首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested whether selective breeding for early-age high voluntary exercise behavior over 16 generations caused the evolution of lifelong exercise behavior, life expectancy, and age-specific mortality in house mice (Mus domesticus). Sixteenth-generation mice from four replicate selection lines and four replicate random-bred control lines were individually housed from weaning through death and divided between two activity treatments (either with or without running wheels). Thus, there were four treatment groups: selection versus control crossed with active versus sedentary. The effects of selective breeding on life expectancy and age-specific mortality differed between females and males. In females, sedentary selection mice had early and high initial adult mortality and thus the lowest increases in mortality with age. Active selection females had the lowest early adult mortality, had limited mortality during midlife, and exhibited rapid increases in mortality rates at the very end of life; thus, they had deferred senescence. Median life expectancy was greater for both groups of selection females than for the two complementary groups of control females. Like females, sedentary selection males had the highest early adult mortality, and slow but steadily increasing mortality over the entire lifetime. Unlike the active selection females, active control males had the lowest mortality across the lifespan (until the end of life). Interestingly, the males with the lowest median life expectancy were those in the active selection treatment group. In both sexes, running (km/week) decreased over the lifetime to very low and virtually equivalent levels at the end of life in control and selection mice. Overall, these results demonstrate an evolutionary cost of selective breeding for males, regardless of exercise level, but a benefit for females when they have an outlet for the up-selected behavior. We conclude that correlated evolution of senescence occurs in mice selectively bred for high voluntary wheel running; exercise per se is beneficial for control mice of both sexes, but the impact on the effect of selection depends on sex; and the behavioral effect of exercise selection at an early age declines throughout the life span, which demonstrates decreasing genetic correlations over age for the genes involved in increased exercise.  相似文献   

2.
The effects of genetic selection for high wheel running (13th generation) and prolonged access (8 weeks) to running wheels on food consumption and body composition were studied in house mice (Mus domesticus). Mice from four replicate lines selected for high wheel-running activity ran over twice as many revolutions per day on activity wheels as did mice from four replicate control lines. At approximately 49 days of age, all mice were placed individually in cages with access to wheels and monitored for 6 days, after which wheels were prevented from rotating for the "sedentary" individuals. During the experiment, five feeding trials were conducted and body mass was measured weekly. After 8 weeks, body composition was measured by hydrogen isotope dilution. Across the five feeding trials, mice in the "active" group (wheels free to rotate) consumed 22.4% more food than mice in the "sedentary" group (wheels locked); mice from the selected lines consumed 8.4% more food than mice from the control lines (average of all trials; body mass-corrected values). In females, but not males, we found a significant interaction between selection and wheel access treatments: within the "active" group the difference in food consumption between selected and control animals was greater than in the "sedentary" group. At the end of the study, mice from the "active" and "sedentary" groups did not differ significantly in body mass; however, mice from the selected lines were approximately 6% smaller in body mass. Estimated lean body mass did not differ significantly either between selected and control lines or between wheel-access groups (P>0.3). Mice from selected lines had lower total body fat compared to mice from control lines (P=0.05; 24.5% reduction; LSMEANS) as did mice from the "active" compared to "sedentary" group (P= 0.03; 29.2% reduction; LSMEANS). Under these conditions, a sufficient explanation for the difference in body mass between the selected and control lines was the difference in fat content.  相似文献   

3.
The evolutionary importance of postnatal ontogenies has long been recognized, but most studies of ontogenetic trajectories have focused exclusively on morphological traits. For animals, this represents a major omission because behavioral traits and their ontogenies often have relatively direct relationships to fitness. Here four replicate lines of house mice artificially selected for high early-age wheel running and their four replicate control lines were used to evaluate the effects of early-age directional selection, genetic drift, and activity environment (presence or absence of a running wheel) on variation in the ontogenies of three traits known to be genetically correlated: voluntary wheel running, body mass, and food consumption. Early-age selection significantly changed both the shape and position of the wheel-running and food-consumption ontogenies while influencing the position, but not the shape, of the body mass ontogeny. Genetic drift (as indicated by variation among replicate lines) produced significant changes in both the position and shape of all three ontogenies; however, its effect differed between the selection and control groups. For wheel running and food consumption, genetic drift only influenced the control ontogenies, whereas for body mass, genetic drift had a significant effect in both selection groups. Both body-mass and food-consumption ontogenies were significantly altered by activity environment, with the environment causing significant changes in the shape and position of both ontogenies. Overall the results demonstrate strong effects of early-age selection, genetic drift, and environmental variation on the evolution and expression of behavioral and morphological ontogenies, with selection changing only the position of the morphological ontogeny but both the position and shape of the behavioral ontogenies.  相似文献   

