首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin-like growth factor-binding protein-3 (IGFBP-3) induces apoptosis by its ability to bind insulin-like growth factors (IGFs) as well as its IGF-independent effects involving binding to other molecules including the retinoid X receptor-alpha (RXRalpha). Here we describe that in response to IGFBP-3, the RXRalpha binding partner nuclear receptor Nur77 rapidly undergoes translocation from the nucleus to the mitochondria, initiating an apoptotic cascade resulting in caspase activation within 6 h. This translocation is a type 1 IGF receptor-signaling independent event as IGFBP-3 induces Nur77 translocation in R-cells. IGFBP-3 and Nur77 are additive in inducing apoptosis. GFP-Nur77 transfection into RXRalpha wild-type and knock-out mouse embryonic fibroblasts and subsequent treatment with IGFBP-3 show that RXRalpha is required for IGFBP-3-induced Nur77 translocation and apoptosis. Addition of IGFBP-3 to 22RV1 cell lysates enhanced the ability of GST-RXRalpha to "pull down" Nur77, and overexpression of IGFBP-3 enhanced the accumulation of mitochondrial RXRalpha. This unique nongenotropic nuclear pathway supports an emerging role for IGFBP-3 as a novel, multicompartmental signaling molecule involved in induction of apoptosis in malignant cells.  相似文献   

2.
3.
Many members of the type II nuclear receptor subfamily function as heterodimers with the retinoid X receptor (RXR). A permissive heterodimer (e.g. peroxisome proliferator-activated receptor/RXR) allows for ligand binding by both partners of the receptor complex. In contrast, RXR has been thought to be incapable of ligand binding in a nonpermissive heterodimer, such as that of thyroid hormone receptor (TR)/RXR, where it has been referred to as a silent partner. However, we recently presented functional evidence suggesting that RXR in the TR/RXR heterodimer can bind its natural ligand 9-cis-RA in cells. Here we extended our study of the interrelationship of TR and RXR. We examined the potential modulatory effect of RXR and its ligand on the activity of TR, primarily using a Gal4-TR chimera. This study led to several novel and unexpected findings: 1) heterodimerization of apo-RXRalpha (in the absence of 9-cis-RA) with Gal4-TR inhibits T3-mediated transactivation; 2) the inhibition of Gal4-TR activity by RXRalpha is further enhanced by 9-cis-RA; 3) two different RXR subtypes (alpha and beta) differentially modulate the activity of Gal4-TR; 4) the N-terminal A/B domains of RXR alpha and beta are largely responsible for their differential modulation of TR activity; and 5) the RXR ligand 9-cis-RA appears to differentially affect T3-mediated transactivation from the Gal4-TR/RXRalpha (which is inhibited by 9-cis-RA) and TRE-bound TR/RXRalpha (which is further activated by 9-cis-RA) heterodimers. Taken together, these results further support our recent proposal that the RXR component in a TR/RXR heterodimer is not silent and, more importantly, reveal novel aspects of regulation of the activity of the TR/RXR heterodimer by RXR and RXR ligand.  相似文献   

4.
5.
6.
Here we have delineated regions of the retinoid X receptor alpha (RXRalpha) that are required for rexinoid (RXR agonist)-induced growth inhibition and apoptosis. Stable over-expression of RXRalpha in DT40 B lymphoma cells dramatically increased sensitivity to rexinoid-induced growth inhibition. By contrast, DT40 cells that over-expressed RXRalpha with a deletion of either the A/B or DNA binding domain (C domain) were resistant. We confirmed the importance of C domain integrity by point-mutating Cys(135) to Ser (C135S) to disrupt zinc-finger formation. Point mutating RXR Lys(201) to Thr and Arg(202) to Ala (KTRA) impairs RXR homodimer formation and does not affect RXR heterodimerization. When these mutated RXRs were over-expressed in DT40 cells, they failed to increase sensitivity to rexinoid. Over-expression did sensitize to growth inhibition by RAR and PPARgamma agonists. Over-expression of C135S mutated RXRalpha did not sensitize to RAR and PPARgamma agonists. Inhibitors of caspase-3 and/or caspase-9 blocked rexinoid-induced apoptosis, and activations of these caspases correlated with the ability of RXR mutants to induce cell death. These data show that the A/B and C domains of RXR and the ability of RXR to form homodimers are required for rexinoid-driven growth inhibition, caspase activation and subsequent apoptosis.  相似文献   

7.
Lin B  Kolluri SK  Lin F  Liu W  Han YH  Cao X  Dawson MI  Reed JC  Zhang XK 《Cell》2004,116(4):527-540
The Bcl-2 family proteins are key regulators of apoptosis in human diseases and cancers. Though known to block apoptosis, Bcl-2 promotes cell death through an undefined mechanism. Here, we show that Bcl-2 interacts with orphan nuclear receptor Nur77 (also known as TR3), which is required for cancer cell apoptosis induced by many antineoplastic agents. The interaction is mediated by the N-terminal loop region of Bcl-2 and is required for Nur77 mitochondrial localization and apoptosis. Nur77 binding induces a Bcl-2 conformational change that exposes its BH3 domain, resulting in conversion of Bcl-2 from a protector to a killer. These findings establish the coupling of Nur77 nuclear receptor with the Bcl-2 apoptotic machinery and demonstrate that Bcl-2 can manifest opposing phenotypes, induced by interactions with proteins such as Nur77, suggesting novel strategies for regulating apoptosis in cancer and other diseases.  相似文献   

