首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxidative respiration is strongly temperature driven. However, in woody stems, efflux of CO2 to the atmosphere (E A), commonly used to estimate the rate of respiration (R S), and stem temperature (T st) have often been poorly correlated, which we hypothesized was due to transport of respired CO2 in xylem sap, especially under high rates of sap flow (f s). To test this, we measured E A, T st, f s and xylem sap CO2 concentrations ([CO2*]) in 3-year-old Populus deltoides trees under different weather conditions (sunny and rainy days) in autumn. We also calculated R S by mass balance as the sum of both outward and internal CO2 fluxes and hypothesized that R S would correlate better with T st than E A. We found that E A sometimes correlated well with T st, but not on sunny mornings and afternoons or on rainy days. When the temperature effect on E A was accounted for, a clear positive relationship between E A and xylem [CO2*] was found. [CO2*] varied diurnally and increased substantially at night and during periods of rain. Changes in [CO2*] were related to changes in f s but not T st. We conclude that changes in both respiration and internal CO2 transport altered E A. The dominant component flux of R S was E A. However, on a 24-h basis, the internal transport flux represented 9–18% and 3–7% of R S on sunny and rainy days, respectively, indicating that the contribution of stem respiration to forest C balance may be larger than previously estimated based on E A measurements. Unexpectedly, the relationship between R S and T st was sometimes weak in two of the three trees. We conclude that in addition to temperature, other factors such as water deficits or substrate availability exert control on the rate of stem respiration so that simple temperature functions are not sufficient to predict stem respiration.  相似文献   

2.
祁连山青海云杉树干液流密度的优势度差异   总被引:1,自引:0,他引:1  
以祁连山排露沟小流域青海云杉林为研究对象,选取有代表性的优势木、亚优势木、中等木和被压木各3—5株,2015年6月16日至10月14日应用热扩散技术对不同优势度青海云杉树干液流密度进行测定,并同步测定相关的林外气象因子。结果表明:(1)青海云杉液流密度呈昼高夜低趋势,晴天液流密度变化幅度较大,而阴雨天变化幅度较小。(2)晴天树木优势度越大,其液流在日内的启动越早,结束越晚,峰值也越大;优势木的平均液流密度为(0.0758±0.0475)m L cm~(-2)min~(-1),是亚优势木的1.5倍,是中等木和被压木的1.68倍。(3)青海云杉平均液流密度基本呈现6月份最大,其次是8月份,9、10月份明显减小,且优势木亚优势木中等木被压木。(4)相关性分析和逐步回归表明,青海云杉日均液流密度与太阳辐射强度、饱和水气压差和空气温度呈正相关关系,与空气相对湿度和降雨量呈负相关关系。影响优势木、亚优势木和中等木液流密度的主要气象因子是太阳辐射强度,被压木液流密度主要受空气相对湿度的影响。  相似文献   

3.
Measurements of stem respiration were conducted for a period of four years (1999–2002) in 14-year old Norway spruce (Picea abies [L.] Karst) trees exposed to ambient (CA) and elevated CO2 concentration (CE; ambient plus 350 μmol mol−1). Stem respiration measurements of six trees per treatment were carried out 2–3 times per month during the growing season. Stem respiration in CE treatment was higher (up to 16 %) than in CA treatment. Temperature response of stem respiration (Q10) for the whole experimental period ranged between 1.65–2.57 in CA treatment and 2.24–2.56 in CE treatment. The mean stem respiration rate normalized to 10 °C (R10) in CA and CE treatments ranged between 1.67–1.95 and 2.19–2.72 μmol(CO2) m−2 s−1, respectively. Seasonal variations in stem respiration were related to temperature and tree growth.  相似文献   

4.
新疆阿克苏干旱区富士苹果树干液流动态变化研究   总被引:1,自引:0,他引:1  
选择新疆阿克苏干旱区富士苹果为研究对象,利用TDP茎流计连续测定苹果树干液流,并用自动气象站同步记录环境因子变化,探讨环境因子对树干液流的影响。结果显示:液流速率连日的变化过程是一个最大值不同的正弦曲线,夜间液流速率降低,白天液流速率上升;晴天液流速率呈明显的单峰曲线,阴天液流速率表现为多峰或双峰曲线,不论是晴天还是阴天,苹果在夜间仍然有微弱的活动,这种现象可能与新疆阿克苏地区的地理位置和气候有关;在苹果主要生长季内,树干液流速率(Fs)与大气温度(Ta)、太阳辐射(Rn)、相对湿度(RH)有较好的复相关关系(R2=0.93*),且影响苹果树液流速率Fs的最主要气象因子为大气温度Ta;苹果生长季内耗水总量为4 059.64L,并以7月耗水量最大(765.34L),占耗水总量的18.85%。研究表明,TDP径流计能够精确测定生长季内苹果茎干的液流速率与耗水量,且在干旱区影响苹果茎干液流变化的主要环境因子依次是大气温度、太阳辐射、相对湿度。  相似文献   

