首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
Recent studies have suggested that tropical forests may not be resilient against climate change in the long term, primarily owing to predicted reductions in rainfall and forest productivity, increased tree mortality, and declining forest biomass carbon sinks. These changes will be caused by drought‐induced water stress and ecosystem disturbances. Several recent studies have reported that climate change has increased tree mortality in temperate and boreal forests, or both mortality and recruitment rates in tropical forests. However, no study has yet examined these changes in the subtropical forests that account for the majority of China's forested land. In this study, we describe how the monsoon evergreen broad‐leaved forest has responded to global warming and drought stress using 32 years of data from forest observation plots. Due to an imbalance in mortality and recruitment, and changes in diameter growth rates between larger and smaller trees and among different functional groups, the average DBH of trees and forest biomass have decreased. Sap flow measurements also showed that larger trees were more stressed than smaller trees by the warming and drying environment. As a result, the monsoon evergreen broad‐leaved forest community is undergoing a transition from a forest dominated by a cohort of fewer and larger individuals to a forest dominated by a cohort of more and smaller individuals, with a different species composition, suggesting that subtropical forests are threatened by their lack of resilience against long‐term climate change.  相似文献   

3.
Macaronesian laurel forests are the only remnants of a subtropical palaeoecosystem dominant during the Tertiary in Europe and northern Africa. These biodiverse ecosystems are restricted to cloudy and temperate insular environments in the North Atlantic Ocean. Due to their reduced distribution area, these forests are particularly vulnerable to anthropogenic disturbances and changes in climatic conditions. The assessment of laurel forest trees’ response to climate variation by dendrochronological methods is limited because it was assumed that the lack of marked seasonality would prevent the formation of distinct annual tree rings. The aims of this study were to identify the presence of annual growth rings and to assess the dendrochronological potential of the most representative tree species from laurel forests in Tenerife, Canary Islands. We sampled increment cores from 498 trees of 12 species in two well-preserved forests in Tenerife Island. We evaluated tree-ring boundary distinctness, dating potential, and sensitivity of tree-ring growth to climate and, particularly, to drought occurrence. Eight species showed clear tree-ring boundaries, but synchronic annual tree rings and robust tree-ring chronologies were only obtained for Laurus novocanariensis, Ilex perado subsp. platyphylla, Persea indica and Picconia excelsa, a third of the studied species. Tree-ring width depended on water balance and drought occurrence, showing sharp reductions in growth in the face of decreased water availability, a response that was consistent among species and sites. Inter-annual tree-ring width variation was directly dependent on rainfall input in the humid period, from previous October to current April. The four negative pointer years 1995, 1999, 2008 and 2012 corresponded to severe drought events in the study area. This study gives the first assessment of dendrochronological potential and tree-ring climate sensitivity of tree species from the Tenerife laurel forest, which opens new research avenues for dendroecological studies in Macaronesian laurel forests.  相似文献   

4.
Liana dynamics in secondary and mature forests are well known in tropical areas dominated by native tree species. Outside the tropics and in secondary forests invaded by exotic species, knowledge is scarce. In this study, we compare liana communities between secondary and mature forests dominated by native species in a subtropical montane area of Sierra de San Javier, Tucuman, Argentina. Additionally, we evaluate changes of liana communities in secondary forests with increasing densities of Ligustrum lucidum and Morus alba, two of the most invasive exotic trees of the area. We surveyed liana species richness and density in three 30-year secondary patches, four 60-year secondary patches, and four mature patches dominated by native tree species, to analyze changes in liana communities with forest age. Within each patch, we sampled 10–25 20 × 20 m quadrats. Additionally, we surveyed liana density and species richness in secondary forest patches with different densities of L. lucidum and M. alba. In native-dominated forests, liana species richness increased and showed a tendency of increasing basal area from 30-year secondary forests to mature forests. Liana density was highly variable, and most of the species were shared between native-dominated secondary and mature forests. Liana density and species richness decreased with L. lucidum density, whereas in secondary forests highly dominated by M. alba, lianas increased in density. Overall, lianas followed different pathways influenced by native forest succession and exotic tree invasions.  相似文献   

