首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
To investigate whether enzyme production can be enhanced in the Trichoderma reesei industrial hyperproducer strain RUT C30 by manipulation of cellulase regulation, the positive regulator Xyr1 was constitutively expressed under the control of the strong T. reesei pdc promoter, resulting in significantly enhanced cellulase activity in the transformant during growth on cellulose. In addition, constitutive expression of xyr1 combined with downregulation of the negative regulator encoding gene ace1 further increased cellulase and xylanase activities. Compared with RUT C30, the resulting transformant exhibited 103, 114, and 134 % greater total secreted protein levels, filter paper activity, and CMCase activity, respectively. Surprisingly, strong increases in xyr1 basal expression levels resulted in very high levels of CMCase activity during growth on glucose. These findings demonstrate the feasibility of improving cellulase production by modifying regulator expression, and suggest an attractive new single-step approach for increasing total cellulase productivity in T. reesei.  相似文献   

5.
Zheng  Fanglin  Cao  Yanli  Lv  Xinxing  Wang  Lei  Li  Chunyan  Zhang  Weixin  Chen  Guanjun  Liu  Weifeng 《Applied microbiology and biotechnology》2017,101(5):2067-2078

Trichoderma reesei represents an important workhorse for industrial production of cellulases as well as other proteins. The molecular mechanism underlying the regulation of cellulase production as well as other physiological processes in T. reesei is still insufficiently understood. We constructed a P tcu1 -based promoter substitution cassette that allowed one-step replacement of the endogenous promoter for controlling the target gene expression with copper. We then showed that copper repression of the histone acetyltransferase gene gcn5 phenocopied the gcn5 deletion strain. Using the same strategy, we further characterized the function of another putative Spt-Ada-Gcn5 acetyltransferase (SAGA) complex subunit encoding gene, ada2, in T. reesei. Similar to the repression of gcn5, the addition of copper to the P tcu1 -ada2 strain not only drastically reduced the vegetative growth and conidiation in T. reesei but also severely compromised the induced cellulase gene expression. The developed strategy will thus be potentially useful to probe the biological function of the large fraction of T. reesei genes with unknown functions including those essential genes in the genome to expand its extraordinary biotechnological potential.

  相似文献   

6.
7.
8.
From 22,791 mutants of a cellulase hyper-producing strain of Trichoderma reesei (Hypocrea jecorina), ATCC66589, as the parent, we selected two mutants, M2-1 and M3-1, that produce cellulases in media containing both cellulose and glucose. The mutation enabled the mutants to produce cellulases, which were measured as p-nitrophenyl β-d-lactopyranoside-hydrolyzing activities, in media with glucose as a sole carbon source, although M2-1 exhibited different sensitivities to glucose from M3-1. When the mutants were grown for 8 days on a medium with cellulose as a sole carbon source, the filter-paper-degrading activities (FPAs) per gram of cellulose were 257 and 281 U for M2-1 and M3-1, respectively, values that were 1.1–1.2 times higher than that of the parental strain. Cellulase production by M2-1 and M3-1 on a medium with a continuously fed mixture of glucose and cellobiose resulted in 214 and 210 U of FPA/gram carbon sources, respectively, whereas less efficient production (140 U of FPA/gram carbon source) was achieved by the parental strain. The improved cellulase productivity of the mutants allows us to use glucose as a carbon source for efficient on-site production of cellulases with quality/quantity-controlled feeding of soluble carbon sources and inducers.  相似文献   

9.
10.
11.
Maximum cellulase production was sought by comparing the activities of the cellulases produced by differentTrichoderma reesei strains andAspergillus niger. Trichoderma reesei Rut-C30 showed higher cellulase activity than otherTrichoderma reesei strains andAspergillus niger that was isolated from soil. By optimizing the cultivation condition during shake flask culture, higher cellulase production could be achieved. The FP (filter paper) activity of 3.7 U/ml and CMCase (Carboxymethylcellulase) activity of 60 U/ml were obtained from shake flask culture. When it was grown in 2.5L fermentor, where pH and DO levels are controlled, the Enzyme activities were 133.35 U/ml (CMCase) and 11.67 U./ml (FP), respectively. Ammonium sulfate precipitation method was used to recover enzymes from fermentation broth. The dried cellulase powder showed 3074.9 U/g of CMCase activity and 166.7 U/g of FP activity with 83.5% CMCase recovery.  相似文献   

12.
13.

Objective

Improve the hydrolysis efficiency of the Trichoderma reesei cellulase system by heterologously expressing cellobiohydrolase Cel7A (Te-Cel7A) from the thermophilic fungus Talaromyces emersonii.