5.
Changes in leaf physiology with tree age and size could alter forest growth, water yield, and carbon fluxes. We measured tree water flux (Q) for 14 ponderosa pine trees in two size classes (12 m tall and ∼40 years old, and 36 m tall and ∼ 290 years old) to determine if transpiration (E) and whole-tree conductance (g t) differed between the two sizes of trees. For both size classes, E was approximately equal to Q measured 2 m above the ground: Q was most highly correlated with current, not lagged, water vapor pressure deficit, and night Q was <12% of total daily flux. E for days 165–195 and 240–260 averaged 0.97 mmol m–2 (leaf area, projected) s–1 for the 12-m trees and 0.57 mmol m–2 (leaf area) s–1 for the 36-m trees. When photosynthetically active radiation (I P) exceeded the light saturation for photosynthesis in ponderosa pine (900 μmol m–2 (ground) s–1), differences in E were more pronounced: 2.4 mmol m–2 (leaf area) s–1 for the 12-m trees and 1.2 mmol m–2 s–1 for the 36-m trees, yielding g t of 140 mmol m–2 (leaf area) s–1 for the 12-m trees and 72 mmol m–2 s–1 for the 36-m trees. Extrapolated to forests with leaf area index =1, the 36-m trees would transpire 117 mm between 1 June and 31 August compared to 170 mm for the 12-m trees, a difference of 15% of average annual precipitation. Lower g t in the taller trees also likely lowers photosynthesis during the growing season. Received: 19 April 1999 / Accepted: 23 March 2000  相似文献   

6.
Air temperatures in the arid western United States are predicted to increase over the next century. These increases will likely impact the distribution of plant species, particularly dioecious species that show a spatial segregation of the sexes across broad resource gradients. On the basis of spatial segregation patterns, we hypothesized that temperature increases will have a greater negative impact on female plants compared with co‐occurring male plants of dioecious species. This hypothesis was tested by examining the whole‐plant carbon and water relations of 10‐year‐old female (= 18) and male (= 13) Acer negundo Sarg. trees grown in a common garden in Salt Lake City, UT. The trees were established from cuttings collected where the growing season temperature averaged about 6.5 °C cooler than at the common garden. During May and June, stem sap flux (Js) was similar between genders, but averaged 25% higher in males during the warmer months of July and August. Daytime canopy stomatal conductance (gs) per unit leaf area was 12% higher in females in May : June, but was 11% higher in males in July : August. We combined measurements of sap flux–scaled transpiration with measurements of tree allometry and δ13C of leaf soluble sugars to estimate whole‐tree carbon assimilation (Atree) and water use efficiency (WUE) (Atree : Etree). Atree was similar between genders until late August when Atree was 32% higher in male trees. Atree : Etree was on average 7% higher in females than in males during the growing season. Patterns of Js, gs, Atree and Atree : Etree in the present study were in contrast to those previously reported for A. negundo genders under native growing season temperatures. Results suggest that the spatial segregation of the sexes could shift under global warming such that female plants lose their dominance in high‐resource habitats, and males increase their dominance in relatively lower‐resource habitats.  相似文献   

7.
Dirk Gansert  Markus Burgdorf 《Flora》2005,200(5):444-455
The effect of xylem sap flow in stems of mature Betula pendula Roth on radial CO2 efflux was studied from April to October 2001. Temperature-controlled respiration cuvettes allowed measurements of CO2 efflux without interference from temperature gradients between stem surface and sapwood. Variations of sap flow in different stem sectors, and in a given sector at different heights were analysed. Daytime reduction of CO2 efflux caused by sap flow was expressed as the difference between gross and apparent CO2 release. Gross CO2 release was calculated from Arrhenius-equations derived from night-time data records of the same day, which were free from interference by sap flow. In mid-July, daytime reductions of CO2 efflux reached 1.8–3.9 μmol CO2 m−2 g−1 xylem sap transpired. Assuming tree-specific maximum transpiration rates of 30 kg H2O d−1 this is up to 40% of gross CO2 release. In relation to photosynthetic CO2 fixation the endogenous supply of dissolved CO2 to the leaves acccounted for 0.5–3.7%. This study indicates a negative correlation between sap flow velocity and radial CO2 efflux from B. pendula stems. Periods of unbalanced CO2 partial pressures between aqueous and gaseous pathways during increase and decrease of sap flow seem to affect gaseous CO2 release through lenticels. It is concluded that CO2 efflux rates are not simply equivalent to respiration rates because of the interference of aqueous CO2 transport by xylem sap flow in the wood-body of trees.  相似文献   