5.
The roots of rain forest plants are frequently colonized by arbuscular mycorrhizal fungi (AMF) that can promote plant growth in the nutrient poor soils characteristic of these forests. However, recent studies suggest that both the occurrence of AMF on rain forest plants and the dependence of rain forest plants on AMF can be highly variable. We examined the occurrence and levels of AMF colonization of some common seedling species in a tropical and a subtropical rain forest site in Queensland, Australia. We also used a long-term database to compare the growth and mortality rates of seedling species that rarely formed AMF with those that regularly formed AMF. In both forests, more than one-third of the seedling species rarely formed AMF associations, while 40% of species consistently formed AMF in the tropical site compared to 27% in the subtropical site. Consistent patterns of AMF occurrence were observed among plant families at the two sites. Variation among seedling species in AMF occurrence or colonization was not associated with differences in seed mass among species, variation in seedling size and putative age within a species, or lack of AMF inoculum in the soil. Comparisons of four seedling species growing both in the shaded understory and in small canopy gaps revealed an increase in AMF colonization in two of the four species in gaps, suggesting that light limitation partially explains the low occurrence of AMF. Seedling survival was significantly positively associated with seed biomass but not with AMF colonization. Furthermore, seedling species that regularly formed AMF and those that did not had similar rates of growth and survival, suggesting that mycorrhizal and nonmycorrhizal strategies were equivalent in these forests. Furthermore, the high numbers of seedlings that lacked AMF and the overall low rate of seedling growth (the average seedling required 6 years to double its height) suggest that most seedlings did not receive significant indirect benefits from AMF through connection to canopy trees via a common mycorrhizal network.  相似文献   

6.
As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations. Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree‐ring records. Yet typical tree‐ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals’ size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92–95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses related to climate change alone.  相似文献   

7.
Parish R  Antos JA 《Oecologia》2004,141(4):562-576
Old-growth forests are common in the snowy, montane environments of coastal western North America. To examine dynamics of a stand containing four canopy tree species (Abies amabilis, Chamaecyparis nootkatensis, Tsuga mertensiana and T. heterophylla), we used four stem-mapped, 50 m ×50 m plots. From measurements of annual rings, we obtained ages from basal discs of 1,336 live trees, developed master chronologies for each species, reconstructed early growth rates, and delineated periods of release. The stand was ancient; individuals of all four species exceeded 900 years in age, and the oldest tree exceeded 1,400 years. The four plots differed in the timing of events, and we found no evidence of major, stand-level disturbance. Instead the stand was structured by small-scale patch dynamics, resulting from events that affected one to several trees and initiated episodes of release and relatively rapid early growth. The species differed in age structure and dynamics. A. amabilis and T. heterophylla had a classical reverse-J age structure indicative of stable populations, whereas C. nootkatensis and T. mertensiana appeared to rely on local episodes of increased recruitment, which were often separated by centuries, and were probably related to multiple-tree gaps that occurred infrequently. However, such gaps could be considered normal in the long-term history of the stand, and thus these species with their long life spans can persist. Most individuals of all four species grew extremely slowly, with trees typically spending centuries in the understory before reaching the canopy, where they were able to persist for additional centuries. Thus, the key features of this forest are the very slow dynamics dominated by small-scale events, and the slow growth of stress-tolerant trees.  相似文献   

8.
贡嘎山暗针叶林不同林型的优势木生长动态   总被引:10,自引:0,他引:10       下载免费PDF全文
 根据贡嘎山16块样地的调查资料,运用逻辑斯谛模型探讨了暗针叶林不同林型优势木生长动态。建立了峨眉冷杉(Abies fabri)、麦吊杉(Picea brachytyla)和鳞皮冷杉(Abies squamata)的高、径和材积生长的逻辑斯谛模型。研究结果表明,3种林分优势木的高、径和材积的速生期和速生点都不相同,林线附近的峨眉冷杉高、径和材积的速生期最短,麦吊杉高和材积的速生期最长,鳞皮冷杉基径的速生期最长;林分优势木的生长动态和森林更新关系密切,各优势木的生长指标表明各自立地生态条件差异很大。  相似文献   

