首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E protein, the 29 kd product of the F plasmid repE gene, plays both positive and negative roles in the autoregulation of F replication. We have cloned and expressed the repE gene in an inducible ATG-fusion vector and have detected specific binding of E protein to the repE operator and to four 19-base pair direct repeats (incB) within the F plasmid replication origin ori2. Binding of E protein at the repE operator occurs with higher affinity than at ori2(incB) and gives almost complete protection to at least 30 base pairs, whereas binding of E protein to the direct repeats in the ori2 region shows an alternating pattern of enhanced and reduced sensitivity to DNAase cleavage consistent with a protein-induced folding of the DNA. These results provide direct biochemical support for a model of F plasmid replication in which the E protein serves both as an initiator of replication and as an autorepressor of its own synthesis.  相似文献   

2.
Fusions between the gene encoding the E protein of the IncFI plasmid F and the lac genes were constructed. Analysis of the expression of beta-galactosidase from these fusions shows that the promoter for the E protein gene is located between the incB region and the structural gene for the E protein. Near this promoter is a regulatory site on which a negative control element acts. Most likely the E protein itself acts as a repressor of E gene expression and thus autoregulates its own expression. No other gene products seem to affect the expression of the E protein gene.  相似文献   

3.
F plasmid replication during the Escherichia coli division cycle was investigated by using the membrane-elution technique to produce cells labeled at different times during the division cycle and scintillation counting for quantitative analysis of radioactive plasmid DNA. The F plasmid replicated, like the minichromosome, during a restricted portion of the bacterial division cycle; i.e., F plasmid replication is cell-cycle specific. The F plasmid replicated at a different time during the division cycle than a minichromosome present in the same cell. F plasmid replication coincided with doubling in the rate of enzyme synthesis from a plasmid-encoded gene. When the cell cycle age of replication of the F plasmid was determined over a range of growth rates, the cell size at which the F plasmid replicated followed the same rules as did replication of the bacterial chromosome--initiation occurred when a constant mass per origin was achieved--except that the initiation mass per origin for the F plasmid was different from that for the chromosome origin. In contrast, the high-copy mini-R6K plasmid replicated throughout the division cycle.  相似文献   

4.
5.
Summary At the XhoI site (45.08F) of plasmid mini-F a deletion of 649 bp was generated employing exonuclease Bal31. By this deletion nucleotide sequences functioning as origin II and the four 19 bp direct repeats constituting the incB region in front of the E protein gene were removed from the plasmid. Analysis of proteins radioactively labelled in Escherichia coli mini-cells indicated that all mini-F encoded proteins are expressed. However, the plasmid carrying the deletion was not capable of replicating from the primary origin (origin I, 42.6F). Recently a smaller deletion at the XhoI site (45.08F) of about 300 bp, removing only the region functioning as origin II and replicating from origin I, was described by Tanimoto and Iino (1984, 1985). The data presented suggest that the incB repeats are essential for the initiation of replication from origin I, and possibly also from origin II, and seem not to be engaged in the autoregulation of E protein expression.  相似文献   

6.
7.
The parB locus of plasmid R1, which mediates plasmid stability via postsegregational killing of plasmid-free cells, encodes two genes, hok and sok. The hok gene product is a potent cell-killing protein. The hok gene is regulated at the translational level by the sok gene-encoded repressor, a small anti-sense RNA complementary to the hok mRNA. The hok mRNA is extraordinarily stable, while the sok RNA decays rapidly. The mechanism of postsegregational killing is explained by the following model; the sok RNA molecule rapidly disappears in cells that have lost a parB-carrying plasmid, leading to translation of the stable hok mRNA. Consequently, the Hok protein is synthesized and killing of the plasmid-free cell follows.  相似文献   