8.
9.
10.
11.
The adapter protein Crk contains an SH2 domain and two SH3 domains. Through binding of particular ligands to the SH2 domain and the N-terminal SH3 domain, Crk has been implicated in a number of signaling processes, including regulation of cell growth, cell motility, and apoptosis. We report here that the C-terminal SH3 domain, never shown to bind any specific signaling molecules, contains a binding site for the nuclear export factor Crm1. We find that a mutant Crk protein, deficient in Crm1 binding, promotes apoptosis. Moreover, this nuclear export sequence mutant [NES(-) Crk] interacts strongly, through its SH2 domain, with the nuclear tyrosine kinase, Wee1. Collectively, these data suggest that a nuclear population of Crk bound to Wee1 promotes apoptotic death of mammalian cells.  相似文献   

12.
13.
14.
15.
In eukaryotic cells, the ubiquitin-proteasome pathway is the major mechanism for targeted degradation of proteins. We show that, in F9 cells and in transfected COS-1 cells, the nuclear retinoid receptors, retinoic acid receptor gamma2 (RARgamma2), RARalpha1, and retinoid X receptor alpha1 (RXRalpha1) are degraded in a retinoic acid-dependent manner through the ubiquitin-proteasome pathway. The degradation of RARgamma2 is entirely dependent on its phosphorylation and on its heterodimerization with liganded RXRalpha1. In contrast, RARalpha1 degradation can occur in the absence of heterodimerization, whereas it is inhibited by phosphorylation, and heterodimerization reverses that inhibition. RXRalpha1 degradation is also modulated by heterodimerization. Thus, each partner of RARgamma/RXRalpha and RARalpha/RXRalpha heterodimers modulates the degradation of the other. We conclude that the ligand-dependent degradation of RARs and RXRs by the ubiquitin-proteasome pathway, which is regulated by heterodimerization and by phosphorylation, could be important for the regulation of the magnitude and duration of the effects of retinoid signals.  相似文献   

16.
Retinoid X receptors (RXRs) are members of the nuclear receptor superfamily and can be activated by 9-cis retinoic acid (9CRA). RXRs form homodimers and heterodimers with other nuclear receptors such as the retinoic acid receptor and NR4 subfamily nuclear receptors, Nur77 and NURR1. Potential physiological roles of the Nur77-RXR and NURR1-RXR heterodimers have not been elucidated. In this study, we identified a gene regulated by these heterodimers utilizing HX600, a selective RXR agonist for Nur77-RXR and NURR1-RXR. While 9CRA induced many genes, including RAR-target genes, HX600 effectively induced only carnitine palmitoyltransferase 1A (CPT1A) in human teratocarcinoma NT2/D1 cells, which express RXRα, Nur77 and NURR1. HX600 also increased CPT1A expression in human embryonic kidney (HEK) 293 cells and hepatocyte-derived HepG2 cells. Although HX600 induced CPT1A less effectively than 9CRA, overexpression of Nur77 or NURR1 increased the HX600 response to levels similar to 9CRA in NT2/D1 and HEK293 cells. A dominant-negative form of Nur77 or NURR1 repressed the induction of CPT1A by HX600. A protein synthesis inhibitor did not alter HX600-dependent CPT1A induction. Thus, the rexinoid HX600 directly induces expression of CPT1A through a Nur77 or NURR1-mediated mechanism. CPT1A, a gene involved in fatty acid β-oxidation, could be a target of RXR-NR4 receptor heterodimers.  相似文献   

17.
18.
19.
Retinoid X receptor (RXR) serves as a promiscuous heterodimerization partner for many nuclear receptors through the identity box, a 40-amino acid subregion within the ligand binding domain. In this study, we randomly mutated two specific residues within the human RXRalpha identity box region previously identified as important determinants in heterodimerization (i.e. Ala(416) and Arg(421)). Interestingly, most of these mutants still retained wild type interactions with thyroid hormone receptor (TR), retinoic acid receptor, peroxisome proliferator-activated receptor alpha, small heterodimer partner, and constitutive androstane receptor. However, RXR-A416D and R421L were specifically impaired for interactions with TR, whereas RXR-A416K lost both TR and retinoic acid receptor interactions. Accordingly, RXR-A416D did not support T3 transactivation in mammalian cells, whereas RXR-A416K was not supportive of transactivation by retinoids or T3. These results provide a basis upon which to further design mutant RXRs highly selective in heterodimerization, potentially useful tools to probe nuclear receptor function in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号