigated the kinetics of the biotechnological production of lactobionic acid (LBA) and sorbitol by the catalytic action of glucose-fructose oxidoreductase (GFOR) and glucono-δ-lactonase (GL) enzymes. The cells of bacterium Zymomonas mobilis ATCC 29191 containing this enzymatic complex were submitted to permeabilization and reticulation procedures. The effect of the concentration of substrates on the rate of product formation using a mobilized cell system was investigated. The application of higher fructose concentration seems to not affect the initial rate of formation of the bionic acid. Under conditions of low initial concentration of lactose, the experimental kinetic data of the bi-substrate reaction were modelled by assuming a rate equation of the classical ping-pong mechanism. The found kinetic parameters displayed a low affinity of the GFOR enzyme for both substrates. The enzymatic system did not exhibit normal Michaelis-Menten kinetics in response to a change of concentration of lactose, when fructose was held constant, presenting a sigmoid relationship between initial velocity and substrate concentration. A rate equation based on Hill kinetics was used to describe the kinetic behaviour of this enzyme-substituted reaction at higher lactose concentrations. The results from batch experiments using immobilized cells within Ca-alginate beads revealed that there is no pronounced occurrence of mass transfer limitations on LBA production for beads with 1.2 mm in average diameter. This discussion aids for defining the best operating conditions to maximize the productivity for LBA and sorbitol in this bioconversion and also for reducing the complexity of downstream separation processes.  相似文献   

13.
Desulfobacter postgatei is an acetate-oxidizing, sulfate-reducing bacterium that metabolizes acetate via the citric acid cycle. The organism has been reported to contain a si-citrate synthase (EC 4.1.3.7) which is activated by AMP and inorganic phosphate. It is show now, that the enzyme mediating citrate formation is an ATP-citrate lyase (EC 4.1.3.8) rather than a citrate synthase. Cell extracts (160,000xg supernatant) catalyzed the conversion of oxaloacetate (apparent K m=0.2 mM), acetyl-CoA (app. K m=0.1 mM), ADP (app. K m=0.06 mM) and phosphate (app. K m=0.7 mM) to citrate, CoA and ATP with a specific activity of 0.3 mol·min-1·mg-1 protein. Per mol citrate formed 1 mol of ATP was generated. Cleavage of citrate (app. K m=0.05 mM; V max=1.2 mol · min-1 · mg-1 protein) was dependent on ATP (app. K m=0.4 mM) and CoA (app. K m=0.05 mM) and yielded oxaloacetate, acetyl-CoA, ADP, and phosphate as products in a stoichiometry of citrate:CoA:oxaloacetate:ADP=1:1:1:1. The use of an ATP-citrate lyase in the citric acid cycle enables D. postgatei to couple the oxidation of acetate to 2 CO2 with the net synthesis of ATP via substrate level phosphorylation.  相似文献   

14.
Compound 24, an alkyl-substituted amino acid amide, previously found to activate pertussis toxin-sensitive G proteins in cell membranes and membrane protein fractions, was used as a tool to determine the mechanism/location of nicotine inhibition of amyloid peptide-stimulated phospholipase A2 and D activities in a human neuroblastoma cell line, LA-N-2, in vitro. In contrast to our previous findings with amyloid peptide, these phospholipase activations by compound 24 were not inhibited by (–)-nicotine, cholera toxin or tetanus toxin pretreatment. The contrasting activation of these phospholipases by amyloid peptide and compound 24 are discussed.  相似文献   

15.
A growing body of evidence demonstrates the efficacy of Garcinia cambogia-derived natural (–)-hydroxycitric acid (HCA) in weight management by curbing appetite and inhibiting body fat biosynthesis. However, the exact mechanism of action of this novel phytopharmaceutical has yet to be fully understood. In a previous study, we showed that in the rat brain cortex a novel HCA extract (HCA-SX, Super CitriMax) increases the release/availability of radiolabeled 5-hydroxytryptamine or serotonin ([3H]-5-HT), a neurotransmitter implicated in the regulation of eating behavior and appetite control. The aim of the present study was 2-fold: (a) to determine the effect of HCA-SX on 5-HT uptake in rat brain cortex in vitro; and (b) to evaluate the safety of HCA-SX in vivo. Isolated rat brain cortex slices were incubated in oxygenated Krebs solution for 20 min and transferred to buffer solutions containing [3H]-5-HT for different time intervals. In some experiments, tissues were exposed to HCA-SX (10 M – 1 mM) and the serotonin receptor reuptake inhibitors (SRRI) fluoxetine (100 M) plus clomipramine (10 M). Uptake of [3H]-5-HT was expressed as d.p.m./mg wet weight. A time-dependent uptake of [3H]-5-HT occurred in cortical slices reaching a maximum at 60 min. HCA-SX, and fluoxetine plus clomipramine inhibited the time-dependent uptake of [3H]-5-HT. At 90 min, HCA-SX (300 M) caused a 20% decrease, whereas fluoxetine plus clomipramine inhibited [3H]-5-HT uptake by 30%. In safety studies, acute oral toxicity, acute dermal toxicity, primary dermal irritation and primary eye irritation, were conducted in animals using various doses of HCA-SX. Results indicate that the LD50 of HCA-SX is greater than 5000 mg/kg when administered once orally via gastric intubation to fasted male and female Albino rats. No gross toxicological findings were observed under the experimental conditions. Taken together, these in vivo toxicological studies demonstrate that HCA-SX is a safe, natural supplement under the conditions it was tested. Furthermore, HCA-SX can inhibit [3H]-5-HT uptake (and also increase 5-HT availability) in isolated rat brain cortical slices in a manner similar to that of SRRIs, and thus may prove beneficial in controlling appetite, as well as treatment of depression, insomnia, migraine headaches and other serotonin-deficient conditions.  相似文献   