8.
Transient response of sap flow to wind speed   总被引:1,自引:0,他引:1       下载免费PDF全文
Transient responses of sap flow to step changes in wind speedwere experimentally investigated in a wind tunnel. A Granier-typesap flow sensor was calibrated and tested in a cylindrical tubefor analysis of its transient time response. Then the sensorwas used to measure the transient response of a well-wateredPachira macrocarpa plant to wind speed variations. The transientresponse of sap flow was described using the resistance–capacitancemodel. The steady sap flow rate increased as the wind speedincreased at low wind speeds. Once the wind speed exceeded 8.0m s–1, the steady sap flow rate did not increase further.The transpiration rate, measured gravimetrically, showed a similartrend. The response of nocturnal sap flow to wind speed variationwas also measured and compared with the results in the daytime.Under the same wind speed, the steady sap flow rate was smallerthan that in the daytime, indicating differences between diurnaland nocturnal hydraulic function, and incomplete stomatal closureat night. In addition, it was found that the temporal responseof the Granier sensor is fast enough to resolve the transientbehaviour of water flux in plant tissue. Key words: Nocturnal transpiration, sap flow, transient response, wind speed Received 31 July 2008; Revised 6 October 2008 Accepted 20 October 2008  相似文献   

9.
 In contrast with previous reports, we observed high transpiration rates in mangrove trees. Maximum sap velocities and mean daytime sap flow rates were estimated from heat pulse velocity in entire, field grown trees of Avicennia cf. alba Blume and Rhizophora apiculata Blume. Results were within the range of values measured by identical techniques for trees in lowland dipterocarp and tropical heath forests with a similar climate in Brunei Darussalam (north Borneo). High stomatal conductance (400 mmol m –  2 s –  1) was also measured for well insolated leaves of A. cf. alba, with midday water potentials reaching about  – 3 MPa in both species. Received: 11 September 1996 / Accepted: 27 January 1997  相似文献   

10.
Summary Tree transpiration was determined by xylem sap flow and eddy correlation measurements in a temperate broad-leaved forest of Nothofagus in New Zealand (tree height: up to 36 m, one-sided leaf area index: 7). Measurements were carried out on a plot which had similar stem circumference and basal area per ground area as the stand. Plot sap flux density agreed with tree canopy transpiration rate determined by the difference between above-canopy eddy correlation and forest floor lysimeter evaporation measurements. Daily sap flux varied by an order of magnitude among trees (2 to 87 kg day–1 tree–1). Over 50% of plot sap flux density originated from 3 of 14 trees which emerged 2 to 5 m above the canopy. Maximum tree transpiration rate was significantly correlated with tree height, stem sapwood area, and stem circumference. Use of water stored in the trees was minimal. It is estimated that during growth and crown development, Nothofagus allocates about 0.06 m of circumference of main tree trunk or 0.01 m2 of sapwood per kg of water transpired over one hour.Maximum total conductance for water vapour transfer (including canopy and aerodynamic conductance) of emergent trees, calculated from sap flux density and humidity measurements, was 9.5 mm s–1 that is equivalent to 112 mmol m–2 s–1 at the scale of the leaf. Artificially illuminated shoots measured in the stand with gas exchange chambers had maximum stomatal conductances of 280 mmol m–2 s–1 at the top and 150 mmol m–2 s–1 at the bottom of the canopy. The difference between canopy and leaf-level measurements is discussed with respect to effects of transpiration on humidity within the canopy. Maximum total conductance was significantly correlated with leaf nitrogen content. Mean carbon isotope ratio was –27.76±0.27 (average ±s.e.) indicating a moist environment. The effects of interactions between the canopy and the atmosphere on forest water use dynamics are shown by a fourfold variation in coupling of the tree canopy air saturation deficit to that of the overhead atmosphere on a typical fine day due to changes in stomatal conductance.This paper is dedicated to Prof. Dr. O.L. Lange on the occasion of his 65th birthday  相似文献   

