首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Water deficits at the anthesis stage of rice (Oryza sativa L.)induce a high percentage of spikelet sterility and reduce grainyield. This study attempted to elucidate the direct effectsof water stress on panicle exsertion, spikelet opening, andspikelet desiccation leading to spikelet sterility. A well-wateredtreatment and two water stress levels were imposed in pot-grownplants of IRAT 13 (upland cultivar) and IR20 (lowland cultivar)at the time of flowering under greenhouse conditions A cultivar difference was observed in the flowering responseto water stress with a high sensitivity in IR20. The time courseof panicle exsertion showed an inhibitory effect due to thelow panicle water status. Low panicle water potentials significantlyreduced the number of opened spikelets. Spikelet opening wascompletely inhibited at panicle water potentials below –1·8MPa and –2·3 MPa in IR20 and IRAT 13, respectively.However, the peak spikelet opening time in a day was not influencedby the stress treatment. Spikelets in stressed panicles wereobserved to remain open for a longer period than in the well-wateredpanicles. The role of turgor in spikelet opening is also discussedin the study. At low panicle water potentials, severe desiccationof spikelets and anthers was noted. The deleterious effectsof water deficits on spikelet opening and spikelet water losscontributed to reduced spikelet fertility Oryza sativa L., rice, spikelet sterility, flowering, water stress, panicle water potentials, turgor potentials, desiccation  相似文献   

2.
Straighthead, a physiological disorder characterized by sterile florets and distorted spikelets, causes significant yield losses in rice, and occurs in many countries. The current control method of draining paddies early in the season stresses plants, is costly, and wastes water. Development of resistant cultivar is regarded as the most efficient way for its control. We mapped a QTL for straighthead resistance using two recombinant inbred line (RIL) F9 populations that were phenotyped over two years using monosodium methanearsonate (MSMA) to induce the symptoms. One population of 170 RILs was genotyped with 136 SSRs and the other population of 91 RILs was genotyped with 159 SSRs. A major QTL qSH-8 was identified in an overlapping region in both populations, and explained 46% of total variation in one and 67% in another population for straighthead resistance. qSH-8 was fine mapped from 1.0 Mbp to 340 kb using 7 SSR markers and further mapped to 290 kb in a population between RM22573 and InDel 27 using 4 InDel markers. SSR AP3858-1 and InDel 11 were within the fine mapped region, and co-segregated with straighthead resistance in both RIL populations, as well as in a collection of diverse global accessions. These results demonstrate that AP3858-1 and InDel 11 can be used for marker-assisted selection (MAS) for straighthead resistant cultivars, which is especially important because there is no effective way to directly evaluate straighthead resistance.  相似文献   

3.
Straighthead disease is a physiological disorder of rice (Oryza sativa L.) characterized by sterility of the florates/spikelets leading to reduced grain yield. Though the exact cause of straighthead is unknown, a glass house experiment was conducted to investigate the effect of inorganic arsenic on straighthead disease in rice (Oryza sativa L.). BRRI dhan 29, a popular Bangladeshi rice strain, was grown in soils spiked with arsenic (prepared from sodium arsenate, Na2HAsO4·7H2O) at the rate of 10, 20, 30, 40, 50, 60, 70, 80 and 90 mg of As kg?1 and one control treatment was also run to compare the results. Although there may be some other soil physico-chemical factors involved, arsenic concentration was found to be closely associated with straighthead of rice. With the increase of soil arsenic concentration, the severity of straighthead increased significantly. Up to the 50 mg of As kg?1 soil treatments, the severity of straighthead incidences were not prevalent. Straighthead resulted in sterile florets with distorted lemma and palea, reduced plant height, tillering, panicle length and grain yield. Straighthead caused approximately 17–100% sterile florates/spikelets formation and about 16–100% loss of grain yield. Straighthead also causes the reduction of panicle formation and panicle length significantly (p < 0.01). In the present study, panicle formation was found to be reduced by 21–95% by straighthead.  相似文献   