9.
The high tree diversity of subtropical forests is linked to the biodiversity of other trophic levels. Disentangling the effects of tree species richness and composition, forest age, and stand structure on higher trophic levels in a forest landscape is important for understanding the factors that promote biodiversity and ecosystem functioning. Using a plot network spanning gradients of tree diversity and secondary succession in subtropical forest, we tested the effects of tree community characteristics (species richness and composition) and forest succession (stand age) on arthropod community characteristics (morphotype diversity, abundance and composition) of four arthropod functional groups. We posit that these gradients differentially affect the arthropod functional groups, which mediates the diversity, composition, and abundance of arthropods in subtropical forests. We found that herbivore richness was positively related to tree species richness. Furthermore, the composition of herbivore communities was associated with tree species composition. In contrast, detritivore richness and composition was associated with stand age instead of tree diversity. Predator and pollinator richness and abundance were not strongly related to either gradient, although positive trends with tree species richness were found for predators. The weaker effect of tree diversity on predators suggests a cascading diversity effect from trees to herbivores to predators. Our results suggest that arthropod diversity in a subtropical forest reflects the net outcome of complex interactions among variables associated with tree diversity and stand age. Despite this complexity, there are clear linkages between the overall richness and composition of tree and arthropod communities, in particular herbivores, demonstrating that these trophic levels directly impact each other.  相似文献   

10.
 蓝藻地衣是附生植物类群的重要组成部分, 在森林生态系统的环境监测和养分循环中发挥着重要作用。该研究在云南哀牢山亚热带森林系统的2种原生和6种次生森林群落中, 以粉缘绵毛衣(Leioderma sorediatum)、天蓝猫耳衣(Leptogium azureum)、网肺衣(Lobaria retigera)和双缘牛皮叶(Sticta duplolimbata) 4种常见蓝藻地衣为对象, 共设立120个样地, 调查了它们在3 600株树木0–2 m树干上的分布, 探讨其分布特征及与森林类群、宿主种类以及林龄等生境因子的关系。研究发现4种蓝藻地衣在森林群落间的分布模式明显不同。除双缘牛皮叶的盖度和频度在原生苔藓矮林中最高外, 其他3种蓝藻地衣的最高值均出现于次生林如厚皮香(Ternstroemia gymnanthera)林和滇山杨(Populus bonatii)林中; 而哀牢山地区广布的原生木果柯(Lithocarpus xylocarpus)林中, 4种蓝藻地衣极为少见。4种地衣都能生长于10多个树种上, 但明显表现出对厚皮香、滇山杨和硬壳柯(Lithocarpus hancei)等树种的偏好性, 以及对小花山茶(Camellia forrestii)等的排斥性。森林群落的林龄、胸径、最大胸径、林冠开阔度、基面积、树木密度和树种多样性等因子的变化均对4种附生蓝藻地衣的分布产生重要影响, 但在景观尺度上影响程度相对较小, 在不同森林群落内部却有各自的重要作用。其中, 林龄、林冠开阔度和宿主胸径是影响蓝藻地衣分布的最重要的生境因子。  相似文献   

11.
Sustainable forestry requires accurate ecological information such as species composition, growth rates and recruitment dynamics. Tree growth rates are usually obtained through long-term periodic re-measurements of individual trees or through the analysis of tree growth rings in stem cross sections. However, tree growth ring analysis was traditionally thought to be only possible in biomes with strong seasonality such as those found in high latitude temperate regions. A lack of data on the occurrence and characteristics of tree rings in tropical trees may be due to a lack of investigations. Here we characterise the growth rings of 183 tree species from seven forest types across an altitudinal gradient in northern and central Perú at macro- and microscopic levels. A correspondence analysis showed an association between phylogenetic relatedness and the level of distinctiveness in the growth rings. Deciduous species of seasonally dry tropical forests were associated with distinct growth rings and mainly delimited by marginal parenchyma, while indistinct growth rings were associated with evergreen trees from lowland Amazonian and pre-montane wet forests. Additionally, for the first time the presence of growth ring boundaries defined by marginal phloem is reported in two tropical tree species, Gallesia integrifolia (Spreng.) Harms and Vochysia mapirensis Rusby. This contribution represents the most exhaustive record to date of the occurrence and anatomy of growth rings in trees of the Peruvian tropics, which can be used to inform future dendrochronological studies.  相似文献   