4.
We studied rectal body temperatures of house mice (Mus domesticus) that had been artificially selected for high voluntary wheel running.1. At generation 17, mice from the four replicate selected lines ran, on average, 2.5-times as many revolutions/day as did mice from the four random-bred control lines.2. During the day, repeatability of individual differences in body temperature measured 4 days apart was low; at night, repeatability was statistically significant across three time scales (1 day, 1 week, 2 weeks).3. During the day, body temperatures of selected and control animals did not differ; at night, mice from selected lines had higher body temperatures. However, when amount of wheel running immediately prior to measurement was included as a covariate, the difference was no longer statistically significant.Higher body temperatures, associated with increased activity, might enhance locomotor abilities through Q10 effects, increase metabolic rate and food requirements, affect sleep patterns, and alter expression of heat-shock proteins.  相似文献   

5.
6.
We studied expression of heat shock protein 72 (HSP72) in female mice from four replicate lines that had been selectively bred for high voluntary wheel running (S) and from four random-bred control lines (C). Mice from generation 23 were sampled after 6 days of wheel access, and those from generation 14 were sampled after 8 wk of access to wheels either free to rotate or locked. Mice from S lines ran approximately 2.6 times as many revolutions per day as did those from C lines. Western blotting of tissues from generation 23 mice indicated that S mice had elevated HSP72 expression in triceps surae muscle, but levels in spleen, kidney, heart, and lung were similar in S and C mice. HSP72 expression in triceps surae from generation 14 mice was measured by ELISA and analyzed with a two-way analysis of covariance. The interaction between wheel type and line type (S vs. C) was statistically significant, and subsequent analyses indicated that S mice had significantly elevated HSP72 expression only when housed with free wheels. Mice with the previously described mini-muscle phenotype (Houle-Leroy P, Guderley H, Swallow JG, and Garland T Jr. Am J Physiol Regul Integr Comp Physiol 284: R433-R443, 2003) occurred in both generations and had elevated HSP72 expression in triceps surae. For the generation 23 sample, wheel running as a covariate had a significant negative association with HSP72 expression, and the effect of line type was still statistically significant. Therefore, the increased HSP72 expression of S mice is not a simple proximate effect of their increased wheel running.  相似文献   

7.
To test the hypothesis that selective breeding for high voluntary wheel running negatively affects maternal performance in house mice, we observed maternal behavior and compared litter size and mass, in replicate lines of selected (N=4) and control (N=4) mice from generations 20 and 21 of an artificial selection experiment. At generation 21, selected-line females ran 2.8-times more revolutions per day than females from random-bred control lines, when tested at approximately 6 weeks of age as part of the normal selection protocol. After giving birth, dams from selected and control lines exhibited similar frequencies of maternal behaviors and also spent similar amounts of time in general locomotor activity at litter ages of both 9 and 16 days. Dams from selected lines also performed equally well as controls in repeated pup-retrieval trials. At first parturition, selected-line dams averaged 2.4 g smaller in body mass as compared with dams from the control lines; however, neither litter size nor litter mass at birth (generation 20) or at weaning (generation 21) differed significantly between selected and control lines. We conclude that, at least under the husbandry conditions employed, maternal behavior and reproductive output at first parturition are genetically independent of wheel-running behavior.  相似文献   

8.
To gain insight into past human physical activity, anthropologists often infer functional loading history from the morphology of limb bone remains. It is assumed that, during life, loading had a positive, dose-dependent effect on bone structure that can be identified despite other effects. Here, we investigate the effects of genetic background and functional loading on limb bones using mice from an artificial selection experiment for high levels of voluntary wheel running. Growing males from four replicate high runner (HR) lines and four replicate nonselected control (C) lines were either allowed or denied wheel access for 2 months. Using μCT, femoral morphology was assessed at two cortical sites (mid-diaphysis, distal metaphysis) and one trabecular site (distal metaphysis). We found that genetic differences between the linetypes (HR vs. C), between the replicate lines within linetype, and between individuals with and without the so-called "mini-muscle" phenotype (caused by a Mendelian recessive gene that halves limb muscle mass) gave rise to significant variation in nearly all morphological indices examined. Wheel access also influenced femoral morphology, although the functional response did not generally result in enhanced structure. Exercise caused moderate periosteal enlargement, but relatively greater endocortical expansion, resulting in significantly thinner cortices and reduced bone area in the metaphysis. The magnitude of the response was independent of distance run. Mid-diaphyseal bone area and area moments, and trabecular morphology, were unaffected by exercise. These results underscore the strong influence of genetics on bone structure and the complexity by which mechanical stimuli may cause alterations in it.  相似文献   