4.
The spikelet number per panicle is established in the early stages of panicle development. Nitrogen fertilizer application before panicle initiation is known to increase spikelet number, which is one of the most important traits in rice productivity determination. However, the basic proteomic mechanism remains poorly understood. The present study shows that nitrogen fertilizer significantly increased spikelet number and grain yield in rice. Proteomic variations were further analyzed in young panicles at the secondary panicle branch initiation and spikelet meristem initiation under nitrogen fertilizer treatment. Proteomic analysis identified 63 proteins with significant differential accumulation in young panicles under nitrogen fertilizer treatment. Proteolysis represents the largest functional category, which suggests that protein degradation is an important pathway in the response to nitrogen fertilizer. Importantly, nitrogen fertilizer significantly reduced 14-3-3 proteins, which interact with key enzymes associated with carbon and nitrogen metabolism, and the rice FT homologue Hd3a. Real-time PCR revealed that Hd3a signaling is also repressed by nitrogen fertilizer in leaves. This study contributes to a better understanding of the regulation of nitrogen fertilizers in the flowering pathway leading to panicle development. The identification of novel genes provides new insight into the profound impacts of nitrogen fertilizer on panicle development in rice.  相似文献   

5.
To understand the nature of panicle resistance to water loss,diffusive resistance, transpiration rate, and degree of tissuedesiccation were studied as affected by low tissue water potentialsand relative water contents (RWC) induced by water deficit stresses.A drought susceptible cultivar (IR20) and a moderately resistantcultivar (IRAT 13) were compared under moderate and severe waterdeficit stresses under greenhouse conditions. Irrigation waswithdrawn at flowering stage. During the 10-d stress period,changes in panicle and flag leaf transpiration and white headformation (desiccated) were monitored. Using cut panicles transpirationand white head formation at different RWC levels in 11 differentcultivars were also measured. In flag leaves, increased diffusiveresistance and leaf rolling reduced transpirational losses fromthe adaxial surfaces. Leaf resistance and rolling were linearlycorrelated with leaf water potentials. Resistance in paniclesincreased with progress decline in water potentials, but thechange was not as high as in leaves. Among test cultivars, diffusive resistance increased at thelate flowering stage but not at the early stage when panicleswere newly emerged. Increased water losses contributed to severespikelet desiccation and white heads. A few of the upland cultivarstested, such as Kinandang Patong, IRAT 140 and IRAT 13 conservedmore water and showed reduced water-deficit stress symptoms.Copyright1993, 1999 Academic Press Drought tolerance, drought susceptibility, rice panicles  相似文献   

6.
High‐temperature during flowering in rice causes spikelet sterility and is a major threat to rice productivity in tropical and subtropical regions, where hybrid rice development is increasingly contributing to sustain food security. However, the sensitivity of hybrids to increasing temperature and physiological responses in terms of dynamic fertilization processes is unknown. To address these questions, several promising hybrids and inbreds were exposed to control temperature and high day‐time temperature (HDT) in Experiment 1, and hybrids having contrasting heat tolerance were selected for Experiment 2 for further physiological investigation under HDT and high‐night‐time‐temperature treatments. The day‐time temperature played a dominant role in determining spikelet fertility compared with the night‐time temperature. HDT significantly induced spikelet sterility in tested hybrids, and hybrids had higher heat susceptibility than the high‐yielding inbred varieties. Poor pollen germination was strongly associated with sterility under high‐temperature. Our novel observations capturing the series of dynamic fertilization processes demonstrated that pollen tubes not reaching the viable embryo sac was the major cause for spikelet sterility under heat exposure. Our findings highlight the urgent need to improve heat tolerance in hybrids and incorporating early‐morning flowering as a promising trait for mitigating HDT stress impact at flowering.  相似文献   

