共查询到20条相似文献,搜索用时 0 毫秒
1.
The kinetics of rabbit skeletal muscle phosphorylase kinase interaction with glycogen has been studied. At pH 6.8 the binding of phosphorylase kinase to glycogen proceeds only in the presence of Mg2+, whereas at pH 8.2 formation of the complex occurs even in the absence of Mg2+. On the other hand, the interaction of phosphorylase kinase with glycogen requires Ca2+ at both pH values. The initial rate of the complex formation is proportional to the enzyme and glycogen concentrations, suggesting the formation of the complex with stoichiometry 1:1 at the initial step of phosphorylase kinase binding by glycogen. According to the kinetic and sedimentation data, the substrate of the phosphorylase kinase reaction, glycogen phosphorylase b, favors the binding of phosphorylase kinase with glycogen. We suggest a model for the ordered binding of phosphorylase b and phosphorylase kinase to the glycogen particle that explains the increase in the tightness of phosphorylase kinase binding with glycogen in the presence of phosphorylase b. 相似文献
2.
Catherine Vénien-Bryan Edward M Lowe Nicolas Boisset Kenneth W Traxler Louise N Johnson Gerald M Carlson 《Structure (London, England : 1993)》2002,10(1):33-41
Phosphorylase kinase (PhK) integrates hormonal and neuronal signals and is a key enzyme in the control of glycogen metabolism. PhK is one of the largest of the protein kinases and is composed of four types of subunit, with stoichiometry (alphabetagammadelta)(4) and a total MW of 1.3 x 10(6). PhK catalyzes the phosphorylation of inactive glycogen phosphorylase b (GPb), resulting in the formation of active glycogen phosphorylase a (GPa) and the stimulation of glycogenolysis. We have determined the three-dimensional structure of PhK at 22 A resolution by electron microscopy with the random conical tilt method. We have also determined the structure of PhK decorated with GPb at 28 A resolution. GPb is bound toward the ends of each of the lobes with an apparent stoichiometry of four GPb dimers per (alphabetagammadelta)(4) PhK. The PhK/GPb model provides an explanation for the formation of hybrid GPab intermediates in the PhK-catalyzed phosphorylation of GPb. 相似文献
3.
4.
5.
6.
The glycogen phosphorylase of Tetrahymena pyriformis complexes with glycogen as judged by its elution pattern from columns of Sepharose 6B. Complex formation does not occur with starch, amylose, or amylopectin, and neither do these polyglucans serve as primers for the enzyme. To study the association between the phosphorylase and glycogen particles in situ, Tetrahymena were grown under differing physiological conditions, phosphorylase was isolated and chromatographed on a Sepharose 6B column. Phosphorylase activity isolated from cells grown in the absence of glucose was only partially associated with glycogen, while in cells exposed to glucose for 30 min or more all the phosphorylase activity was associated with glycogen. The effects of culture age and anaerobiosis on the relative amounts of free and glycogen-bound enzyme in the cells were also studied. It was concluded from the in vivo experiments that there was no simple relation between the fraction of enzyme bound to glycogen and between cell glycogen content. 相似文献
7.
Stimulation of glycogen phosphorylase kinase by phospholipids 总被引:1,自引:0,他引:1
The acidic phospholipids phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-biphosphate (PIP2) and the neutral phospholipid lysophosphatidylcholine (LPC) were found to stimulate (3 to 8-fold) the activity of nonactivated rabbit skeletal muscle phosphorylase kinase at pH 6.8, without significantly affecting the activity at pH 8.2. In this respect, phosphatidylcholine and phosphatidylethanolamine were ineffective, while the anionic detergent sodium dodecyl sulfate (SDS) and the anionic steroid dehydroisoandrosterone sulfate (DIAS) were able to mimic the action of phospholipids. SDS was also found to be a very efficient activator of the autophosphorylation of phosphorylase kinase (20-fold activation at 200 microM). The activating effect of phospholipids largely depends on the size of lipid vesicles, which is connected with the procedure of their preparation. These results suggest that phosphorylase kinase belongs to the class of Ca2+-dependent enzymes, which are sensitive to stimulation by calmodulin, limited proteolysis and anionic amphiphiles. 相似文献
8.