9.
Selective breeding is an important tool in behavioral genetics and evolutionary physiology, but it has rarely been applied to the study of exercise physiology. We are using artificial selection for increased wheel-running behavior to study the correlated evolution of locomotor activity and physiological determinants of exercise capacity in house mice. We studied enzyme activities and their response to voluntary wheel running in mixed hindlimb muscles of mice from generation 14, at which time individuals from selected lines ran more than twice as many revolutions per day as those from control (unselected) lines. Beginning at weaning and for 8 wk, we housed mice from each of four replicate selected lines and four replicate control lines with access to wheels that were free to rotate (wheel-access group) or locked (sedentary group). Among sedentary animals, mice from selected lines did not exhibit a general increase in aerobic capacities: no mitochondrial [except pyruvate dehydrogenase (PDH)] or glycolytic enzyme activity was significantly (P < 0.05) higher than in control mice. Sedentary mice from the selected lines exhibited a trend for higher muscle aerobic capacities, as indicated by higher levels of mitochondrial (cytochrome-c oxidase, carnitine palmitoyltransferase, citrate synthase, and PDH) and glycolytic (hexokinase and phosphofructokinase) enzymes, with concomitant lower anaerobic capacities, as indicated by lactate dehydrogenase (especially in male mice). Consistent with previous studies of endurance training in rats via voluntary wheel running or forced treadmill exercise, cytochrome-c oxidase, citrate synthase, and carnitine palmitoyltransferase activity increased in the wheel-access groups for both genders; hexokinase also increased in both genders. Some enzymes showed gender-specific responses: PDH and lactate dehydrogenase increased in wheel-access male but not female mice, and glycogen phosphorylase decreased in female but not in male mice. Two-way analysis of covariance revealed significant interactions between line type and activity group; for several enzymes, activities showed greater changes in mice from selected lines, presumably because such mice ran more revolutions per day and at greater velocities. Thus genetic selection for increased voluntary wheel running did not reduce the capability of muscle aerobic capacity to respond to training.  相似文献   

10.
The response to uniform selection may occur in alternate ways that result in similar performance. We tested for multiple adaptive solutions during artificial selection for high voluntary wheel running in laboratory mice. At generation 43, the four replicate high runner (HR) lines averaged 2.85-fold more revolutions per day as compared with four non-selected control (C) lines, and females ran 1.11-fold more than males, with no sex-by-linetype interaction. Analysis of variance indicated significant differences among C lines but not among HR for revolutions per day. By contrast, average speed varied significantly among HR lines, but not among C, and showed a sex-by-linetype interaction, with the HR/C ratio being 2.02 for males and 2.45 for females. Time spent running varied among both HR and C lines, and showed a sex-by-linetype interaction, with the HR/C ratio being 1.52 for males but only 1.17 for females. Thus, females (speed) and males (speed, but also time) evolved differently, as did the replicate selected lines. Speed and time showed a trade-off among HR but not among C lines. These results demonstrate that uniform selection on a complex trait can cause consistent responses in the trait under direct selection while promoting divergence in the lower-level components of that trait.  相似文献   