7.
Summary Inoculation of water fernAzolla pinnata R. Brown (Bangkok isolate) at the rate of 500kg fresh weight ha−1 in rice fields at weekly intervals after planting in addition to 30 kg N ha−1 as urea showed a decrease in its growth and N2-fixation with delay in application. Use of Azolla up to 3 weeks after planting (WAP) during wet and 4 WAP during dry season produced significantly more grain yield than 30 kg N ha−1, whereas its application upto one WAP produced more grain yield than 60 kg N ha−1. Grain yield with Azolla applied at the time of planting was similar to that of 60 kg N treatment during the wet season. Higher grain yields in zero and one WAP Azolla treatments resulted due to increase in both number of panicles m−2 and number of grains/panicle while the subsequent Azolla inoculations increased grain yield mainly by producing more number of grains/panicle. Dry matter and total N yields at maturity of rice crop were more with Azolla application upto 3 WAP during wet and 2 WAP during dry season while the reduction in sterility (%) was observed upto one WAP over 30 kg N ha−1 during both seasons. Number of tillers m−2 and dry matter production at maximum tillering and flowering were more than 30 kg N ha−1 with the use of Azolla upto one WAP. Increased grain N yield was observed with the use of Azolla upto 4 WAP during two seasons whereas straw N yield increased upto one WAP during wet and 2 WAP during dry season.  相似文献   

8.
Salinity is a major yield-reducing stress in many arid and/or coastal irrigation systems for rice. Past studies on salt stress have mainly addressed the vegetative growth stage of rice, and little is known on salt effects on the reproductive organs. Sodium and potassium uptake of panicles was studied for eight rice cultivars in field trials under irrigation with saline and fresh water in the hot dry season and the wet season 1994 at WARDA in Ndiaye, Senegal. Sodium and potassium content was determined at four different stages of panicle development and related to salt treatment effects on yield, yield components and panicle transpiration. Yield and yield components were strongly affected by salinity, the effects being stronger in the HDS than in the WS. The cultivars differed in the amount of salt taken up by the panicle. Tolerant cultivars had lower panicle sodium content at all panicle development stages than susceptible ones. Panicle potassium concentration decreased with panicle development under both treatments in all cultivars, but to a lesser extent in salt treated susceptible cultivars. Grain weight reduction in the early panicle development stages and spikelet sterility increase in the later PDS were highly correlated (p < 0.01) with an increase in panicle sodium concentration in both seasons, whereas reduction in spikelet number was not. The magnitude of salt-induced yield loss could not be explained with increases in sodium uptake to the panicle alone. It is argued that the amount of sodium taken up by the panicle may be determined by two different factors. One factor (before flowering) being the overall control mechanism of sodium uptake through root properties and the subsequent distribution of sodium in the vegetative plant, whereas the other (from flowering onwards) is probably linked to panicle transpiration. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.

Background and Aims

High temperatures over 32–36 °C at anthesis induce spikelet sterility in rice. The use of a germplasm with an early-morning flowering (EMF) trait has been hypothesized as a way of avoiding this problem. In this study, the effect of the EMF trait on avoiding high temperature-induced sterility at anthesis by flowering at a cooler temperature in the early morning was evaluated.

Methods

The EMF trait was introgressed from wild rice (Oryza officinalis) into the rice cultivar ‘Koshihikari’ (O. sativa). First, spikelets of the EMF line and Koshihikari were subjected to rising temperatures during the daytime in the greenhouse to test for differences in spikelet sterility. Secondly, spikelets of both plants were exposed to 26, 34 and 38 °C at anthesis and to 38 °C beginning at least 1 h after flowering, in the growth chambers at 70 % relative humidity, to test for differences in tolerance to high temperatures.

