首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adventitious shoot regeneration from leaves of blackberry cultivar Čačanska Bestrna was examined using 30 different combinations of treatment. Young, fully expanded leaves taken from in vitro proliferating shoots were cultured on Murashige and Skoog (MS) medium containing either N 6-benzylaminopurine (BAP) (2.0 mg l−1) or thidiazuron (TDZ) (1.0 and 2.0 mg l−1) alone, or either of them combined with indol-3-butyric acid (IBA), α-naphthalene acetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) at different concentrations (0.1, 1.0 and 2.0 mg l−1). Indirect shoot formation was observed in 12 different treatments, though the efficacy varied greatly among types and concentrations of plant growth regulators. TDZ at 1.0 mg l−1, applied either alone or combined with IBA, was significantly more effective than BAP in inducing shoot regeneration. The highest regeneration rate (41.66%) was obtained on medium containing TDZ alone. Cytological, flow cytometry and isozyme analyses were used for screening of genetic stability/instability in regenerants. Cytological study, based on chromosome counts in root tip meristems, and flow cytometry analysis indicated that adventitious shoots of Čačanska Bestrna are tetraploid with 2n = 4x = 28 as well as those derived from axillary buds. However, a study conducted on the peroxidase patterns of the different blackberry regenerating lines showed differences between some lines and control plants (in vivo plants and micropropagated plants). These differences were visible with 3,3′,5,5′-tetramethylbenzidine (TMBZ) as hydrogenous donor for peroxidase detection.  相似文献   

2.
Trifolium alexandrinum L. (Egyptian clover) is one of the most important forage crops in the world. Its regeneration in tissue culture has been described in a few reports but the efficiency, accurate time scales and applicability to various genotypes of the described procedures are uncertain. Therefore their suitability for genetic transformation is unclear. In this study, were report new fast procedures for regeneration of Egyptian clover that are applicable to the regeneration of various genotypes (Mescawi-ahaly, Sakha3 and Sakha4). Shoots were regenerated from intact and wounded cotyledons as well as hypocotyls of Mescawi-ahaly on naphthaleneacetic acid/benzyladenine (NAA/BA) and naphthaleneacetic acid/thidiazuron (NAA/TDZ) media. The highest shoot regeneration frequencies were obtained from intact cotyledons on NAA/BA (0.05 mg l−1 NAA combined with 2.0 mg l−1 BA) and NAA/TDZ (0.05 mg l−1 NAA combined with 1.0 mg l−1 TDZ) media (66.2 and 43.1% respectively) compared to 18.4 and 10.1% for wounded cotyledons on NAA/BA and NAA/TDZ respectively. 21.0% shoot regeneration frequency was observed for hypocotyls on NAA/BA (2.0 mg l−1 NAA combined with 0.5 mg l−1 BA) medium but no regeneration was obtained on NAA/TDZ medium. Rooting of the regenerated shoots was induced on indole butyric acid (IBA: 0.24 mg l−1) or NAA (2.0 mg l−1) media where IBA medium supported significantly higher frequencies of rooting as well as survival of the whole plantlets after transfer to soil. However, the rooting and survival frequencies also depended on the type of explant and the medium used for shoot regeneration. The two cultivars Sakha3 and Sakha4 were regenerated using the culture conditions optimized for Mescawi-ahaly with comparable efficiencies, indicating that the described procedure is not genotype dependent. The time scale of whole plantlet regeneration ranged from 7.5 weeks for intact and wounded cotyledons to 10 weeks for hypocotyl explants.  相似文献   