8.
The kilB locus (which is unclonable in the absence of korB) of broad-host-range plasmid RK2 (60 kb) lies between the trfA operon (co-ordinates 16.4 to 18.2 kb), which encodes a protein essential for vegetative replication, and the Tra2 block of conjugative transfer genes (co-ordinates 20.0 to 27.0 kb). Promoter probe studies indicated that kilB is transcribed clockwise from a region containing closely spaced divergent promoters, one of which is the trfA promoter. The repression of both promoters by korB suggested that kilB may also play a role in stable maintenance of RK2. We have sequenced the region containing kilB and analysed it by deletion and insertion mutagenesis. Loss of the KilB+ phenotype does not result in decreased stability of mini RK2 plasmids. However insertion in ORFI (kilBI) of the region analysed results in a Tra- phenotype in plasmids which are otherwise competent for transfer, demonstrating that this locus is essential for transfer and is probably the first gene of the Tra2 region. From the kilBI DNA sequence KilBI is predicted to be 34995 Da, in line with M(r) = 36,000 observed by sodium dodecyl sulphate/polyacrylamide gel electrophoresis, and contains a type I ATP-binding motif. The purified product was used to raise antibody which allowed the level of KilBI produced from RK2 to be estimated at approximately 2000 molecules per bacterium. Protein sequence comparisons showed the highest homology score with VirB11, which is essential for the transfer of the Agrobacterium tumefaciens Ti plasmid DNA from bacteria to plant cells. The sequence similarity of both KilBI and VirB11 to a family of protein export functions suggested that KilBI may be involved in assembly of the surface-associated Tra functions. The data presented in this paper provide the first demonstration of coregulation of genes required for vegetative replication and conjugative transfer on a bacterial plasmid.  相似文献   

9.
Y J Kim  L S Lin    R J Meyer 《Journal of bacteriology》1987,169(12):5870-5872
Two domains at the replicative origin of broad-host-range plasmid R1162 are required in cis for plasmid maintenance in Escherichia coli and for plasmid DNA replication in cell extracts. Increasing the distance between the domains reduces replication in vitro, without substantially changing plasmid DNA content or stability in vivo.  相似文献   

10.
11.
The plasmid ColE2-P9 (ColE2) origin (32bp) is specifically recognized by the plasmid-specified Rep protein that initiates DNA replication. The ColE2 origin is divided into at least three functional subregions (I, II, and III), and three sites (a, b, and c) found in subregions I and II play important roles in Rep protein binding. We performed SELEX experiments of plasmid ColE2 to determine the optimal sequences for specific binding of the Rep protein. From these experiments, we obtained a common 16-bp sequence (5'-TGAGACCANATAAGCC-3'), which corresponds to about one half of the minimal ColE2 origin and contains sites a and b. Gel mobility shift assays using single-point mutant origins and the Rep protein further indicated that high affinity sequence-specific recognition by the Rep protein requires sites a, b, and c, but that mutations in site c were less disruptive to this recognition than those in sites a and b.  相似文献   

12.
Role of the RepA1 protein in RepFIC plasmid replication.   总被引:4,自引:4,他引:0       下载免费PDF全文
R Maas  C Wang 《Journal of bacteriology》1997,179(7):2163-2168
  相似文献   

13.
We have constructed a mini-F derivative (pKP1013) consisting of a 5.4 kilobase pairs (kb) segment (44.0 to 49.4 kb) of mini-F and fragments carrying the chloramphenicol and spectinomycin resistance genes that originated from the R plasmid NR1. The plasmid pKP1013 replicates autonomously in a manner indistinguishable from that of the parental mini-F. An amber mutant defective in replication has been isolated from pKP1013 by localized mutagenesis using N-methyl-N'-nitro-N-nitrosoguanidine. The virtual absence of incorporation of [3H]-thymidine into the plasmid DNA as well as the kinetics of appearance of plasmid-free segregants suggest that plasmid DNA synthesis is primarily affected under nonpermissive conditions. The amber mutation has been mapped within the 530 base pairs (bp) region that extends from 45.25 (XmaI) to 45.78 Kb (PstI) by extensive analysis of in vitro recombinants constructed from rep+ and rep- plasmids.  相似文献   