9.
10.
Glycogen phosphorylase in the vegetative mycelium ofFlammulina velutipes converts glycogen to α-glucose 1-phosphate (G1P) in the colony during fruit-body development. Glycogen may contribute to
the synthesis of trehalose as the starting material in the vegetative mycelium during the fruiting process of the colony,
and the trehalose produced is translocated into the fruit-bodies as the main carbohydrate substrate for their development.
Trehalose phosphorylase activity in the vegetative mycelium was at a relatively high level until fruit-body initiation, suggesting
the turnover of this disaccharide during the vegetative stage of the colony development. Trehalose phosphorylase activity
in the stipes showed a peak level at the early phase of fruit-body development, suggesting the continuing phosphorolysis of
trehalose by this enzyme. The stipes also showed a high specific activity of phosphoglucomutase at a sufficient level to facilitate
the conversion of G1P to α-glucose 6-phosphate (G6P). In the pilei a large amount of G1P remained until the growth of the
fruit-bodies ceased. Trehalase activities in the stipes and pilei were at a very low level, and this enzyme may not contribute
to the catabolism of trehalose in the fruit-body development. 相似文献
11.
S V Klinov D R Davydov N P Lisovskaia O S Tarasov B I Kurganov 《Molekuliarnaia biologiia》1980,14(2):348-356
Kinetics of glycogen binding by glycogen phosphorylase b has been studied by stopped flow and temperature jump methods. This reaction is followed by increase in light scattering whose amplitude depends upon the enzyme binding sites concentration of glycogen particles occupied by the enzyme. It has been shown that the complex formation has the first order with respect to enzyme and glycogen concentrations. Relaxation kinetics is compatible with proposed bimolecular reaction scheme. Microscopic rate constants of the forward and reverse reactions of glycogen binding by glycogen phosphorylase b are determined in temperature range from 12,7 to 30 degrees C. The possibility of diffusional control of the binding rate is discussed. 相似文献
12.
Tick G Cserpán I Dombrádi V Mechler BM Török I Kiss I 《Biochemical and biophysical research communications》1999,257(1):34-43
We identified a P element insertional mutant of the Drosophila glycogen phosphorylase (DGPH) gene. Glycogen phosphorylase protein concentration and enzyme activity are decreased while glycogen content is increased in flies homozygous for the mutant allele. The DGPH gene has been cloned and sequenced; its open reading frame codes for a protein of 844 amino acids with a predicted molecular mass of 97 kDa. Comparison of the conceptual amino acid sequence of the Drosophila glycogen phosphorylase with glycogen phosphorylase sequences from other organisms shows a high degree of homology to mammalian enzymes. All the residues of the allosteric effector binding sites, the active site, and the site of phosphorylation are exactly conserved, but some of the residues of the glycogen storage site are not. 相似文献
13.
14.
Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP 总被引:12,自引:0,他引:12
The crystal structures of activated R state glycogen phosphorylase a (GPa) and R and T state glycogen phosphorylase b (GPb) complexed with AMP have been solved at 2.9 A, 2.9 A and 2.2 A resolution, respectively. The structure of R state GPa is nearly identical to the structure of sulphate-activated R state GPb, except in the region of Ser14, where there is a covalently attached phosphate group in GPa and a non-covalently attached sulphate group in GPb. The contacts made by the N-terminal tail residues in R state GPa at the subunit interface of the functionally active dimer are similar to those observed previously for T state GPa. The quaternary and tertiary structural changes on the T to R transition allow these interactions to be relayed to the catalytic site in R state GPa. The transition from the T state GPb structure to the R state GPa structure results in a change in the N-terminal residues from a poorly ordered extended structure that makes intrasubunit contacts to an ordered coiled conformation that makes intersubunit contacts. The distance between Arg10, the first residue to be located from the N terminus, in R state GPa and T state GPb is 50 A. One of the important subunit-subunit interactions in the dimer molecule involves contacts between the helix alpha 2 and the cap' (residues 35' to 45' that form a loop between the 1st and 2nd alpha helices, alpha 1' and alpha 2' of the other subunit. The prime denotes residues from the other subunit). The interactions made by the N-terminal residues induce structural changes at the cap'/alpha 2 helix interface that lead to the creation of a high-affinity AMP site. The tertiary structural changes at the cap (shifts 1.2 to 2.1 A for residues 35 to 45) are partially compensated by the quaternary structural change so that the overall shifts in these residues after the combined tertiary and quaternary changes are between 0.5 and 1.3 A. AMP binds to R state GPb with at least 100-fold greater affinity and exhibits four additional hydrogen bonds, stronger ionic interactions and more extensive van der Waals' interactions with 116 A2 greater solvent accessible surface area buried compared with AMP bound to T state GPb.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
15.
Phosphorylation of rat liver glycogen synthase by rabbit skeletal muscle phosphorylase kinase results in the incorporation of approximately 0.8-1.2 mol of PO4/subunit. Analyses of the tryptic peptides by isoelectric focusing and thin layer chromatography reveal the presence of two major 32P-labeled peptides. Similar results were obtained when the synthase was phosphorylated by rat liver phosphorylase kinase. This extent of phosphorylation does not result in a significant change in the synthase activity ratio. In contrast, rabbit muscle glycogen synthase is readily inactivated by rabbit muscle phosphorylase kinase; this inactivation is further augmented by the addition of rabbit muscle cAMP-dependent protein kinase or cAMP-independent synthase (casein) kinase-1. Addition of cAMP-dependent protein kinase after initial phosphorylation of liver synthase with phosphorylase kinase, however, does not result in an inactivation or additional phosphorylation. The lack of additive phosphorylation under this condition appears to result from the phosphorylation of a common site by these two kinases. Partial inactivation of liver synthase can be achieved by sequential phosphorylation with phosphorylase kinase followed by synthase (casein) kinase-1. Under this assay condition, the phosphate incorporation into the synthase is additively increased and the synthase activity ratio (-glucose-6-P/+glucose-6-P) is reduced from 0.95 to 0.6. Nevertheless, if the order of the addition of these two kinases is reversed, neither additive phosphorylation nor inactivation of the synthase is observed. Prior phosphorylation of the synthase by phosphorylase kinase transforms the synthase such that it becomes a better substrate for synthase (casein) kinase-1 as evidenced by a 2- to 4-fold increase in the rate of phosphorylation. This increased rate of phosphorylation of the synthase appears to result from the rapid phosphorylation of a site neighboring that previously phosphorylated by phosphorylase kinase. 相似文献
16.
The ability of homogeneous glycogen phosphorylase kinase (Phk) from rabbit skeletal muscle to phosphorylate bovine brain myelin basic protein (MBP) was investigated. Phk could incorporate a maximum of 1.9 mol phosphate/mol MBP. The apparent Km and Vmax for Phk phosphorylation of MBP were 27 microM and 90 nmol/min per mg enzyme, respectively. Properties of MBP phosphorylation by Phk are similar to those of phosphorylase as a substrate. Only serine residues of MBP are phosphorylated by Phk. Phosphorylation sites of MBP by Phk are not identical to those by cAMP-dependent protein kinases. 相似文献
17.