3.
Malaxis acuminata is a terrestrial orchid that grows in shady areas of semi-evergreen to shrubby forests. It is highly valued for its medicinal properties as dried pseudo-bulbs are important ingredients of several Ayurvedic preparations. In this study, adventitious shoot buds were induced from internodal explants of M. acuminata grown on Murashige and Skoog (MS) medium supplemented with different concentrations of 6-benzyladenine (BA), kinetin (Kn), and thidiazuron (TDZ). Of the three cytokinins used, TDZ at 3 mg l−1 induced the highest frequency (82%) of organogenic explants. However, all responding explants produced only a single adventitious shoot irrespective of the type and concentration of the cytokinin. Adding 0.5 mg l−1 α naphthaleneacetic acid (NAA) to the medium enhanced adventitious shoot formation. In the presence of 3 mg l−1 TDZ and 0.5 mg l−1 NAA, frequency of organogenesis was 96% with a mean number of 6.1 shoots per explant. Prolonged culture or subculture on the same medium did not promote further shoot production. However, transfer of these cultures to MS medium supplemented with 3 mg l−1 TDZ and 0.5 mg l−1 NAA and various concentrations of different polyamines (PAs), including spermine, spermidine, and putrescine, significantly increased mean shoot number per explant. The highest frequency of shoot induction (100%) and mean shoot number per explant (14.6) was observed on MS medium with 3 mg l−1 TDZ, 0.5 mg l−1 NAA, and 0.4 mM spermidine. Regenerated shoots were excised and subcultured on an elongation medium consisting of MS medium with 3 mg l−1 BA. Moreover, the highest frequency of rooting (96%) and mean number of roots per shoot (3.3) was observed on MS medium with 4 mg l−1 indole-3-butyric acid (IBA) and 1.5 mg l−1 activated charcoal (AC). Almost 90% of rooted shoots were successfully acclimatized and established ex vitro.  相似文献   

4.
An efficient in vitro propagation system has been developed for rapid micropropagation of Soapnut (Sapindus trifoliatus Linn.), a medicinally and economically important tree from nodal (axillary bud) segments of seedlings. The frequency of shoot regeneration from seedling node explant was influenced by the age of the seedlings, growth regulators and successive transfer of the mother explant. Explants from 4-week-old seedlings yielded the maximum shoot regeneration frequency (97.22%) on full-strength MS medium supplemented with 1.0 mg l−1 of 6-benzylaminopurine (BAP). After harvesting the newly formed shoots, the mother explants transferred to same medium subsequently produced a maximum of 5.16 shoots per explant after third passage. Further improvement in the morphogenic response occurred when the nodal explants excised from in vitro regenerated shoots were employed, and 6.89 shoots per explant were obtained on the same medium after the third subculture. Optimal rooting (91.67%) was obtained by placing the micro-shoots in liquid MS medium with 1.0 mg l−1 IBA for 24 h and then transferring to the agar solidified MS medium devoid of IBA. The micropropagated shoots with well-developed roots were acclimatized and successfully transplanted to soil with 90% survival rate. Genetic stability of the regenerated plants was assessed using random amplified polymorphic DNA (RAPD). The amplification products were monomorphic in micropropagated plants and similar to those of mother plant. No polymorphism was detected revealing the genetic integrity of micropropagated plants. This is the first report of an efficient protocol for regeneration of S. trifoliatus through organogenesis, which can be applied for further genetic transformation assays and pharmaceutical purposes.  相似文献   

5.
A plant regeneration protocol was developed for white ash (Fraxinus americana L.). Hypocotyls and cotyledons excised from embryos were cultured on Murashige and Skoog (MS) medium supplemented with 6-benzylaminopurine (BA) plus thidiazuron (TDZ), and compared for organogenic potential. Sixty-six percent of hypocotyl segments and 10.4% of cotyledon segments produced adventitious shoots, with a mean number of adventitious shoots per explant of 3.5 ± 0.9 and 2.5 ± 1.5, respectively. The best regeneration medium (52% shoot formation; 47% shoot elongation) for hypocotyls was MS basal medium containing 22.2 μM BA plus 0.5 μM TDZ, producing a mean of 3.9 ± 0.4 adventitious shoots. Adventitious shoots were established as proliferating shoot cultures following transfer to MS medium with Gamborg B5 vitamins supplemented with 10 μM BA plus 10 μM TDZ. For in vitro rooting, woody plant medium with indole-3-acetic acid (IAA) at 0, 2.9, 5.7, or 8.6 μM in combination with 4.9 μM indole-3-butyric acid (IBA) was tested for a 5- or 10-d dark culture period, followed by culture under a 16-h photoperiod. The best rooting (78% to 81%) of in vitro shoots was obtained with a 5 d dark culture treatment on medium containing 2.9 or 5.7 μM IAA plus 4.9 μM IBA, with an average of 2.6 ± 0.4 roots per shoot. Rooted plants were successfully acclimatized to the greenhouse. This adventitious shoot regeneration and rooting protocol will be used as the basis for experimental studies to produce transgenic white ash with resistance to the emerald ash borer.  相似文献   