11.
Selective breeding for over 35 generations has led to four replicate (S) lines of laboratory house mice (Mus domesticus) that run voluntarily on wheels about 170% more than four random-bred control (C) lines. We tested whether S lines have evolved higher running performance by increasing running economy (i.e., decreasing energy spent per unit of distance) as a correlated response to selection, using a recently developed method that allows for nearly continuous measurements of oxygen consumption (VO2) and running speed in freely behaving animals. We estimated slope (incremental cost of transport [COT]) and intercept for regressions of power (the dependent variable, VO2/min) on speed for 49 males and 47 females, as well as their maximum VO2 and speeds during wheel running, under conditions mimicking those that these lines face during the selection protocol. For comparison, we also measured COT and maximum aerobic capacity (VO2max) during forced exercise on a motorized treadmill. As in previous studies, the increased wheel running of S lines was mainly attributable to increased average speed, with males also showing a tendency for increased time spent running. On a whole-animal basis, combined analysis of males and females indicated that COT during voluntary wheel running was significantly lower in the S lines (one-tailed P=0.015). However, mice from S lines are significantly smaller and attain higher maximum speeds on the wheels; with either body mass or maximum speed (or both) entered as a covariate, the statistical significance of the difference in COT is lost (one-tailed P> or =0.2). Thus, both body size and behavior are key components of the reduction in COT. Several statistically significant sex differences were observed, including lower COT and higher resting metabolic rate in females. In addition, maximum voluntary running speeds were negatively correlated with COT in females but not in males. Moreover, males (but not females) from the S lines exhibited significantly higher treadmill VO2max as compared to those from C lines. The sex-specific responses to selection may in part be consequences of sex differences in body mass and running style. Our results highlight how differences in size and running speed can account for lower COT in S lines and suggest that lower COT may have coadapted in response to selection for higher running distances in these lines.  相似文献   

12.
Behavioral addictions can come in many forms, including overeating, gambling and overexercising. All addictions share a common mechanism involving activation of the natural reward circuit and reinforcement learning, but the extent to which motivation for natural and drug rewards share similar neurogenetic mechanisms remains unknown. A unique mouse genetic model in which four replicate lines of female mice were selectively bred (>76 generations) for high voluntary wheel running (High Runner or HR lines) alongside four non-selected control (C) lines were used to test the hypothesis that high motivation for exercise is associated with greater reward for cocaine (20 mg/kg) and methylphenidate (10 mg/kg) using the conditioned place preference (CPP) test. HR mice run ~three times as many revolutions/day as C mice, but the extent to which they have increased motivation for other rewards is unknown. Both HR and C mice displayed significant CPP for cocaine and methylphenidate, but with no statistical difference between linetypes for either drug. Taken together, results suggest that selective breeding for increased voluntary running has modified the reward circuit in the brain in a way that increases motivation for running without affecting cocaine or methylphenidate reward.  相似文献   

13.
Laboratory house mice (Mus domesticus) that had experienced 10 generations of artificial selection for high levels of voluntary wheel running ran about 70% more total revolutions per day than did mice from random-bred control lines. The difference resulted primarily from increased average velocities rather than from increased time spent running. Within all eight lines (four selected, four control), females ran more than males. Average daily running distances ranged from 4.4 km in control males to 11.6 km in selected females. Whole-animal food consumption was statistically indistinguishable in the selected and control lines. However, mice from selected lines averaged approximately 10% smaller in body mass, and mass-adjusted food consumption was 4% higher in selected lines than in controls. The incremental cost of locomotion (grams food/revolution), computed as the partial regression slope of food consumption on revolutions run per day, did not differ between selected and control mice. On a 24-h basis, the total incremental cost of running (covering a distance) amounted to only 4.4% of food consumption in the control lines and 7.5% in the selected ones. However, the daily incremental cost of time active is higher (15.4% and 13.1% of total food consumption in selected and control lines, respectively). If wheel running in the selected lines continues to increase mainly by increases in velocity, then constraints related to energy acquisition are unlikely to be an important factor limiting further selective gain. More generally, our results suggest that, in small mammals, a substantial evolutionary increase in daily movement distances can be achieved by increasing running speed, without remarkable increases in total energy expenditure.  相似文献   

14.
Selective breeding produced four replicate lines of high-runner (HR) mice that run on wheels for approximately 2.7 times more revolutions per day than four unselected control lines. Previous studies found that HR mice of both sexes have lower body fat (isotope dilution at 15 wk of age) and that males (females not studied) have smaller retroperitoneal fat pads (17 wk). HR mice also exhibit elevated plasma corticosterone and insulin-stimulated glucose uptake by some hindlimb muscles but apparently do not differ in circulating insulin or glucose levels (males at 18 wk). Given their lower body fat and higher activity levels, we hypothesized that HR mice would have lower circulating leptin levels than controls. Female mice were given wheel access for 6 d at 7 wk of age, as part of the routine wheel testing for the selective breeding protocol, and then were killed after one additional week without wheels to reduce possible acute effects of activity on leptin. As hypothesized, serum leptin levels were significantly lower in HR mice. ANCOVA indicated that leptin was strongly positively correlated with both total body fat (measured by ether extraction) and body mass change from weaning, but HR mice still had significantly lower adjusted leptin levels (ANCOVA). Within HR lines but not within control lines, individual variation in leptin levels was negatively correlated with amount or speed of wheel running measured a week before being killed. Growth from weaning to euthanasia and body dry mass were lower in HR mice than in controls, but absolute dry masses of the ventricles, liver, gut, and uterus plus ovaries did not significantly differ, nor did percentage of the total dry mass as fat. HR mice offer a novel model for studying the causes and consequences of physiologically relevant variations in serum leptin.  相似文献   

