首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Both inorganic mercury and uranium are known nephrotoxicants in mammals. In this study, the renal toxicity of a concurrent exposure to inorganic mercury and uranium was compared with the nephrotoxic effects of the individual metals in a rat model. Eight groups of rats, 10 animals per group, were subcutaneously given a single administration of mercuric chloride (HgCl2, 0.34 mg/kg and 0.68 mg/kg), uranyl acetate dihydrate (UAD, 2.5 mg/kg and 5 mg/kg), or combinations of both compounds at the same doses. A ninth group of rats received sc injections of 0.9% saline and was designated as the control group. Necrosis of proximal tubules, which was observed in all experimental groups, was the most relevant morphologic abnormality. Marked changes, which were remarkably greater than those induced by the individual elements, were noted in some urinary parameters in the groups concurrently exposed to HgCl2 and UAD. It could be an indicator of a synergistic interaction between mercury and uranium. In contrast, compared with the urinary levels found after individual administration of the highest doses of mercury and uranium, significant reductions in the urinary concentrations of these elements were noted following simultaneous exposure to both metals. At these doses, the reduction in the urinary metal excretion was also accompanied by significant decreases in the renal content of mercury and uranium. Whereas the results of some parameters pointed out a possible synergistic interaction between mercury and uranium, other measures hinted that an antagonistic interaction between these elements is also present.  相似文献   

2.
Summary The potential former-mediated reduction/volatilization of ionic mercury as a tool in the decontamination of a freshwater pond was evaluated using laboratory incubations and a microcosm simulation. In flask assays inoculations with ionic mercury-resistant bacteria (105–107 cells ml–1) isolated from the pond, significantly increased the rate of mercury loss (MANOVA,P0.05) relative to uninoculated controls. The effects of cell density, mercuric mercury concentration, addition of nutrients and supplementation with the sulfhydryl reagent -mercaptoethanol on the rate of mercury loss, were investigated. Inoculation (by 105 cells ml–1) of a flow-through microcosm that simulated the cycling of mercury in the contaminated pond, stimulated by more than 4-fold the formation of volatile elemental mercury. Thus, biological formation of volatile mercury may hold a promise as a remedial tool of contaminated natural waters.Publication no. 906 of the US Environmental Research Laboratory, Gulf Breeze, FL 32561, USA.Mention of trade names or commercial products does not constitute endorsement on recommendation for use.  相似文献   

3.
According to existing data, mercury resistance operons (mer operons) are in general thought to be rare in bacteria, other than those from mercury-contaminated sites. We have found that a high proportion of strains in environmental isolates of Gram-positive bacteria express mercuric reductase (MerA protein): the majority of these strains are apparently sensitive to mercury. The expression of MerA was also inducible in all cases. These results imply the presence of phenotypically cryptic mer resistance operons, with both the merA (mercuric reductase) and merR (regulatory) genes still present, but the possible absence of the transport function required to complete the resistance mechanism. This indicates that mer operons or parts thereof are more widely spread in nature than is suggested by the frequency of mercury-resistant bacteria.  相似文献   

4.
Abstract: Six of ten Pseudomonas strains selected from environmental samples for their ability to degrade aromatic compounds were found to be mercury resistant. Mercury detoxification proceeded through Hg2+ volatilization and the genes involved were chromosomally located. All the mercury resistant strains proved able to degrade aromatic compounds in the presence of Hg2+.  相似文献   