11.
R. K. Misra  R. Sands 《Plant and Soil》1992,140(2):269-278
Diurnal variation in sap flux (S) through stems of six trees, two each of Ulmus procera SALISB., Melaleuca styphelioides SM. and Prunus cerasifera EHRH. ‘Nigra’ (referred to hereafter by their generic names), were estimated from measurements of heat pulse velocities. Leaf water potential (ψ), stomatal conductance (g s ) and transpiration from leaves (T) of all replicate trees were measured at 1300–1500h, once during the summer. On two separate occasions measurements were made of S, ψ, (g s ) and T for one each of Ulmus and Melaleuca trees to study diurnal variations in these parameters. A 12×12 m2 area around each tree was kept covered to simulate the condition of trees growing on pavements adjacent to residential properties. Sap flux for these tree species was in the order Melaleuca>Ulmus>Prunus. It is suggested that the smaller canopy and sapwood area in Prunus compared to the other two species is responsible for lower water potential and lower transpiration rate than the other species. Detailed analysis of the diurnal variation in sap flux and water relation of leaves of Melaleuca and Ulmus indicated sap flux of Melaleuca to be greater than that of Ulmus at the same transpiration rate per unit leaf area although the sapwood area of the two species was marginally different. This may have been due either to the difference in canopy conductance or in leaf area between the two species. With the assumption that sap flux closely resembles the rate of soil water extraction for both species, results indicate that Melaleuca is likely to extract soil water at a higher rate than Ulmus and hence is capable of causing greater shrinkage and soil movement than Ulmus.  相似文献   

12.
In an old-growth forest in Central Germany, sap flux was studied in five broad-leaved tree species that were assumed to differ in drought sensitivity. Under moist soil conditions, average daily sap flux density (J s) in the outermost xylem varied by a factor of 2.3 among the species (67–152 g cm−2 per day, n=5 trees per species), and declined in the sequence Fagus sylvatica > Acer pseudoplatanus > Tilia cordata > Carpinus betulus > Fraxinus excelsior. Decreasing soil moisture content (Θ) resulted in linearly reduced J s in four of the species. During a dry period, J s was reduced by 44% in T. cordata, 39% in F. sylvatica, 37% in A. pseudoplatanus and 31% in C. betulus compared to sap flux at equal vapour pressure deficit (D) in the wet period. F. excelsior, the only ring-porous species studied, lacked a significant response in J s to D and Θ. The relative reduction in water use during the dry period was not related to the assumed drought sensitivity of the species as inferred from their abundance in natural woodlands. J s was positively correlated with tree diameter at breast height (DBH) in three species but decreased with DBH in two species. Dyeing experiments revealed that DBH accounted for 94% of the variation in sapwood area found in a bulk sample of all diffuse-porous trees. This suggests that DBH is a reliable estimator of sapwood area of temperate diffuse-porous species irrespective of species identity. In contrast, sap flux density was found to be greatly dependent on tree species. The estimated whole-plant water use for diffuse-porous trees of a given diameter (49 cm) ranged between 74 and 168 kg per day per species under moist soil conditions. Thus, in temperate mixed forests, species-specific differences in water use can result in a considerable spatial heterogeneity of canopy transpiration.  相似文献   

13.
During the night, plant water loss can occur either through the roots, as hydraulic redistribution (HR), or through the leaves via the stoma, as nocturnal transpiration (En), which was methodologically difficult to separate from stem refilling (Re). While HR and En have been reported across a range of species, ecosystem, and climate zone, there is little understanding on the interactions between En and/or Re and HR. As water movement at night occurs via gradients of water potential, it is expected that during periods of high atmospheric vapor pressure deficit (VPD), water loss via En will override water loss via HR. To test this hypothesis, sap flow in stems and roots of Populus euphratica Oliv. trees, growing in a riparian zone in a hyperarid climate, was measured once in a year. Nocturnal stem sap flow was separated into En and Re using the “forecasted refilling” method. Substantial nocturnal sap flow (38% of 24‐hr flux on average) was observed and positively correlated with VPD; however, the strength of the correlation was lower (R2 = .55) than diurnal sap flow (Ed) (R2 = .72), suggesting that nocturnal stem sap flow was attributed to both water loss through the canopy and replenishment of water in stem tissues. Partitioning of nocturnal sap flow shows that Re constituted approximately 80%, and En ~20%, of nocturnal sap flow. The amount of root sap flow attributed to redistribution was negatively related to Ed (R2 = .69) and the amount of acropetally sap flow in stems, Re (R2 = .41) and En (R2 = .14). It was suggested that the magnitude of HR is more strongly depressed by Re that was recharge to the water loss via Ed than by En. It was consistent with whole‐tree water balance theory, that the nighttime upward sap flow to xylem, stem refilling and transpiration, may depress hydraulic redistribution of roots.  相似文献   