Key Results

Spikelets of the EMF line started and completed flowering a few hours earlier than Koshihikari. In a greenhouse experiment, spikelets of Koshihikari opened after the air temperature reached 35 °C, but those of the EMF line could open at cooler temperatures. Under these conditions, spikelet sterility significantly increased in Koshihikari, but did not in the EMF line. The number of sterile spikelets increased as their flowering time was delayed in Koshihikari. Furthermore, the chamber experiments revealed that 60 % of the spikelets from both lines were sterile when exposed to 38 °C at anthesis, indicating that tolerance of high temperature was similar in both genotypes.

Conclusions

Reduced sterility in the EMF line subjected to rising temperatures at anthesis in the greenhouse was attributed to an earlier flowering time compared with Koshihikari. The EMF trait of wild rice is effective in mitigating anticipated yield loss due to global warming by escaping high-temperature stress at anthesis during the daytime.  相似文献   

10.
11.
以超级杂交晚稻品种五丰优T025为材料,设置4种施氮水平,低氮(N1,90 kg N·hm-2)、正常氮(N2,180 kg N·hm-2)、高氮(N3,250 kg N·hm-2)和超高氮(N4,330 kg N·hm-2),研究了抽穗扬花期低温条件下不同施氮量对晚稻生长发育、产量形成和相关生理特性的影响. 结果表明:遇低温条件下,各处理产量均有不同程度的下降,以N2产量最高, N1最低, N3和N4居中, N3、N4单株有效穗数、每穗总粒数均较高,但结实率和收获指数均显著下降;随施氮量增加,包穗率、总干物质量和叶绿素含量有不同程度的升高,而穗部干物质量则以N2最多;低温来临后,各处理叶绿素含量、净光合速率(Pn)和蒸腾速率(Tr)均有不同程度的下降, N3、N4的Pn、Tr较N2降幅更大;各处理游离脯氨酸、丙二醛含量和过氧化物酶活性均一定程度上升高,超氧化物歧化酶、过氧化氢酶活性和可溶性蛋白含量下降,以N3、N4的变化幅度最为显著.表明高氮量不利于晚稻抵御抽穗扬花期低温,生产上应避免氮肥施用失当,双季晚稻施氮量以不超过180 kg·hm-2为宜.  相似文献   

12.
13.
Arsenic absorption by rice (Oryza sativa, L.) in relation to the chemical form and concentration of arsenic added in nutrient solution was examined. A 4 × 3 × 2 factorial experiment was conducted with treatments consisting of four arsenic chemical forms [arsenite, As(III); arsenate, As(V); monomethyl arsenic acid, MMAA; and dimethyl arsenic acid, DMAA], three arsenic concentrations [0.05, 0.2, and 0.8 mg As L-1], and two cultivars [Lemont and Mercury] with a different degree of susceptibility to straighthead, a physiological disease attributed to arsenic toxicity. Two controls, one for each cultivar, were also included. Arsenic phytoavailability and phytotoxicity are determined primarily by the arsenic chemical form present. Application of DMAA increased total dry matter production. While application of As(V) did not affect plant growth, both As(III) and MMAA were phytotoxic to rice. Availability of arsenic to rice followed the trend: DMAA<As(V)<MMAA<As(III). Upon absorption, DMAA was readily translocated to the shoot. Arsenic(III), As(V), and MMAA accumulated in the roots. With increased arsenic application rates the arsenic shoot/root concentration decreased for the As(III) and As(V) treatments. Monomethyl arsenic acid (MMAA), however, was translocated to the shoot upon increased application. The observed differential absorption and translocation of arsenic chemical forms by rice is possibly responsible for the straighthead disorder attributed to arsenic.  相似文献   