5.
Summary 1. Indirect and direct twitch (0.1-Hz) stimulation of the rat phrenic nerve-diaphragm disclosed that the inhibitory effect of HgCl2, 3.7 × 10–5M, on the neuromuscular transmission and in the muscle cell, was accelerated by 10-sec periods of 50-Hz tetanic stimulation every 10 min. This activity-dependent enhancement suggested an inhibitory mechanism of HgCl2 related to the development of fatigue, like membrane depolarization or decreased excitability, decreased availability of transmitter, or interference with the factors controlling excitation-secretion coupling of the nerve terminal, i.e. (Ca2+)0 or (Ca2+)i, and excitation-contraction coupling in the muscle cell, i.e., (Ca2+)i.2. During both indirect and direct stimulation, HgCl2-induced inhibition was enhanced markedly by pretreatment with caffeine, which releases Ca2+ from endoplasmic and sarcoplasmic reticulum in the nerve terminal and muscle cell, respectively. This caffeine-induced enhancement was completely antagonized by dantrolene, which inhibits the caffeine-induced release. However, dantrolene alone did not antagonize the HgCl2-induced inhibition.3. Since caffeine depletes the intracellular Ca2+ stores of the smooth endoplasmic reticulum, HgCl2 probably inhibits by binding to SH groups of transport proteins conveying the messenger function of (Ca2+)i. In the muscle cell this leads to inhibition of contraction. In the nerve terminal, an additional enhancement of the HgCl2-induced inhibition, by inhibiting reuptake of choline by TEA and tetanic stimulation, suggested that HgCl2 inhibited a (Ca2+)i signal necessary for this limiting factor in resynthesis of acetylcholine.4. The (Ca2+)0 signal necessary for stimulus-induced release of acetylcholine was not affected by HgCl2. Hyperpolarization in K+-free solution antagonized the inhibitory effect of HgCl2 at indirect stimulation, and Ca2+-free solution enhanced the inhibitory effect at direct stimulation. K+ depolarization, membrane electric field increase with high Ca2+, membrane stabilization with lidocaine, and half-threshold stimulation, did not change the inhibitory effect of HgCl CH3HgCl, 1.85 × 10–5M, disclosed a synergistic interaction with caffeine during direct, but not during indirect, stimulation.  相似文献   

6.
    
Mercury exposure is second-most common cause of metal poisoning which is quite stable and biotransformed to highly toxic metabolites thus eliciting biochemical alterations and oxidative stress. The aim of present study describes the protective effect of selenium either alone or in combination with N-acetyl cysteine (NAC) against acute mercuric chloride poisoning. The experiment was carried out in male albino Sprague Dawley rats (n = 30) which was divided into five groups. Group 1 served as control. Groups 2–5 were administered mercuric chloride (HgCl2: 12 mol/kg, i.p.) once only, group 2 served as experimental control. Animals of groups 3, 4 and 5 were received N-acetyl cysteine (NAC: 0.6 mg/kg, i.p.) and selenium (Se: 0.5 mg/kg, p.o.) and NAC with Se in combination. Acute HgCl2 toxicity caused significant rise in serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, albumin, bilirubin, γ-glutamyl transpeptidase, cholesterol, triglycerides, protein, urea, creatinine, uric acid and blood urea nitrogen content. Animals also showed significantly higher mercury content in liver and kidney, significant rise in lipid peroxidation level with concomitant decrease in reduced glutathione content and the antioxidant enzyme activities of superoxide dismutase and catalase after HgCl2 exposure. Results of the present investigation clearly showed that combination therapy with NAC + Se provide maximum protection against mercury toxicity than monotherapy (alone treated groups) by preventing oxidative degradation of biological membrane from metal mediated free radical attacks.  相似文献   

7.
The effectiveness of 2,3-dimercaptopropanol (BAL) andmeso-2,3-dimercaptosuccinic acid (DMSA) on HgCl2-induced nephrotoxicity was studied in the rat. Seven groups of adult male rats were given a single sc toxic dose of HgCl2 (0.68 mg/kg) followed by 0.9% saline (positive control group), BAL (15, 30, and 60 mg/kg) or DMSA (50, 100, and 200 mg/kg) administered ip at 0, 24, 48, and 72 h thereafter. Although the renal function of HgCl2-exposed rats was slightly improved after BAL administration, Hg concentrations in the kidney were only reduced at 60 mg/kg. In addition, the protective effect of BAL was not dose-related. In contrast to BAL, DMSA was effective in increasing the urinary excretion of Hg and in reducing the renal Hg content. These results show that DMSA would be more effective than BAL in preventing or in protecting against inorganic Hg-induced nephrotoxicity.  相似文献   