14.
K Geider  C Hohmeyer  R Haas  T F Meyer 《Gene》1985,33(3):341-349
DNA cloning vectors were developed which utilize the replication origin (ori) of bacteriophage fd for their propagation. These vectors depend on the expression of viral gene 2 that was inserted into phage lambda, which in turn was integrated into the host genome. The constitutive expression of gene 2 in the host cells is sufficient for the propagation of at least 100 pfd plasmids per cell. In addition to the fd ori, the pfd vectors carry various antibiotic-resistance genes and unique restriction sites. Some of these vectors have no homologies to commonly used pBR plasmids or to lambda DNA. The nucleotide sequence of the vectors can be deduced from published sequences. Large DNA inserts can be stably propagated in pfd vectors; these are more stable than similar DNA fragments cloned in intact genomes of filamentous bacteriophage. Inclusion of phage sequences required for efficient phage packaging and infection with a helper phage resulted in formation of phage particles containing single-stranded plasmid genomes. Growth at 42 degrees C without selective pressure results in loss of pfd plasmids.  相似文献   

15.
The plasmid pML 21, which was found to contain approximately 49% of the Col E1 genome was used to determine the template origin of single-stranded deoxyribonucleic acid (DNA) fragments (4 to 32% of the Col E1 units length) associated with Col E1 dna replicative intermediates. The results of DNA hybridization competition experiments indicate that the single-stranded fragments derive from the full length of the Col E1 DNA template as expected for Okazaki fragments and the plasmid pML 21 contains the replication origin of Col E1 DNA.  相似文献   

16.
17.
R Bernander  S Dasgupta  K Nordstr?m 《Cell》1991,64(6):1145-1153
In E. coli strain EC::71CW chromosome replication is under the control of the R1 miniplasmid pOU71. A dnaA850::Tn10 derivative of EC::71CW was viable, which confirmed that R1 can replicate in the absence of the DnaA protein. The frequency of initiation of replication was, however, lowered and cell division was severely disturbed due to underreplication of the chromosome. Both replication and cell division could be restored to normal by increasing the production of RepA, the rate-limiting protein for initiation of replication from the integrated R1 origin. Therefore, the RepA protein seems to compensate for the absence of DnaA in the initiation of replication and assembly of replisomes. The role of the DnaA protein in the initiation of DNA replication, and as an overall regulator of the chromosome replication and cell division cycles of E. coli, is discussed in view of these results.  相似文献   

18.
We identified a 1,845-base-pair sequence that contains essential information for the autonomous replication and regulation of the 93-kilobase-pair IncI alpha group ColIb-P9 plasmid. Biochemical and genetic analyses revealed that this sequence specifies at least two structural genes, designated repZ and inc. The repZ gene encodes a protein with a molecular weight of 39,000, which probably functions as an initiator for the ColIb-P9 replicon. The inc gene that phenotypically governs the incompatibility encodes an RNA with a size of about 70 bases. This small RNA acts in trans to repress the expression of repZ, thereby functioning to maintain a constant copy number of the ColIb-P9 replicon in host cells.  相似文献   

19.
The minimal P1 replicon encompasses an open reading frame for the essential replication protein, RepA, bracketed by two sets of multiple 19-base pair repeated sequences, incA and incC. This study focused on the interaction of RepA with the incC and incA repeated sequences because earlier studies suggested that incA might control P1 copy number by titrating limiting amounts of RepA and because the incC repeats, which are part of the origin of replication, contain the promoter for repA. RepA is essential for origin function, autoregulates its own synthesis from the promoter, and, when overproduced, blocks origin function. In this study, RepA was overproduced from an expression vector and purified to 90% homogeneity. The binding of RepA to the DNA encompassing repeat sequences was assayed by monitoring the mobility of protein-DNA complexes on polyacrylamide gels. Distinct species of retarded bands were seen with the maximum number of bands corresponding to the number of repeats present in the target fragment. No evidence was found for RepA binding to fragments not containing the repeats. This suggests that the specific binding of RepA to the repeats may be involved in each of the diverse activities of RepA.  相似文献   

20.
M Inuzuka  Y Wada 《FEBS letters》1988,228(1):7-11
Two kinds of mutations affecting the copy-number control of plasmid R6K were isolated and identified in an initiator pi protein by DNA sequencing. Firstly, a temperature-sensitive replication mutation, ts22, with decreased copy number results in a substitution of threonine to isoleucine at position 138 of the 305-amino-acid pi protein. Secondly, a high-copy-number (cop21) mutant was isolated from this ts mutant and was identified by an alteration of alanine to serine at position 162. This cop21 mutation suppressed the Ts character and was recessive to the wild-type allele in the copy control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号