Results

Te-Cel7A was expressed in T. reesei under control of the cdna1 promoter and the generated transformant QTC14 could successfully secrete Te-Cel7A into the supernatant using glucose as carbon source. The recombinant Te-Cel7A had a temperature optimum at 65 °C and an optimal pH of 5, which were similar to those from the native host. The culture supernatant of QTC14 exhibited a 28.8% enhancement in cellobiohydrolase activity and a 65.2% increase in filter paper activity relative to that of the parental strain QP4. Moreover, the QTC14 cellulase system showed higher thermal stability than that of the parental strain QP4. In the saccharification of delignified corncob residue, the cellulose conversion of QTC14 showed 13.9% higher than that of QP4 at the end of reaction.

Conclusions

The thermophilic fungus-derived cellulases could be efficiently expressed by T. reesei and the recombinant cellulases had potential applications for biomass conversion.
  相似文献   

14.
Summary Cellulase production in Trichoderma reesei mutants was induced by l-sorbose, known to be an inhibitor of -1,3-glucan synthesis. In the experiments the washed mycelia were used as resting cells. For CMCase induction over 24 h using T. reesei PC-3-7, the most effective pH, temperature and l-sorbose concentration were 2.8, 28° C and 0.3 mg/ml, respectively. Comparison with other cellulase inducers showed that the inductive level of CMCase by l-sorbose was similar to that by sophorose, known to be the most potent inducer of cellulases. Since the induction of CMCase was inhibited completely by 10 g of cycloheximide per ml, the induction process was considered to involve de novo synthesis. Although l-sorbose had the effective inducibility of CMCase, the assimilation rate of l-sorbose was very low in T. reesei PC-3-7.Production of Ethanol from Biomasses. Part III.Production of Ethanol from Biomasses. Part III.  相似文献   

15.
Various used paper materials have been exposed to the action of cellulases from Penicillium funiculosum, Trichoderma reesei, Trichoderma viride and Aspergillus niger. A 2 h incubation period showed cellulase from T. viride the most active except for office paper that was maximally degraded by A. niger cellulase. Cellulase mixtures increased saccharification while sequential treatment with cellulases from T. reesei and P. funiculosum increased biodegradation at values between 15% and 190%. The maximum increase of saccharification (190%) was obtained when T. reesei cellulase initiated the sequential treatment of newspaper relative to the sole action of P. funiculosum cellulase on this non-pretreated and pretreated material.  相似文献   

16.

Background

Non-productive binding of enzymes to lignin is thought to impede the saccharification efficiency of pretreated lignocellulosic biomass to fermentable sugars. Due to a lack of suitable analytical techniques that track binding of individual enzymes within complex protein mixtures and the difficulty in distinguishing the contribution of productive (binding to specific glycans) versus non-productive (binding to lignin) binding of cellulases to lignocellulose, there is currently a poor understanding of individual enzyme adsorption to lignin during the time course of pretreated biomass saccharification.

Results

In this study, we have utilized an FPLC (fast protein liquid chromatography)-based methodology to quantify free Trichoderma reesei cellulases (namely CBH I, CBH II, and EG I) concentration within a complex hydrolyzate mixture during the varying time course of biomass saccharification. Three pretreated corn stover (CS) samples were included in this study: Ammonia Fiber Expansiona (AFEX?-CS), dilute acid (DA-CS), and ionic liquid (IL-CS) pretreatments. The relative fraction of bound individual cellulases varied depending not only on the pretreated biomass type (and lignin abundance) but also on the type of cellulase. Acid pretreated biomass had the highest levels of non-recoverable cellulases, while ionic liquid pretreated biomass had the highest overall cellulase recovery. CBH II has the lowest thermal stability among the three T. reesei cellulases tested. By preparing recombinant family 1 carbohydrate binding module (CBM) fusion proteins, we have shown that family 1 CBMs are highly implicated in the non-productive binding of full-length T. reesei cellulases to lignin.