14.
We studied regulation of whole-tree water use in individuals of five diverse canopy tree species growing in a Panamanian seasonal forest. A construction crane equipped with a gondola was used to access the upper crowns and points along the branches and trunks of the study trees for making concurrent measurements of sap flow at the whole-tree and branch levels, and vapor phase conductances and water status at the leaf level. These measurements were integrated to assess physiological regulation of water use from the whole-tree to the single-leaf scale. Whole-tree water use ranged from 379 kg day−1 in a 35 m-tall Anacardium excelsum tree to 46 kg day−1 in an 18 m-tall Cecropia longipes tree. The dependence of whole-tree and branch sap velocity and sap flow on sapwood area was essentially identical in the five trees studied. However, large differences in transpiration per unit leaf area (E) among individuals and among branches on the same individual were observed. These differences were substantially reduced when E was normalized by the corresponding branch leaf area:sapwood area ratio (LA/SA). Variation in stomatal conductance (g s) and crown conductance (g c), a total vapor phase conductance that includes stomatal and boundary layer components, was closely associated with variation in the leaf area-specific total hydraulic conductance of the soil/leaf pathway (G t). Vapor phase conductance in all five trees responded similarly to variation in G t. Large diurnal variations in G t were associated with diurnal variation in exchange of water between the transpiration stream and internal stem storage compartments. Differences in stomatal regulation of transpiration on a leaf area basis appeared to be governed largely by tree size and hydraulic architectural features rather than physiological differences in the responsiveness of stomata. We suggest that reliance on measurements gathered at a single scale or inadequate range of scale may result in misleading conclusions concerning physiological differences in regulation of transpiration. Received: 1 October 1997 / Accepted: 6 March 1998  相似文献   

15.
The relationship between sap flux and stem CO2 efflux was assessed for three mango trees. We observed higher than expected CO2 effluxes at the place of measurement under intermediate sap flux velocities and lower fluxes under high sap flux velocity. This variation disappeared after removing the tree crown.  相似文献   

16.
运用Granier 热扩散式探针法,于2010年干湿季对鼎湖山自然保护区针阔混交林4种优势树种马尾松、锥栗、木荷和广东润楠的树干液流密度进行连续监测,并同步观测气温、相对湿度和光合有效辐射等环境因子的变化,研究其树干液流特征及其对环境因子的响应.结果表明: 在干湿季,4种优势树种的树干液流速率日变化均呈“昼高夜低”的典型单峰曲线,阔叶树锥栗、木荷和广东润楠的平均液流速率和峰值以及日液流量均显著大于针叶树马尾松;马尾松、锥栗、木荷和广东润楠的最大树干液流密度分别为29.48、38.54、51.67、58.32 g H2O·m-2·s-1.优势树种树干液流速率的变化与环境因子的昼夜变化存在时滞;液流速率变化与光合有效辐射、水汽压亏缺和气温等环境因子的变化呈显著正相关,其中湿季以光合有效辐射为主导因子,干季以气温为主导因子.  相似文献   

17.
Extensive research has found that nighttime transpiration (E n) is positively correlated to the vapour pressure deficit (VPD), that suggested E n was highest during the night under high temperatures and low humidity along with high soil water availability, typically for the riparian forest in the extreme arid region of China. This study used the heat ratio method to measure sap velocity (V s) for mature and saplings Populus euphratica Oliv., and then E n was conservatively calculated as total nocturnal sap flow (F s, the product of V s and sapwood area A s) between 01:00 to 06:00. A gas exchange system was used to measure the leaf transpiration rate (T r) and stomatal conductance (g s) of saplings. For mature trees, nighttime V s was extensive and logarithmic correlated to VPD (similar to daytime). For saplings, g s and T r was extensive in different months, and also a strong logarithmic relationship was found between V s and VPD for both daytime and nighttime periods. Both of stem sap flow and leaf gas exchange suggusted the occurrence of E n, whether mature or sapling trees. E n contribution to daily transpiration (E d) was high just as expected for P. euphratica, which was confirmed by proportional E n to E d (E n/E d) means taken in 2012 (24.99%) and 2013 (34.08%). Compared to mature trees, E n/E d of saplings in 2013 was lower with means of 12.06%, that supported further by the shorter duration times and less T r,n (16.64%) and g s,n (26.45%) of leaf, suggesting that E n magnitude is associated to individual the tree size, that effect to stored water of individual trees, although this hypothesis requires further research.  相似文献   