8.
Pseudomonas strain K-62 was found to contain six plasmids. A mutant derivative cured of the 26-kb plasmid showed a higher sensitivity to mercurials; however, the strain was still able to volatilize them. Loss of the 68-kb plasmid.in addition to the 26-kb plasmid abolished the ability of mercury volatilization in this strain and led to a further decrease in the level of mercurial resistance. These results are the first to demonstrate that the organomercurial resistance of Pseudomonas strain K-62 is plasmid-based, and that both the 26- and 68-kb plasmids are required for full expression of the mercurial resistance. Probes specific for the mer genes merA, merB, and merR strongly hybridized with the 26-kb plasmid, but not with the 68-kb plasmid. Two fragments of the 26-kb plasmid that hybridized with the mer genes were cloned and expressed in Escherichia coli. One recombinant plasmid (pMRA17) inducibly encoded a typical broad-spectrum mercurial resistance, whereas the other recombinant plasmid (pMRB01) constitutively conferred hypersensitivity to phenylmercury in the absence of mercuric reductase activity. The results suggest that the two organomercurial lyases in the cells are transcribed from different operator-promoters.  相似文献   

9.
Li N  Chu X  Wu L  Liu X  Li D 《Bioorganic chemistry》2008,36(5):241-251
The structurally related tetrapyrrolic pigments are a group of natural products that participate in many of the fundamental biosynthetic and catabolic processes of living organisms. Hydroxymethylbilane synthase catalyzes a rate-limiting step for the biosyntheses of tetrapyrrolic natural products. We carried out extensive studies of rat hydroxymethylbilane synthase in the present investigation. The enzymatic reaction rate of the holoenzyme was found to be lower than those of the enzyme-intermediate complexes, which corrected the previous theoretical analysis result. Several mutants were constructed, purified and characterized. D44 was found to play an important role in the disassembly of the enzyme-intermediate complexes. E63 and H78 were important for maintaining the activity of the enzyme at high temperature. Four substrate analogs with variation of porphobilinogen side-chain were synthesized and incubated with the enzyme. Three analogs were found to be weak substrates of the enzyme. All four analogs can be used for the preparation of uroporphyrin I analogs.  相似文献   

10.
Parenteral administration of mercuric chloride (HgCl2) to rats enhanced lipid peroxidation in liver, kidney, lung, testis, and serum (but not in heart, spleen, or muscle), as measured by the thiobarbituric acid reaction for malondialdehyde (MDA) in fresh tissue homogenates and body fluids. After sc injection of HgCl2 (5 mg/kg body wt), MDA concentrations in liver and kidney became significantly increased by 9 h and reached peak values at 24 h. Dose-response studies were carried out with male albino rats of the Fisher-344 strain (body wt 170–280 g) injected with 1, 3, 5 mg Hg/kg as HgCl2 and sacrificed after 24 h. In time-response studies, animals were administered 5 mg Hg/kg as HgCl2 and sacrificed after 3, 9, 18, 24, and 48 h. Studies in the authors' laboratory have shown that (1) concentrations of MDA are increased in targets (liver, kidney, lung, and testis) of HgCl2-treated rats; (2) severity of hepatotoxicity and nephrotoxicity is generally consistent with the elevation of Hg and MDA concentrations, based upon the time-course and dose-effect relationships observed after administration of HgCl2 to rats; and (3) concentrations of MDA are reduced in target tissues after pretreatment with antioxidants and chelators to HgCl2-treated rats. The results of this study implicate that the lipid peroxidation is one of the molecular mechanisms for cell injury in acute HgCl2 poisoning.  相似文献   

11.
  总被引:2,自引:0,他引:2  
An erythromycin esterase (molecular mass 51200 Da) was purified from Pseudomonas sp. GD100, which was isolated from a salmon hatchery sediment sample from Washington State. The pI of the protein was 4.5-4.8. The enzyme was inhibited by 1 mM mercuric acid, and had the substrate specificity for structurally related 14-membered macrolides, which decreased in the order of oleandomycin, erythromycin A and erythromycin A enol ether. The activity for erythromycin A varied with temperature, but the effect of pH was minimal at pH 6.0-9.0. The half-life of the enzyme was estimated to be 8.9 h at 35 degrees C and 0.23 h at 55 degrees C, and the activation energy of the catalytic reaction of erythromycin A was estimated at 16.2 kJ mol(-1).  相似文献   

12.
    