6.
An efficient plant regeneration protocol was established for castor (Ricinus communis L.). Hypocotyl tissue from zygotic embryo axis produced adventitious shoots when treated with either thidiazuron (TDZ, 1 μM) or 6-benzylaminopurine (BA, 20 μM). TDZ resulted in more than a threefold higher rate of shoot induction (a maximum of 24.2 shoots per explant) than BA (6.8 shoots). Our results also showed that the pretreatment of explants in the dark increased the number of shoots regenerated per explant by 82% and 36% with TDZ and BA, respectively. The elongation of hypocotyl tissue in the dark appears to be the primary cause of the increase. Comparable rates of rooting were achieved on the media supplemented with either indole-3-butyric acid (IBA, 84.3%) or 1-naphthaleneacetic acid (NAA, 87.4%) at 5 μM. However, IBA was more efficient in promoting root and shoot development, resulting in a higher rate of establishment (93.5%) in the soil, compared to the rate with NAA (39.5%). Histological analysis showed the adventitious induction of the shoot buds originated from the cortex of the hypocotyl tissue.  相似文献   

7.
A regeneration system was developed for oriental lily (Lilium orientalis) based on both leaf and bulb scale. Adventitious shoots were regenerated from leaves of in vitro cultures on Murashige and Skoog medium containing thidiazuron (TDZ) or 6-benzylaminopurine (BA) and naphthaleneacetic acid (NAA). The highest percent regeneration from leaf explants was 74.2%, being observed on medium containing 10.8 μM TDZ and 0.54 μM NAA. The highest mean number of shoots generated was 4.4 and was obtained from bulb scale explants on medium containing 0.54 μM TDZ and 0.54 μM NAA. Adventitious shoots were successfully rooted at rates ranging from 79.2% to 100%. The rooted plantlets survived after acclimatization in the greenhouse. The effect of kanamycin concentration on adventitious shoot regeneration was also evaluated, a value of 100 mg l−1 being suggested as a lethal dose for lily transformation. Eighteen ISSR markers were employed to determine the genetic stability of the regenerated shoots in comparison to their mother plant. Eleven primers in total produced 70 clear and reproducible bands. Genetic similarity indicators among the clonal derivatives and the mother plant ranged from 0.92 to 1.0. All 15 micropropagated progenies and the mother plant could be grouped together in one major cluster with a similarity level of 92%. The somaclonal variation rate across the plantlets was estimated as 4.2%, indicating that direct shoot formation from explant regeneration is a safe method for multiplication of “true-to-type” plants.  相似文献   

8.
Summary Improved in vitro tissue culture systems are needed to facilitate the application of recombinant DNA technology to the improvement of sugar beet germplasm. The effects of N 6-benzyladenine (BA) and thidiazuron (TDZ) pretreatment on adventitious shoot and somatic embryogenesis regeneration were evaluated in a range of sugar beet breeding lines and commercial varieties. Petiole explants showed higher frequencies of direct adventitious shoot formation and produced more shoots per explant than leaf lamina explants. TDZ was more effective than BA for the promotion of shoot formation. The optimal TDZ concentrations were 2.3–4.6 μM for the induction of adventitious shoot regeneration. Direct somatic embryogenesis from intact seedlings could be induced by either BA or TDZ. TDZ-induced somatic embryogenesis occurred on the lower surface of cotyledons at concentrations of 0.5–2μM and was less genotype-dependent than with Ba. A high frequency of callus induction could be obtained from seedlings and leaf explants, but only a few of the calluses derived from leaf explants could regenerate to plants via indirect somatic embryogenesis. These results demonstrated that TDZ could prove to be a more effective cytokinin for in vitro culture of sugar beet than BA. Rapid and efficient regeneration of plants using TDZ may provide a route for the production of transgenic sugar beet following Agrobacterium-mediated transformation.  相似文献   

9.