18.
Stem respiration plays a role in species coexistence and forest dynamics. Here we examined the intra‐ and inter‐specific variability of stem CO2 efflux (E) in dominant and suppressed trees of six deciduous species in a mixed forest stand: Fagus sylvatica L., Quercus petraea [Matt.] Liebl, Quercus pyrenaica Willd., Prunus avium L., Sorbus aucuparia L. and Crataegus monogyna Jacq. We conducted measurements in late autumn. Within species, dominants had higher E per unit stem surface area (Es) mainly because sapwood depth was higher than in suppressed trees. Across species, however, differences in Es corresponded with differences in the proportion of living parenchyma in sapwood and concentration of non‐structural carbohydrates (NSC). Across species, Es was strongly and NSC marginally positively related with an index of drought tolerance, suggesting that slow growth of drought‐tolerant trees is related to higher NSC concentration and Es. We conclude that, during the leafless period, E is indicative of maintenance respiration and is related with some ecological characteristics of the species, such as drought resistance; that sapwood depth is the main factor explaining variability in Es within species; and that the proportion of NSC in the sapwood is the main factor behind variability in Es among species.  相似文献   

19.
Two branches of a field-grown Chamaecy-paris obtusa tree were enclosed in chambers of an open gas exchange system for continuous CO2 exchange measurements. One branch was subjected to ambient air (CO2, 370 μmol mol–1) and the other was subjected to CO2-enriched air (800 μmol mol–1). The CO2 exchange rate of the branches, air temperature and photosynthetic photon flux density were recorded every 4 min by a computer during the two experimental periods of July 1994 to June 1995 (experiment 1) and April 1996 to August 1997 (experiment 2). The response of CO2 gas exchange rate to light changed with the seasonal temperature. The highest saturated rate of net photosynthesis on a leaf area basis was observed in May and October in both CO2 treatments when the mean daytime temperature was about 18–19°C. This temperature was almost equal to the yearly mean daytime temperature. Above and below this temperature, the saturated net photosynthesis rate decreased. The net photosynthesis rate was usually higher in the elevated CO2 treatment. The ratio of monthly net photosynthesis rate in elevated CO2 to that in ambient CO2 was linearly related to the monthly mean daytime temperature. This ratio increased by 3.3% for each 1°C increase in the monthly mean daytime temperature; the highest ratio of 1.8 occurred in August. When the ratio was 1.0, the temperature was about 5–6°C, which was close to the mean daytime temperature of the coldest month. Elevated CO2 increased per unit area net photosynthesis by 38.5% and 43.7% in experiments 1 and 2, respectively. Received: 29 March 1999 / Accepted: 22 October 1999  相似文献   

20.
Using constant heat sap flow sensors, xylem water fluxes in ten tree species and two liana species were monitored for 5–10 days during the beginning of the wet season in May, 1993. For a subset of the trees, a branch was also monitored at the top of the crown for 5 days. Xylem flux (J S) was related diurnally in all plants to vapor pressure deficit (D) measured within the upper-third of the canopy, and to incoming shortwave radiation R S above the canopy. Cross-correlation analysis was used to estimate time lags between diurnal patterns of J S and D or R S, and between J S in stems and branches. The maximum correlation coefficient from cross-correlation of J S with R S (range=0.57–0.92) was often higher than the maximum of J S with D (range=0.43–0.89), indicating that diurnal J S was more dependent on R S than D. Time lags (lag corresponding to maximum correlation) of J S at stem-base with D was shorter (0–45 min) than with radiation (5–115 min), highly variable within a species, and uncorrelated to the height or exposure of tree crowns or liana in the canopy. On a stand level, not accounting for the diel lag between stem sap flux and canopy flux resulted in errors in estimated canopy transpiration of up to 30%. Received: 19 October 1998 / Accepted: 8 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号