Rootstocks play a major role in grapevine tolerance to water stress by controlling and adjusting the water supply to shoot transpiration demand. This study aimed to characterize the influence of rootstock genotypes in the adaptive response of scions to water limiting conditions. The effect of rootstock genotype (140Ru and SO4) was observed in the different availability of water provided to the scions (Cabernet Sauvignon, Grenache, Merlot, Syrah), while scions influenced stomatal control of water transpiration. Implication on the cell-to-cell component of plant water transport in both rootstock and scion impacted on embolisms formation in roots and on hydraulics of leaves. The main conclusion of the present study was that rootstock and scion genotypes are able to confer to the plant traits of drought adaptability influencing respectively the capacity of water extraction from the soil and the sensitivity of the stomatal control.  相似文献   

13.
    
This work investigated the in vivo and in vitro effects of HgCl2 and ZnCl2 on metabolic enzymes from tissues of young rats to verify whether the physiological and biochemical alterations induced by mercury and prevented by zinc are related to hepatic and renal glucose metabolism. Wistar rats received (subcutaneous) saline or ZnCl2 (27 mg/kg/day) from 3 to 7 days old and saline or HgCl2 (5.0 mg/kg/day) from 8 to 12 days old. Mercury exposure increased the hepatic alanine aminotransferase (~6-fold) and glucose 6-phosphatase (75%) activity; zinc pre-exposure prevented totally and partially these mercury alterations respectively. In vitro, HgCl2 inhibited the serum (22%, 10 μM) and liver (54%, 100 μM) alanine aminotransferase, serum (53%) and liver (64%) lactate dehydrogenase (10 μM), and liver (53%) and kidney (41%) glucose 6-phosphatase (100 μM) from 10- to 13-day-old rats. The results show that mercury induces distinct alterations in these enzymes when tested in vivo or in vitro as well as when different sources were used. The increase of both hepatic alanine aminotransferase and glucose 6-phosphatase activity suggests that the mercury-exposed rats have increased gluconeogenic activity in the liver. Zinc prevents the in vivo effects on metabolic changes induced by mercury.  相似文献   

14.
This work investigated zinc (Zn) and mercury (Hg) effects on oxidative parameters, markers of toxicity and metal levels in different tissues from non-lactating rats (NLR) and lactating rats (LR). Adult NLR and LR received ZnCl2 (27 mg/kg) or saline (0.9%) subcutaneously and after 24 h they received HgCl2 (5 mg/kg) or saline (0.9%). Twenty four hours later, they were sacrificed and the preparation of biological material and biochemical analyses were performed. With respect to oxidative parameters, Hg exposure decreased kidney total SH levels from NLR and LR and hepatic catalase activity (not statistically significant) in NLR. Zinc pre-treatment partly prevented the decrease of kidney total SH levels in LR. Zinc per se increased hepatic non-protein SH levels of NLR and LR. Regarding toxicity markers, Hg exposure inhibited the δ-aminolevulinic acid dehydratase (δ-ALA-D) activity from kidney and liver of NLR, inhibited serum alanine aminotransferase (ALT) activity of LR and increased serum creatinine and urea levels of NLR and LR. Zinc pre-exposure prevented the enzymatic alterations caused by Hg. NLR and LR Hg exposed presented accumulation of mercury in the kidney, liver, blood and urine. Zinc pre-treatment prevented this accumulation partly in NLR liver and blood and completely in LR kidney and liver. These results show that NLR and LR are differently sensitive to HgCl2 and that ZnCl2 showed a promising effect against Hg toxicity.  相似文献   