14.
Oebalus pugnax (F.) (Hemiptera: Pentatomidae) damage to rice, Orya savita L., reduces rough and head rice yields, and grain quality. O. pugnax feeds on developing kernels, introducing pathogenic fungi and causing a discoloration of the grain known as "peck." The objective of this study was to determine the stage of rice panicle development most susceptible to O. pugnax attack. During 2005 and 2006, in greenhouse and field experiments, rice plants were caged at the boot stage and then infested with adult or nymphal O. pugnax. Plants were infested during one of three stages of panicle development: heading, milk, or soft dough. Insects were allowed to feed on the plants for the duration of each stage and then killed. After maturation, panicles were harvested, and grain was hulled and milled. Grain weight, percentage of pecky grain, and percentage of whole grain after milling were recorded. No differences were found in the weight of rough, brown, or milled rice infested with O. pugnax during different stages of panicle development. Number of filled grains per cage was not affected by O. pugnax, and number of empty grains per cage was affected in two of four experiments. Higher percentage of peck was found in grain from panicles infested during dough and milk than in grain from panicles infested during heading. Adult O. pugnax caused higher percentage of peck than nymphs in all stages of panicle development. An inverse relationship was found between percentage of peck and percentage of whole grain weight only in one of the experiments.  相似文献   

15.
为探讨早春极端低温对龙眼成花的影响及芒果和荔枝花穗冷害发生时应对措施的效果,在2008年早春低温冷害时,通过抹除芒果和荔枝的冷害顶生花穗,研究该应对措施对促进腋芽再分化花芽并抽生花序的效果,并在低温冷害后,对不同龙眼品种的成花情况进行调查。结果表明:抹除荔枝冷害顶生花穗后能显著促进黑叶、钦州红荔、糯米糍、立夏红腋芽再生花序,平均单株花穗数分别为139、62.5、28和29穗,分别比对照的高119、22.5、25和26穗;而妃子笑、三月红、桂味和禾荔的处理树和对照树之间差异不明显。抹除芒果冷害顶生花穗后,台农1号、贵妃、桂热82号、红象牙和金穗芒的平均单株成花数分别为92、18、131、20.5和18穗,明显高于对照;而凯特芒、桂热120、吉尔、紫花芒和金穗芒处理树和对照树之间差异不显著。龙眼低温冷害后成花较好的有桂明、储良、石硖、小广眼、大乌圆和大广眼,平均单株花穗数分别为88、67、52.7、52、51和50穗;其次是桂香、乌龙岭、东壁、立冬本和早白露,平均单株花穗数分别为39、26、25、23.5和21.5穗。  相似文献   

16.
Within-panicle flowering, exsertion, and seed ripening were investigated in four clones of P. maximum. Flowering, exsertion, and seed ripening were fast processes (<;10 d for each process). Dates and timing were stable within each clone and should allow definition of the harvest date for each genotype and for each harvest method. Clones showed two main flowering patterns differing in the number of flowered spikelets at the date of maximal flowering and in the time of flowering. Seed set was similar to that of allogamous and anemophilous plants. It was nevertheless lower in clones with a high degree of flowering-shedding overlap. In the absence of flowering-shedding overlap, the time for a panicle to flower and to produce seeds was shorter than the time between two emergences of panicles on a tiller. Reproduction timing seemed controlled to minimize competition between panicles on a tiller.  相似文献   

17.
The transition from vegetative to reproductive phase, flowering per se , floral organ development, panicle structure and morphology, meiosis, pollination and fertilization, cytoplasmic male sterility (CMS) and fertility restoration, and grain development are the main reproductive traits. Unlocking their genetic insights will enable plant breeders to manipulate these traits in cereal germplasm enhancement. Multiple genes or quantitative trait loci (QTLs) affecting flowering (phase transition, photoperiod and vernalization, flowering per se ), panicle morphology and grain development have been cloned, and gene expression research has provided new information about the nature of complex genetic networks involved in the expression of these traits. Molecular biology is also facilitating the identification of diverse CMS sources in hybrid breeding. Few Rf (fertility restorer) genes have been cloned in maize, rice and sorghum. DNA markers are now used to assess the genetic purity of hybrids and their parental lines, and to pyramid Rf or tms (thermosensitive male sterility) genes in rice. Transgene(s) can be used to create de novo CMS trait in cereals. The understanding of reproductive biology facilitated by functional genomics will allow a better manipulation of genes by crop breeders and their potential use across species through genetic transformation.  相似文献   