Conclusions

Our findings aid in further understanding the complex mechanisms of non-productive binding of cellulases to pretreated lignocellulosic biomass. Developing optimized pretreatment processes with reduced or modified lignin content to minimize non-productive enzyme binding or engineering pretreatment-specific, low-lignin binding cellulases will improve enzyme specific activity, facilitate enzyme recycling, and thereby permit production of cheaper biofuels.
  相似文献   

17.
Summary Most of the mutants of Trichoderma reesei had good cellulase productivity on Avicel but this was low on alkali-treated bagasse, which could be a most promising cellulosic biomass to use as an inexpensive carbon source for cellulase production. Two T. reesei mutants, PC-3-7 and X-31, in which strong cellulase activity is inducible by l-sorbose, were, however, found to produce cellulase on alkali-treated bagasse. They produced about 100 units of CMCase per ml in 5-1 jar fermentor culture with 4% alkali-treated bagasse as carbon source. They also showed higher cellulase productivity than other mutants on other easily saccharified substrates, such as alkali-treated rice straw and Walseth's cellulose.Production of Ethanol from Biomasses Part IV.Production of Ethanol from Biomasses Part IV.  相似文献   

18.
Abstract

The order Actinomycetales includes a number of genera that contain species that actively degrade cellulose and these include both mesophilic and facultative thermophilic species. Cellulases produced by strains from two of the genera containing thermophilic organisms have been studied extensively: Microbispora bispora and Thermomonospora fusca. Fractionation of M. bispora cellulases has identified six different enzymes, all of which were purified to near homogeneity and partially characterized. Two of these enzymes appear to be exocellulases and gave synergism with each other and with the endocellulases. The structural genes of five M. bispora cellulases have been cloned and one was sequenced. Fractionation of T. fusca cellulases has identified five different enzymes, all of which were purified to near homogeneity and partially characterized. One of the T. fusca enzymes gives synergism in the hydrolysis of crystalline cellulose with several T. fusca endocellulases and with Trichoderma reesei CBHI but not with T. reesei CBHII. Each T. fusca cellulase contains distinct catalytic and cellulose binding domains. The structural genes of four of the T. fusca endoglucanases have been cloned and sequenced, while three cellulase genes have been cloned from “T. curvata”. The T. fusca cellulase genes are expressed at a low level in Escherichia coli, but at a high level in Streptomyces lividans. Sequence comparisons have shown that there are no significant amino acid homologies between any of the catalytic domains of the four T. fusca cellulases, but each of them shows extensive homology to several other cellulases and fits in one of the five existing cellulase gene families. There have been extensive studies of the regulation of the synthesis of these cellulases and a number of regulatory mutants have been isolated. This work has shown that the different T. fusca cellulases are coordinately regulated over a 100-fold range by two independent controls; induction by cellobiose and repression by any good carbon source.  相似文献   

19.
We characterized the effect of deletion of the Trichoderma reesei (Hypocrea jecorina) ace1 gene encoding the novel cellulase regulator ACEI that was isolated based on its ability to bind to and activate in vivo in Saccharomyces cerevisiae the promoter of the main cellulase gene, cbh1. Deletion of ace1 resulted in an increase in the expression of all the main cellulase genes and two xylanase genes in sophorose- and cellulose-induced cultures, indicating that ACEI acts as a repressor of cellulase and xylanase expression. Growth of the strain with a deletion of the ace1 gene on different carbon sources was analyzed. On cellulose-based medium, on which cellulases are needed for growth, the Δace1 strain grew better than the host strain due to the increased cellulase production. On culture media containing sorbitol as the sole carbon source, the growth of the strain with a deletion of the ace1 gene was severely impaired, suggesting that ACEI regulates expression of other genes in addition to cellulase and xylanase genes. A strain with a deletion of the ace1 gene and with a deletion of the ace2 gene coding for the cellulase and xylanase activator ACEII expressed cellulases and xylanases similar to the Δace1 strain, indicating that yet another activator regulating cellulase and xylanase promoters was present.  相似文献   

20.
Trichoderma reesei is the preferred organism for producing industrial cellulases. However, cellulases derived from T. reesei have their highest activity at acidic pH. When the pH value increased above 7, the enzyme activities almost disappeared, thereby limiting the application of fungal cellulases under neutral or alkaline conditions. A lot of heterologous alkaline cellulases have been successfully expressed in T. reesei to improve its cellulolytic profile. To our knowledge, there are few reports describing the co-expression of two or more heterologous cellulases in T. reesei. We designed and constructed a promoter collection for gene expression and co-expression in T. reesei. Taking alkaline cellulase as a reporter gene, we assessed our promoters with strengths ranging from 4 to 106 % as compared to the pWEF31 expression vector (Lv D, Wang W, Wei D (2012) Construction of two vectors for gene expression in Trichoderma reesei. Plasmid 67(1):67–71). The promoter collection was used in a proof-of-principle approach to achieve the co-expression of an alkaline endoglucanase and an alkaline cellobiohydrolase. We observed higher activities of both cellulose degradation and biostoning by the co-expression of an endoglucanase and a cellobiohydrolase than the activities obtained by the expression of only endoglucanase or cellobiohydrolase. This study makes the process of engineering expression of multiple genes easier in T. reesei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号