首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 141 毫秒
1.
2.
3.
Oncogenesis involves continuous genetic alterations that lead to compromised cellular integrity and immortal cell fate. The cells remain under excessive stress due to endo- and exogenous influences. Human Satellite III long noncoding RNA (SatIII lncRNA) is a key regulator of the global cellular stress response, although its function is poorly explained in cancers. The principal regulator of cancer meshwork is tumor protein p53, which if altered may result in chemoresistance. The heat shock factor 1 (HSF1) being a common molecule between the oncogenic control and global cellular stress acts as an oncogene as well as transcribes SatIII upon heat shock. This prompted us to determine the structure of SatIII RNA and establish the association between SatIII-HSF1-p53. We determined the most stable structure of SatIII RNA with the least energy of − 115.7 kcal/mol. Also, we observed a possible interaction of p53 with SatIII and HSF1 using support vector machine (SVM) algorithm for predicting RNA-protein interaction (RPI). Further, we employ the STRING database to understand if p53 is an interacting component of the nuclear stress bodies (nSBs). A precise inference was drawn from molecular docking which confirmed the interaction of SatIII-HSF1-p53, where a mutated p53 resulted in an altered DNA-binding property with the SatIII molecule. This study being first of its kind infers p53 to be a possible integral component of the nSBs, which may regulate cellular stress response during cancer progression in the presence of HSF1 and SatIII. An extended research on the regulations of SatIII and p53 may open new avenues in the field of apoptosis in cancer and the early approach of molecular targeting.  相似文献   

4.
5.
6.
Non-coding RNA from pericentromeric satellite repeats are involved in stress-dependent splicing processes, maintenance of heterochromatin, and are required to protect genome stability. Here we show that the long non-coding satellite III RNA (SatIII) generates resistance against the topoisomerase IIa (TOP2A) inhibitor etoposide in lung cancer. Because heat shock conditions (HS) protect cells against the toxicity of etoposide, and SatIII is significantly induced under HS, we hypothesized that the protective effect could be traced back to SatIII. Using genome methylation profiles of patient-derived xenograft mouse models we show that the epigenetic modification of the SatIII DNA locus and the resulting SatIII expression predict chemotherapy resistance. In response to stress, SatIII recruits TOP2A to nuclear stress bodies, which protects TOP2A from a complex formation with etoposide and results in decreased DNA damage after treatment. We show that BRD4 inhibitors reduce the expression of SatIII, restoring etoposide sensitivity.Subject terms: Cancer therapeutic resistance, Epigenetics, Long non-coding RNAs  相似文献   

7.
8.
9.
Nuclear stress bodies (nSBs) are nuclear membraneless organelles formed around stress‐inducible HSATIII architectural long noncoding RNAs (lncRNAs). nSBs repress splicing of hundreds of introns during thermal stress recovery, which are partly regulated by CLK1 kinase phosphorylation of temperature‐dependent Ser/Arg‐rich splicing factors (SRSFs). Here, we report a distinct mechanism for this splicing repression through protein sequestration by nSBs. Comprehensive identification of RNA‐binding proteins revealed HSATIII association with proteins related to N6‐methyladenosine (m6A) RNA modification. 11% of the first adenosine in the repetitive HSATIII sequence were m6A‐modified. nSBs sequester the m6A writer complex to methylate HSATIII, leading to subsequent sequestration of the nuclear m6A reader, YTHDC1. Sequestration of these factors from the nucleoplasm represses m6A modification of pre‐mRNAs, leading to repression of m6A‐dependent splicing during stress recovery phase. Thus, nSBs serve as a common platform for regulation of temperature‐dependent splicing through dual mechanisms employing two distinct ribonucleoprotein modules with partially m6A‐modified architectural lncRNAs.  相似文献   

10.
RNAs play diverse roles in formation and function of subnuclear compartments, most of which are associated with active genes. NEAT1 and NEAT2/MALAT1 exemplify long non-coding RNAs (lncRNAs) known to function in nuclear bodies; however, we suggest that RNA biogenesis itself may underpin much nuclear compartmentalization. Recent studies show that active genes cluster with nuclear speckles on a genome-wide scale, significantly advancing earlier cytological evidence that speckles (aka SC-35 domains) are hubs of concentrated pre-mRNA metabolism. We propose the ‘karyotype to hub’ hypothesis to explain this organization: clustering of genes in the human karyotype may have evolved to facilitate the formation of efficient nuclear hubs, driven in part by the propensity of ribonucleoproteins (RNPs) to form large-scale condensates. The special capacity of highly repetitive RNAs to impact architecture is highlighted by recent findings that human satellite II RNA sequesters factors into abnormal nuclear bodies in disease, potentially co-opting a normal developmental mechanism.  相似文献   

11.
12.
13.
The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules. Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA(Met) (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA(Met) was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.  相似文献   

14.
15.
16.
Pre-mRNA processing factors are required for nuclear export   总被引:9,自引:3,他引:6  
  相似文献   

17.
18.
Some RNA plant viruses contain satellite RNAs which are dependent upon their associated virus for replication and encapsidation. Some cucumber mosaic virus satellite RNAs induce chlorosis on any of several host plants, including either tobacco or tomato. The exchange of sequence domains between cDNA clones of chlorosis-inducing and non-pathogenic satellite RNAs delimited the chlorosis domain for both tobacco and tomato plants to the same region. Site-directed mutagenesis of one nucleotide (149) within this domain changed the host plant specificity for a chlorotic response to satellite RNA infection from tomato to tobacco. Within the chlorosis domain, three conserved nucleotides are either deleted or altered in all satellite RNAs that do not induce chlorosis. Deletion of one of these nucleotides (153) did not affect satellite RNA replication but rendered it non-pathogenic. Thus, two single nucleotides have been identified which play central roles in those interactions between the virus, its satellite RNA and the host plant, and together result in a specific disease state.  相似文献   

19.
20.
Nucleation of nuclear bodies by RNA   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号