16.
Palmitic acid (Pal) is known to promote apoptosis (Sparagna G et al (2000) Am J Physiol Heart Circ Physiol 279: H2124–H2132) and its amount in blood and mitochondria increases under some pathological conditions. Yet, the mechanism of the proapoptotic action of Pal has not been elucidated. We present evidence for the involvement of the mitochondrial cyclosporin A-insensitive pore induced by Pal/Ca2+ complexes in the apoptotic process. Opening of this pore led to a fall of the mitochondrial membrane potential and the release of the proapoptotic signal cytochrome c. The addition of cytochrome c prevented these effects and recovered membrane potential, which is in contrast to the cyclosporin A-sensitive mitochondrial permeability transition pore. Oleic and linoleic acids prevented the Pal/Ca2+-induced pore opening in the intact mitochondria, this directly and significantly correlating with the effect of these fatty acids on Pal-induced apoptosis in cells (Hardy S et al (2003) J Biol Chem 278: 31861–31870). The specific probe for cardiolipin, 10-N-nonyl acridine orange, inhibited formation of this pore.  相似文献   

17.
The induction of a Crassulacean acid like metabolism (CAM) was evidenced after 21–23 days of drought stress in the C4 succulent plant Portulaca oleracea L. by changes in the CO2 exchange pattern, in malic acid content and in titratable acidity during the day–night cycle. Light microscopy studies also revealed differences in the leaf structure after the drought treatment. Following the induction of the CAM-like metabolism, the regulatory properties of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31), the enzyme responsible for the diurnal fixation of CO2 in C4 plants but nocturnal in CAM plants, were studied. The enzyme from stressed plants showed different kinetic properties with respect to controls, notably its lack of cooperativity, higher sensitivity to L-malate inhibition, higher PEP affinity and lower enzyme content on a protein basis. In both conditions, PEPC's subunit mass was 110 kDa, although changes in the isoelectric point and electrophoretic mobility of the native enzyme were observed. In vivo phosphorylation and native isoelectrofocusing studies indicated variations in the phosphorylation status of the enzyme of samples collected during the night and day, which was clearly different for the control and stressed groups of plants. The results presented suggest that PEPC activity and regulation are modified upon drought stress treatment in a way that allows P. oleracea to perform a CAM-like metabolism. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The kinetics of Pd(II)-catalysed and Hg(II)-co-catalysed oxidation of D-glucose (Glc) and D-fructose (Fru) by N-bromoacetamide (NBA) in the presence of perchloric acid using mercury(II) acetate as a scavenger for Br- ions have been studied. The results show first-order kinetics with respect to NBA at low concentrations, tending to zero order at high concentrations. First-order kinetics with respect to Pd(II) and inverse fractional order in Cl- ions throughout their variation have also been noted. The observed direct proportionality between the first-order rate constant (k1) and the reducing sugar concentration shows departure from the straight line only at very higher concentration of sugar. Addition of acetamide (NHA) decreases the first-order rate constant while the oxidation rate is not influenced by the change in the ionic strength (mu) of the medium. Variation of [Hg(OAc)2] shows a positive effect on the rate of reaction. The observed negative effect in H+ at lower concentrations tends to an insignificant effect at its higher concentrations. The first-order rate constant decreases with an increase in the dielectric constant of the medium. The various activation parameters have also been evaluated. The products of the reactions were identified as arabinonic acid and formic acid for both the hexoses. A plausible mechanism involving HOBr as the reactive oxidising species, Hg(II) as co-catalyst, and [PdCl3.S]-1 as the reactive Pd(II)-sugar complex in the rate-controlling step is proposed.  相似文献   

19.
B. Liedvogel  R. Bäuerle 《Planta》1986,169(4):481-489
Chloroplasts from the cotyledons of mustard (Sinapis alba L.) seedlings were isolated on Percoll gradients, and showed a high degree of intactness (92%) and purity as judged by electron microscopy and marker-enzyme analysis (cytoplasmic contamination lower than 0.4% on a protein basis). The chloroplasts synthesized longchain fatty acids from both precursors [1-14C] acetate and [2-14C]pyruvate; maximum incorporation rates were 96 nmol·(mg Chl)-1·h-1 for acetate and 213 nmol·(mg Chl)-1·h-1 for pyruvate. Acetyl-CoA-producing enzymatic activities, namely acetyl-CoA synthetase (EC 6.2.1.1.) and a pyruvate dehydrogenase complex, showed specific activities of 14.8 nmol·(mg protein)-1·min-1 and 18.2 nmol·(mg protein)-1·min-1, respectively. The glycolytic enzymes phosphoglyceromutase (EC 2.7.5.3) phosphopyruvate hydratase (EC 4.2.1.11) and pyruvate kinase (EC 2.7.1.40) were all found to be components of these chloroplasts, thus indicating a possible pathway for intraplastid acetyl-CoA formation.Abbreviations ACS acetyl coenzyme A synthetase - Chl chlorophyll - DTE 1,4-dithioerythritol - PDHC pyruvate dehydrogenase complex - 3-PGA 3-phosphoglyceric acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号