High efficient and repeatable in vitro regeneration protocol was established from embryo axis, half-seed, axillary meristem, and cotyledonary node explants of chickpea. Various concentrations and combinations of various plant growth regulators (PGRs) were employed to induce multiple shoots, shoot elongation and rooting of shoots to obtain complete plantlets of chickpea. The pretreatment of seeds with 6-benzyl aminopurine (BAP) at 1.0 mg l?1 was found to significantly increase the multiple shoot regeneration from the all explants tested. Among three PGRs such as BAP, kinetin (KIN) and thidiazuron (TDZ) tested for multiple shoot induction; BAP at 2.0 mg l?1 produced the maximum number of shoots in all tested explants. The maximum number of shoots (48.80 shoots/explant) was attained from the embryo axis explant followed by half-seed (32.76 shoots/explant), axillary meristem (28.34 shoots/explant) and cotyledonary node explant (18.47 shoots/explant) on medium augmented with 2.0 mg l?1 BAP along with 0.05 mg l?1 Indole-3-butyric acid (IBA). The optimum percentage of shoot elongation response was recorded (96.68%) on medium fortified with IAA (0.05 mg l?1), GA3 (1.0 mg l?1) and BAP (1.0 mg l?1) with an average shoot length of 8.82 cm. The elongated shoots were successfully rooted in medium augmented with 2.0 mg l?1 IBA. The complete plants were acclimatized in the greenhouse with a survival rate of 72%. The plantlets regenerated from four explants appeared to be morphologically similar to mother plants. The genetic fidelity of in vitro regenerated plants was evaluated using Start Codon Targeted and Inter simple sequence repeats molecular markers. The in vitro regenerated plants from all four explants were found to be the true to type with their mother plant. The in vitro protocol presented in the study should offer as a feasible system for chickpea genetic transformation.

  相似文献   

10.
This work presents a rapid and reliable micropropagation method for a Lycaste hybrid using a field-grown axillary bud culture system. Intact buds (2–4 mm in length) were excised from a mature pseudobulb and were cultured in half-strength MS basal medium, which was supplemented with 0.5 mg l−1 benzyladenine (BA), 1.0 mg l−1 thidiazuron (TDZ) and 2% (w/v) sucrose. After 2 months, the calli exhibited vigorous growth and eventually turned green, forming protocorm-like bodies (PLBs) originating in the surface of each callus. The results of this work reveal that the combination of 0.5 mg l−1 BA and 1.0 mg l−1 TDZ treatments was highly effective in indirectly multiplying shoots from callus-PLB mixed explants, which yielded up to 400 shoots in the fourth time subcultures (within 24 weeks). Histological observations showed the apical meristem of adventitious bud is based on a longitudinal section of a callus sample. Histological and scanning electronic microscopy also indicated that PLBs derived from calli could be regarded as organogenesis but not somatic embryogenesis. Shoots with a length of around 2–3 cm generated in vitro were excised and cultured in MS medium supplemented with 0.5 mg l−1 IBA exhibited the best rooting response (78.3%), and an average of 1.8 roots per explant was produced within 4 weeks.  相似文献   

11.
Micropropagation of Embelia ribes was achieved through proliferation of axillary shoots obtained from mature plants. Nodal shoot segments, collected March–May, exhibited high-frequency (75%) shoot initiation when cultured on Murashige and Skoog (MS) basal medium supplemented with thidiazuron (TDZ) at 1.13 μM and indole-3-butyric acid (IBA) at 0.49 μM. Subculture of sprouted shoots from the original explants on medium containing TDZ (1.13 and 0.45 μM) during the first and second subcultures was found essential for further shoot proliferation, while inhibition of shoot elongation by TDZ could be overcome by transferring shoot cultures onto MS medium containing 6-benzylaminopurine (BAP; 11.10 μM) for the third subculture. Treating the explants with an antioxidant mixture of 568 μM ascorbic acid, 119 μM citric acid, and 307 μM glutathione prior to inoculation, coupled with subculture at 2-wk intervals onto fresh medium, both helped to reduce browning of the explants and facilitated production of five to six shoots/explant. MS medium supplemented with BAP (4.44 μM) and IBA (0.49 μM) induced shoot multiplication, producing five to six shoots/explant with a shoot length of 3 to 4 cm over a 4-wk culture period. Shoots of 3 to 4 cm in length exhibited 100% rooting within 4 wk after transfer to media containing half the nutrient salt concentration of MS medium with 3.69 μM IBA. Ex vitro rooting in the greenhouse from the in vitro shoots treated with 4.93 μM IBA for 30 min exhibited 95% rooting in soilrite™ medium in a 4-wk period. About 85% of micropropagated plants were established successfully in root trainers. Three-month-old, hardened plants could further be successfully established in the field. In 1 yr, by using the above protocol, 3,200 plants could be produced from a single shoot and 2,700 could be established in the field.  相似文献   