18.
水稻生产正向资源节约和环境友好的方向转型,常规高产稻作技术亟待创新.本研究以粳稻辽星1号为试材,在2012、2013年研究密度增加、基蘖肥减少、穗肥稳定的“增密减氮”栽培模式对东北水稻产量和氮肥利用效率及温室效应的影响.结果表明: 与常规高产栽培模式相比,在基本苗增加33.3%和基蘖肥施氮量减少20.0%的条件下,氮肥农学效率和氮肥偏生产力两年平均分别提高49.6%(P<0.05)和20.4%(P<0.05),单位面积和单位产量的温室效应两年平均分别下降9.9%和12.7%(P<0.05).虽然水稻有效穗数和总生物量下降,但结实率和收获指数提高,所以产量基本稳定甚至提高.增密减氮降低了土壤NH4+-N和NO3--N浓度,提高了氮素回收效率.表明适度增密减氮可兼顾水稻高产、氮肥高效利用和温室气体减排.  相似文献   

19.
We investigated the attractiveness of synthetic volatile blends or individual volatiles of flowering rice panicles or flowering Scirpus juncoides spikelets to the sorghum plant bug Stenotus rubrovittatus (Matsumura). None of the individual chemicals tested attracted either sex of the bug. Synthetic volatile blends of flowering rice panicles composed of geranyl acetone, β‐caryophyllene, n‐decanal, methyl salicylate, β‐elemene and n‐tridecene attracted females. The synthetic blend of volatiles was just as attractive as natural flowering rice panicles to females. Other synthetic blends did not attract the bug. We sampled headspace volatiles from flowering S. juncoides spikelets with solid‐phase microextraction and analysed them using gas chromatography–mass spectrometry. The main volatile emitted from S. juncoides was β‐caryophyllene, one of the major volatile components of flowering rice panicles. β‐Elemene was a common volatile found in flowering rice panicles and flowering S. juncoides spikelets. Therefore, we investigated the attractiveness of synthetic blends of flowering rice panicles and S. juncoides spikelets composed of β‐caryophyllene and β‐elemene. The synthetic blend of flowering S. juncoides spikelets significantly attracted males but not females. The synthetic blend of flowering rice panicles composed of β‐caryophyllene and β‐elemene did not attract either sex. These results suggest that β‐caryophyllene and β‐elemene are common active compounds responsible for attractiveness of flowering rice panicles and S. juncoides spikelets although some of the other volatile components act synergistically with these two compounds in natural plant odours.  相似文献   

20.
Although flowering time is often associated with plant size, little is known about how flowering time genes affect plant architecture. We grew four rice lines having different flowering time genotypes (hd1 ehd1, hd1 Ehd1, Hd1 ehd1 and Hd1 Ehd1) under distinct photoperiod conditions. By using genotype-treatment combinations that resulted in similar flowering times, we were able to compare the effects of flowering time genes on traits related to plant architecture. The results revealed that the combination of Heading-date 1 (Hd1) and Early heading date 1 (Ehd1) can reduce the number of primary branches in a panicle, resulting in smaller spikelet numbers per panicle; this occurs independently of the control of flowering time. In addition, expression of the Hd3a and Rice Flowering-locus T 1 (RFT1) florigen genes was up-regulated in leaves of the Hd1 Ehd1 line at the time of the floral transition. We further revealed that Hd1 and/or Ehd1 caused up-regulation of Terminal Flower 1-like genes and precocious expression of panicle formation-related genes at shoot apical meristems during panicle development. Therefore, two key flowering time genes, Hd1 and Ehd1, can control panicle development in rice; this may affect crop yields in the field through florigen expression in leaf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号