Glycogen phosphorylase is found in resting muscle as phosphorylase b, which is inactive without AMP. Phosphorylation by phosphorylase kinase (PhK) produces phosphorylase a, which is active in the absence of AMP. PhK is the only kinase that can phosphorylate phosphorylase b, which in turn is the only physiological substrate for PhK. We have explored the reasons for this specificity and how these two enzymes recognize each other by studying site-directed mutants of glycogen phosphorylase. All mutants were assayed for changes in their interaction with a truncated form of the catalytic subunit of phosphorylase kinase, gamma(1-300). Five mutations (R69K, R69E, R43E, R43E/R69E, and E501A), made at sites that interact with the amino terminus in either phosphorylase b or a, showed little difference in phosphorylation by gamma(1-300) compared to wild-type phosphorylase b. Five mutations, made at three sites in the amino-terminal tail of phosphorylase (K11A, K11E, I13G, R16A, and R16E), however, produced decreases in catalytic efficiency for gamma(1-300), compared to that for phosphorylase b. R16E was the poorest substrate for gamma(1-300), giving a 47-fold decrease in catalytic efficiency. The amino terminus, and especially Arg 16, are very important factors for recognition of phosphorylase by gamma(1-300). A specific interaction between Lys 11 of phosphorylase and Glu 110 of gamma(1-300) was also confirmed. In addition, I13G and R16A were able to be phosphorylated by protein kinase A, which does not recognize native phosphorylase. 相似文献
18.
19.
Structural basis for recruitment of glycogen synthase kinase 3beta to the axin-APC scaffold complex 总被引:5,自引:0,他引:5
Dajani R Fraser E Roe SM Yeo M Good VM Thompson V Dale TC Pearl LH 《The EMBO journal》2003,22(3):494-501
Glycogen synthase kinase 3beta (GSK3beta) is a serine/threonine kinase involved in insulin, growth factor and Wnt signalling. In Wnt signalling, GSK3beta is recruited to a multiprotein complex via interaction with axin, where it hyperphosphorylates beta-catenin, marking it for ubiquitylation and destruction. We have now determined the crystal structure of GSK3beta in complex with a minimal GSK3beta-binding segment of axin, at 2.4 A resolution. The structure confirms the co-localization of the binding sites for axin and FRAT in the C-terminal domain of GSK3beta, but reveals significant differences in the interactions made by axin and FRAT, mediated by conformational plasticity of the 285-299 loop in GSK3beta. Detailed comparison of the axin and FRAT GSK3beta complexes allows the generation of highly specific mutations, which abrogate binding of one or the other. Quantitative analysis suggests that the interaction of GSK3beta with the axin scaffold enhances phosphorylation of beta-catenin by >20 000-fold. 相似文献
20.
Evolutionary link between glycogen phosphorylase and a DNA modifying enzyme. 总被引:1,自引:2,他引:1 下载免费PDF全文
We report here an unexpected similarity in three-dimensional structure between glucosyltransferases involved in very different biochemical pathways, with interesting evolutionary and functional implications. One is the DNA modifying enzyme beta-glucosyltransferase from bacteriophage T4, alias UDP-glucose:5-hydroxymethyl-cytosine beta-glucosyltransferase. The other is the metabolic enzyme glycogen phosphorylase, alias 1.4-alpha-D-glucan:orthophosphate alpha-glucosyltransferase. Structural alignment revealed that the entire structure of beta-glucosyltransferase is topographically equivalent to the catalytic core of the much larger glycogen phosphorylase. The match includes two domains in similar relative orientation and connecting helices, with a positional root-mean-square deviation of only 3.4 A for 256 C alpha atoms. An interdomain rotation seen in the R- to T-state transition of glycogen phosphorylase is similar to that observed in beta-glucosyltransferase on substrate binding. Although not a single functional residue is identical, there are striking similarities in the spatial arrangement and in the chemical nature of the substrates. The functional analogies are (beta-glucosyltransferase-glycogen phosphorylase): ribose ring of UDP-pyridoxal ring of pyridoxal phosphate co-enzyme; phosphates of UDP-phosphate of co-enzyme and reactive orthophosphate; glucose unit transferred to DNA-terminal glucose unit extracted from glycogen. We anticipate the discovery of additional structurally conserved members of the emerging glucosyltransferase superfamily derived from a common ancient evolutionary ancestor of the two enzymes. 相似文献