12.
Primulina tabacum is a rare and endangered species that is endemic to China. Establishing an efficient regeneration system is necessary for its conservation and reintroduction. In this study, when leaf explants collected from plants grown in four ecotypes in China are incubated on Murashige and Skoog (MS) medium containing 5.0 μM thidiazuron (TDZ) for 30 days, then transferred to medium containing 5.0 μM 6-benzyladenine (BA), adventitious shoots are then observed. Conversely, when leaf explants are incubated on medium containing 5.0 μM BA for 30 days, then transferred to medium containing 5.0 μM TDZ, somatic embryogenesis is induced. This indicates that somatic embryogenesis and shoot organogenesis could be switched simply by changing the order of two cytokinins supplemented in the culture medium. Histological investigation has revealed that embryogenic cells are induced within 30 days following incubation of explants in medium containing TDZ. Only if embryogenic cells were induced, TDZ could enhance somatic embryogenesis and BA could stimulate shoot organogenesis. When comparing explants from different ecotypes, leaf explants from Zixiadong in Hunan Province could induce low numbers (1–2) of either somatic embryos or adventitious shoots on medium containing either 5.0 μM TDZ or 5.0 μM BA, respectively. Whereas, leaf explants from plants collected from the other three ecological habitats could induce 50–70 somatic embryos/adventitious shoots per explant. Moreover, somatic embryos could induce secondary somatic embryogenesis and adventitious shoots on different media. All regenerated shoots developed adventitious roots when these are transferred to rooting medium, and over 95% of plantlets have survived following acclimatization and transfer to a potting mixture (1:1, sand:vermiculite).  相似文献   

13.

The synergistic effect of plant growth regulators on axillary bud proliferation for mass clonal multiplication of Moringa oleifera Lam. (vern. drumstick) has been assessed for the first time. Treatment of decoated seeds with 1% (w/v) Bavistin for 60 min, 0.33% (w/v) streptocycline for 30 min, and 0.1% (w/v) HgCl2 for 3.5 min resulted in complete removal of the surface contaminants. Maximum seed germination (89.13%) was obtained on quarter-strength Murashige & Skoog (MS) medium. Culture of nodal segments on MS + 6-benzyladenine (BA) at 3 mg L−1 resulted in multiple shoot proliferation with ~ 18 shoots per explant. All combinations of indole-3-acetic acid (IAA) + kinetin (Kn) resulted in elongated shoots, while only lower concentrations of BA (0.5 mg L−1), along with IAA (0.5 to 2 mg L−1), or Kn (0.5 to 5 mg L−1), showed significant synergy in the shoot morphogenesis. In addition, the maximum (100%) rooting efficiency was attained on half-strength MS medium supplemented with different concentrations of IAA and indole-3-butyric acid (IBA). The rooted plants were successfully established in the greenhouse for acclimatization. Clonality of the raised plants was assessed using 15 random primers of Operon® technologies (OPT and OPF series), and eight primers resulted in significant amplification with distinct, identical, and reproducible bands that confirmed clonality of the micropropagated plants. The present study provides a comprehensive analysis of the synergistic effect of plant growth regulators (PGRs) on in vitro shoot regeneration and proliferation for clonal mass multiplication disease-free plantlets, which can be utilized to maximize the yield of healthy and genetically identical plants of drumstick tree, which is considered to be a miracle multipurpose tree.