15.
The structurally related tetrapyrrolic pigments are a group of natural products that participate in many of the fundamental biosynthetic and catabolic processes of living organisms. Porphobilinogen synthase catalyzes a rate-limiting step for the biosyntheses of tetrapyrrolic natural products. In the present study, a variety of new substrate analogs and reaction intermediate analogs were synthesized, which were used as probes for studying the active site of rat porphobilinogen synthase. The compounds 1, 3, 6, 9, 14, 16, and 28 were found to be competitive inhibitors of rat porphobilinogen synthase with inhibition constants ranging from 0.96 to 73.04 mM. Compounds 7, 10, 12, 13, 15, 17, 18, and 26 were found to be irreversible enzyme inhibitors. For irreversible inhibitors, loose-binding inhibitors were found to give stronger inactivation. The amino group and carboxyl group of the analogs were found to be important for their binding to the enzyme. This study increased our understanding of the active site of porphobilinogen synthase.  相似文献   

16.
Summary A broad-spectrum mercury resistance locus (mer) from a spontaneous chloramphenicol-sensitive (Cms), arginine auxotrophic (Arg) mutant of Streptomyces lividan 1326 was isolated on a 6 kb DNA fragment by shotgun cloning into the mercury-sensitive derivative S. lividans TK64 using the vector pIJ702. The mer genes form part of a very large amplifiable DNA sequence present in S. lividans 1326. This element was amplified to about 20 copies per chromosome in the Cms Arg mutant and was missing from strains like S. lividans TK64, cured for the plasmid SLP3. DNA sequence analysis of a 5 kb region encompassing the whole region required for broad-spectrum mercury resistance revealed six open reading frames (ORFs) transcribed in opposite directions from a common intercistronic region. The protein sequences predicted from the two ORFs transcribed in one direction showed a high degree of similarity to mercuric reductase and organomercurial lyase from other gram-negative and gram-positive sources. Few, if any, similarities were found between the predicted polypeptide sequences of the other four ORFs and other known proteins.  相似文献   

17.
  总被引:11,自引:0,他引:11  
  相似文献   

18.
    
Mercuric ion, a well-known nephrotoxin, promotes oxidative tissue damage to kidney cells. One principal toxic action of Hg(II) is the disruption of mitochondrial functions, although the exact significance of this effect with regard to Hg(II) toxicity is poorly understood. In studies of the effects of Hg(II) on superoxide (O) and hydrogen peroxide (H2O2) production by rat kidney mitochondria, Hg(II) (1–6 μM), in the presence of antimycin A, caused a concentration-dependent increase (up to fivefold) in mitochondrial H2O2 production but an apparent decrease in mitochondrial O production. Hg(II) also inhibited O-dependent cytochrome c reduction (IC50 ≈?2–3 μM) when O was produced from xanthine oxidase. In contrast, Hg(I) did not react with O in either system, suggesting little involvement of Hg(I) in the apparent dismutation of O by Hg(II). Hg(II) also inhibited the reactions of KO2 (i.e., O) with hemin or horseradish peroxidase dissolved in dimethyl sulfoxide (DMSO). Finally, a combination of Hg(II) and KO2 in DMSO resulted in a stable UV absorbance spectrum [currently assigned Hg(II)-peroxide] distinct from either Hg(II) or KO2. These results suggest that Hg(II), despite possessing little redox activity, enhances the rate of O dismutation, leading to increased production of H2O2 by renal mitochondria. This property of Hg(II) may contribute to the oxidative tissue-damaging properties of mercury compounds.  相似文献   

19.
In adult mammals fever is associated with the reduction of blood plasma iron level. Immature mammals, however, show either a decrease (precocial animals such as guinea pig neonates) or a lack of reduction (altricial animals such as human neonates) of plasma iron in response to endotoxin. In order to determine whether this difference is connected with maturity just after delivery, plasma iron concentration, hematocrit, body temperature and body mass were measured in rat pups injected with E. coli endotoxin in doses of 50 or 200 μg kg−1. Rat pups, like human neonates, are altricial animals. In 7-day-old rats injection of LPS led to a dose-dependent decrease in plasma iron level. The fall in plasma iron was accompanied by changes in body temperature and body mass. The results showed that plasma iron response to endotoxin in altricial rat neonates is similar to that observed in precocial guinea pig pups. Accepted: 4 October 1996  相似文献   

20.
  总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号