15.
We have developed a novel model to study the correlated evolution of behavioural and morphophysiological traits in response to selection for increased locomotor activity. We used selective breeding to increase levels of voluntary wheel running in four replicate lines of laboratory house mice, Mus domesticus, with four random-bred lines maintained as controls. The experiment presented here tested for correlated behavioural responses in the wheel-cage complex, with wheels either free to rotate or locked (environmental factor). After 13 generations, mice from selected lines ran 2.2 times as many revolutions/day as controls on days 5 and 6 of initial exposure to wheels (10 826 versus 4890 revolutions/day, corresponding to 12.1 and 5.5 km/day, respectively). This increase was caused primarily by mice from selected lines running faster, not more minutes per day. Focal-animal observations confirmed that the increase in revolutions/day involved more actual running (or climbing in locked wheels), not an increase in coasting (or hanging). Not surprisingly, access to free versus locked wheels had several effects on behaviour, including total time spent in wheels, sniffing and biting. However, few behaviours showed statistically significant differences between the selected and control lines. Selection did not increase the total time spent in wheels (either free or locked), the frequency of nonlocomotor activities performed in the wheels, nor the amount of locomotor activity in cages attached to the wheels; as well, selection did not decrease the amount of time spent sleeping. Thus, wheel running is, at the genetic level, a largely independent axis of behaviour. Moreover, the genetic architecture of overall wheel running and its components seem conducive to increasing total distance moved without unduly increasing energy or time-related costs. The selection experiment also offers a new approach to study the proximate mechanisms of wheel-running behaviour itself. For example, frequencies of sniffing and wire biting were reduced in selected females but not males. This result suggests that motivation or function of wheel running may differ between the sexes. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

16.
The study of correlated evolution can lead to new insights about the inheritance patterns of complex traits. In order to better understand the evolution of metabolic rate, we tested whether voluntary activity levels and basal metabolic rate are genetically correlated in 90-wk-old mice (Mus domesticus) from replicated lines of the sixteenth generation of an artificial selection experiment for high early-age wheel-running activity. We measured basal rates of oxygen consumption and carbon dioxide production and also computed the respiratory exchange ratio. Half of the individuals from both selected and control lines had been allowed free access to running wheels since 4 wk of age, while the other half were in standard cages. This design allowed testing of hypotheses about (1) genetic correlations between voluntary activity and metabolic rate and (2) lifetime training effects on metabolic traits. Selection group did not have a significant effect on metabolic traits; therefore, this study does not support some of the implicit assumptions of the aerobic capacity model for the evolution of vertebrate energetics. Activity group also did not affect metabolic rate, indicating that lifetime training does not alter basal metabolism in these mice. However, strong replicate line-within-selection-group differences were detected, indicating the occurrence of random genetic drift. In females, this divergence in metabolic traits attributable to drift was independent of body mass, but in males it was probably caused by a correlated response to selection involving body mass. This study is the first to show such effects of random genetic drift on metabolic traits.  相似文献   

17.
Experimental studies manipulating diet and exercise have shown varying effects on metabolic syndrome components in both humans and rodents. To examine the potential interactive effects of diet, exercise and genetic background, we studied mice from four replicate lines bred (52 generations) for high voluntary wheel running (HR lines) and four unselected control lines (C). At weaning, animals were housed for 60 days with or without wheels and fed either a standard chow or Western diet (WD, 42% kcal from fat). Four serial (three juvenile and one adult) blood samples were taken to measure fasting total cholesterol (TC), high‐density lipoprotein cholesterol (HDL‐C), triglycerides and glucose. Western diet was obesogenic for all mice, even after accounting for the amount of wheel running and kilojoules consumed. Western diet significantly raised glucose as well as TC and HDL‐C concentrations. At the level of individual variation (repeatability), there was a modest correlation (r = 0.3–0.5) of blood lipids over time, which was reduced with wheel access and/or WD. Neither genetic selection history nor wheel access had a statistically significant effect on blood lipids. However, HR and C mice had divergent ontogenetic trajectories for body mass and caloric intake. HR mice also had lower adiposity, an effect that was dependent on wheel access. The environmental factors of diet and wheel access had pronounced effects on body mass, food consumption and fasting glucose concentrations, interacting with each other and/or with genetic strain. These data underscore the importance (and often unpredictable nature) of genotype‐by‐environment and environment‐by‐environment interactions when studying body weight regulation.  相似文献   