  相似文献   

14.
This study demonstrates the morphogenic potential of pulvinus, an important organ situated at the base of the petiole or rachis of leguminous plants. Plant regeneration via pulvinus-derived calli of Caesalpinia bonduc has been achieved. Organogenic calli have been derived from the explant 45 days after culture on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) alone or in combination with 6-benzylaminopurine (BA). Optimum callus induction (100%) occurred when the pulvini were cultured on MS medium fortified with 6 mg l−1 2,4-D and 1 mg l−1 BA. The highest shoot induction was obtained when the calli were transferred to MS medium supplemented with 5 mg l−1 BA and 1 mg l−1 indole-3-acetic acid (IAA). On this medium, 87% cultures responded with an average number of 4.2 shoots per culture. The maximum root induction from the regenerated shoots was observed on half strength MS medium containing 6 mg l−1 indole-3-butyric acid (IBA). Here 100% shoots rooted with a mean number of 6.3 roots per shoot. The regenerated plantlets were acclimatized and subsequently showed normal growth. This efficient protocol will be helpful for propagating elite clones on a mass scale and could be utilized for genetic transformation study.  相似文献   

15.
Pumpkin ash (Fraxinus profunda (Bush) Bush) is at risk for extirpation by an exotic insect, the emerald ash borer (EAB). Pumpkin ash is limited to wetland areas of the Eastern United States, and has been listed as an endangered species because of EAB activity. Pumpkin ash provides many benefits to the ecosystem, and its wood is used in the manufacturing industry. In vitro regeneration provides an integral tool for the mass propagation and genetic transformation of pumpkin ash to combat EAB. Therefore, a plant regeneration protocol was developed for pumpkin ash. Aseptically extracted hypocotyls formed adventitious shoots following 4 weeks on Murashige and Skoog (MS) medium supplemented with 0–22.2 μM 6-benzyladenine (BA) and 0–6.8 μM thidiazuron (TDZ) then transferred for an additional 4 weeks on MS medium with Gamborg B5 vitamins plus 0.2 g L−1 glycine (B5G) containing 6.7 μM BA, 1 μM indole-3-butryic acid (IBA), and 0.29 μM gibberellic acid (GA3). As adventitious shoots developed, these were transferred to a MSB5G medium with 13.3 μM BA, 1 μM IBA, and 0.29 μM GA3 for shoot elongation. Elongated shoots were successfully micropropagated using MSB5 medium with 10 μM BA and 10 μM TDZ. Adventitious root formation was as high as 94% using woody plant medium supplemented with 4.9 μM IBA with shoots cultured for 10 days in the dark followed by culture under a 16-h photoperiod. Acclimatization to the greenhouse was successful and normal plant growth was observed. This protocol will provide a means for genetic transformation for EAB resistance and mass propagation for conservation.  相似文献   

16.
The adventitious shoot regeneration from petiole explants of Pelargonium × hederaefolium ‘Bonete’ was achieved via a mixed pathway i.e. organogenesis and somatic embryogenesis. The histological study of regenerated structures revealed the presence of both shoot primordia and embryo-like structures. The initial growth in petiole explants occurred on media with BAP + auxin or TDZ alone. However, the most effective regeneration (24 structures/explant) was noted in the presence of TDZ (2 mg l−1) and IBA (0.1 or 0.2 mg l−1). Moreover, the application of TDZ in the induction phase reduced the time needed for the formation of adventitious structures and positively influenced the further shoot development on the medium containing m-topolin and IBA.  相似文献   

17.
Morinda citrifolia adventitious roots were cultured in shake flasks using Murashige and Skoog medium with different types and concentrations of auxin and cytokinin. Root (fresh weight and dry weight) accumulation was enhanced at 5 mg l−1 indole butyric acid (IBA) and at 7 and 9 mg l−1 naphthalene acetic acid (NAA). On the other hand, 9 mg l−1 NAA decreased the anthraquinone, phenolic and flavonoid contents more severely than 9 mg l−1 IBA. When adventitious roots were treated with kinetin (0.1, 0.3 and 0.5 mg l−1) and thidiazuron (TDZ; 0.1, 0.3 and 0.5 mg l−1) in combination with 5 mg l−1 IBA, fresh weight and dry weight decreased but secondary metabolite content increased. The secondary metabolite content (including 1,1-diphenyl-2-picrylhydrazyl activity) increased more in TDZ-treated than in kinetin-treated roots. Antioxidative enzymes such as catalase (CAT) and guaiacol peroxidase (G-POD), which play important roles in plant defense, also increased. A strong decrease in ascorbate peroxidase activity resulted in a high accumulation of hydrogen peroxide. This indicates that adventitious roots can grow under stress conditions with induced CAT and G-POD activities and higher accumulations of secondary metabolites. These results suggest that 5 mg l−1 IBA supplementation is useful for growth and secondary metabolite production in adventitious roots of M. citrifolia.  相似文献   

18.
The induction of adventitious buds from apical shoot explants of Euphorbia tirucalli was studied. On average, 10.5 adventitious buds were efficiently induced in a ring on the segment from one apical explant on MS (Murashige and Skoog) medium supplemented with 0.5 mg l−1 thidiazuron and 0.5 mg l−1 benzylaminopurine. The adventitious buds could develop into adventitious shoots during subsequent cultures on hormone-free MS medium. For rooting, shoot clumps were cultured on half-strength MS medium containing 0.2 mg l−1 α-naphthaleneacetic acid or indole-3-butyric acid. All the rooted plants survived establishment in soil within 2 months.  相似文献   

19.
A rapid and efficient micropropagation system was developed for Psoralea corylifolia, an endangered, valuable medicinal plant. Multiple shoot buds were obtained in half-strength liquid Phillips–Collins (L2) medium supplemented with 5 μM benzylaminopurine (BA) and 5 μM thidiazuron (TDZ) from apical bud explants of 1-week-old cultures. The shoot buds were subcultured on enriched solid L2 medium supplemented with different concentrations and combinations of BA, kinetin (KIN), 2-isopentenyladenine (2iP), TDZ, bavistin (BVN) and trimethoprim (TMP). Enriched solid L2 medium supplemented with 2 μM BA, 1 μM TDZ and 100 mg l−1 BVN were more effective in producing greater number of shoots per explant (85.2 ± 0.9 shoots/explant) after 4 weeks of culture. The regenerated shoots (40–50 mm in length) rooted and accompanied by hardening upon transfer to 50 μM indole-3-butyric acid (IBA) for 15 min and followed by planting in sterile soil mixture and vermiculate (3:1 v/v), with 50 ml of one-eight strength L2 basal salt solution devoid of sucrose and inositol, supplemented with 5 μM IBA and 100 mg l−1 BVN. The plants achieved 100% rooting with hardening. Subsequently the rooted plants were successfully established in the field. The survival percentage differed with seasonal variations. The concentration of psoralen was evaluated in different tissues of ex vitro and in vivo grown plants by high-performance liquid chromatography (HPLC). Psoralen content was increased in leaves (2.97%), roots (2.38%), stems (5.40%) and seeds (1.63%) of ex vitro plants than the in vivo plants. This system facilitates for commercial and rapid propagation of P. corylifolia for conservation strategies and phytomedicine production.  相似文献   

20.
Summary A method has been developed to facilitate shoot formation from leaf explants of almond. Leaves were dissected from micropropagated shoot cultures of the commercial cultivars Nonpareil and Ne Plus Ultra, and sections incubated on Almehdi and Parfitt's (1986) basal medium (AP) with varied plant growth-regulator conditions. Three auxins, 2,4-dichlorophenoxyacetic acid (2,4-D), α-naphthaleneacetic acid (NAA), and indole-3-butyric acid (IBA), in combination with two cytokinins, benzylaminopurine (BA) and thidiazuron (TDZ), were tested at various concentrations along with casein hydrolysate (CH) to determine, the conditions most conducive to adventitious shoot regeneration. Response to the tested plant growth-regulator conditions varied with genotype. Of the three auxins tested, NAA and IBA induced adventitious shoots from Ne Plus Ultra explants, but only IBA was effective for Nonpareil. For the cytokinins, shoot development from Ne Plus Ultra occurred in the presence of either BA or TDZ, whereas for Nonpareil only TDZ was effective unless CH was incorporated in the basal medium. The inclusion of CH (0.1% w/v) improved callus morphology, and increased regeneration frequencies for both cultivars. Maximum regeneration frequencies for Ne Plus Ultra (44.4%) and Nonpareil (5.5%) were achieved on AP basal salts supplemented with CH, IBA (9.8 μM), and TDZ at 22.7 and 6.8 μM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号