18.
本文旨在研究姜黄素(CRC)对双酚A(BPA)诱导的小鼠卵巢氧化损伤的保护作用。将28日龄雌性小鼠分为对照组、姜黄素组、双酚A组和双酚A加姜黄素组,连续灌胃6周。收集卵巢,通过活性氧(ROS)水平的检测、卵巢闭锁卵泡的观察以及3种关键抗氧化酶表达和活性的测定,研究姜黄素对双酚A诱发的卵巢氧化损伤的保护作用及机制。结果显示,与对照组相比,双酚A暴露后明显增加了卵巢的活性氧水平,造成氧化应激,提高了卵巢中有腔卵泡闭锁比例。与双酚A组相比,双酚A和姜黄素共同处理组降低了卵巢的活性氧水平和卵巢中有腔卵泡闭锁比例。双酚A暴露降低了卵巢超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GPx)以及过氧化氢酶(CAT)的表达和活性,姜黄素逆转了双酚A诱导的3种抗氧化酶表达和活性的下降。结果表明,姜黄素可逆转双酚A通过氧化应激造成的卵巢损伤。  相似文献   

19.
The present study was conducted to evaluate the protective effects of vitamin E and selenium (Se) application on alteration of antioxidant enzyme activities against cigarette smoking induced oxidative damage in brains, kidneys and liver of mice. Male mice (balb/c) were exposed to cigarette smoke and treated with Se and/or vitamin E. Glutathione transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GRX), superoxide dismutase (SOD) and catalase (CAT) enzyme activities in mice brain, kidney and liver were measured spectrophotometrically. GST, GPX, GRX, SOD and CAT enzyme activities in the brains of smoke-exposed mice were found lower than the enzymes activities of control mice and Se-and vitamin E-treated mice at the end of the three and five months. Opposite to brain, enzyme activities in kidneys and livers of smoke-exposed mice were found higher than the enzymes activities of control mice and Se-and vitamin E-treated mice at the end of the three and five months. Activities of GST, GPX, GRX SOD and CAT in the livers, kidneys and brains of smoke-exposed mice were found statistically different (p < 0.01) compared to control mice and Se-and vitamin E-treated mice. Combined application of vitamin E and Se had an additive protective effect against changing enzymes activities in smoke-exposed mice livers, kidneys and brains at the end of the both application periods. These results suggest that cigarette smoke exposure enhances the oxidative stress, thereby disturbing the tissue antioxidant defense system and combined application of vitamin E and Se protects the brain, kidney and liver from oxidative damage through their antioxidant potential.  相似文献   

20.
为了考察红景天提取物对高强度跑台运动小鼠的抗氧化能力的影响,本研究将30只昆明小鼠随机分成对照组、模型组和红景天提取物组,每组10只。红景天提取物组小鼠按照500 mg/kg bw的剂量灌胃红景天提取液(2 m L)。对照组和模型组小鼠灌胃等体积的蒸馏水,共灌胃4周。采用硫酸蒽酮比色法检测小鼠肝脏和肌肉组织糖原的含量;采用硫代巴比妥酸比色法检测小鼠骨骼肌组织中的丙二醛(MDA)水平;采用RT-PCR和Western blotting检测骨骼肌组织中的超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)和过氧化氢酶(CAT)的表达水平;采用苏木精和伊红(HE)染色评价骨骼肌病理改变。研究显示,模型组小鼠的跑台运动时间显著低于红景天提取物组(61.32 min vs 83.22 min,p<0.05);与模型组相比,红景天提取物组小鼠骨骼肌的炎性细胞浸润明显减轻,肌纤维排列明显改善;红景天提取物组的肝糖原和肌糖原含量均显著高于模型组;红景天提取物组小鼠骨骼肌组织中的MDA水平显著低于模型组;红景天提取物组的SOD、GSH-Px和CAT m RNA和蛋白表达水平均显著高于模型组;红景天提取物可通过上调抗氧化酶表达来增加抗氧化能力,减弱骨骼肌损伤,并增加机体的抗疲劳能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号