12.
Tree growth is affected by many exogenous and endogenous factors, especially climate and competition. To address the issue of how these factors influence tree growth under global warming, dendroclimatology combined with competition analysis was used to examine the radial growth response of two major species – Pinus massoniana and Schima superba in subtropical monsoon mixed forests in southern China. For growth-climate relationship analysis, residual and ARSTAN chronologies of these two species were compared for the response function analysis over the past several decades. In terms of competition analysis, annual basal area increment (BAI) over several time intervals was calculated and linear mixed model techniques were employed. Several distance-independent competition indices were measured, including density (N), basal area (BA), and sum of diameter at breast height (SDBH). For competition trees with greater diameter (GR) than the subject tree, NGR, BAGR, SDBHGR were also calculated. Growth-climate relationship analysis suggested that tree growth varied in response to climate and was mostly correlated with minimum, mean and maximum air temperature as indicated by the adjusted R2 value. Summer and winter temperatures had a negative effect on tree growth, while early spring temperature showed positive effects. Competition analysis suggested that subtropical trees had been affected by competition in varying degrees. Trees in the oldest forest had the most competition stress, while trees in younger forests were less affected by competition according to the adjusted R2 value. Given that subtropical forests in China have been found to have more smaller trees with recent warming, it is expected that these forests will experience a decreasing effect of competition in near future. This can have profound effects on forest productivity and carbon sequestration potentials in Chinese subtropical forests.  相似文献   

13.
Gap dynamics theory proposes that treefall gaps provide high light levels needed for regeneration in the understory, and by increasing heterogeneity in the light environment allow light‐demanding tree species to persist in the community. Recent studies have demonstrated age‐related declines in leaf area index of individual temperate trees, highlighting a mechanism for gradual changes in the forest canopy that may also be an important, but less obvious, driver of forest dynamics. We assessed the prevalence of age‐related crown thinning among 12 tropical canopy tree species sampled in lowland forests in Panama and Puerto Rico (total = 881). Canopy gap fraction of individual canopy tree crowns was positively related to stem diameter at 1.3 m (diameter at breast height) in a pooled analysis, with 10 of 12 species showing a positive trend. Considered individually, a positive correlation between stem diameter and canopy gap fraction was statistically significant in 4 of 12 species, all of which were large‐statured canopy to emergent species: Beilschmiedia pendula, Ceiba pentandra, Jacaranda copaia, and Prioria copaifera. Pooled analyses also showed a negative relationship between liana abundance and canopy gap fraction, suggesting that lianas could be partially obscuring age‐related crown thinning. We conclude that age‐related crown thinning occurs in tropical forests, and could thus influence patterns of tree regeneration and tropical forest community dynamics.  相似文献   

14.
Recent studies have highlighted the role of lianas in shaping stand dynamics both in tropical and temperate forests. However, English ivy (Hedera helix L.), one of the most widespread lianas in Europe, has received little attention. We conducted a study in the Siro Negri alluvial forest (NW Italy) to determine what factors most affected ivy distribution and investigate its interactions with the trees in the stand. We evaluated the influence of tree size, age, species, and neighborhood crowding on ivy occurrence. In addition, growth ring widths were used to explore the development pattern of climbing stems. Fifty-two percent of trees in our study plots carried ivy, a value comparable to liana incidence found in mature tropical forests. Tree characteristics and their spatial pattern significantly influenced ivy distribution. Preferred hosts were large, isolated trees, while the effect of tree age and species on ivy occurrence was marginal. Growth pattern analysis revealed that radial growth was positively related to the available space on the tree trunk for each ivy stem. We conclude that neighborhood crowding around trees and competition among climbing stems relying on the same trunk may reduce the colonization rate of ivy.  相似文献   

15.
Studies of tropical secondary forest succession face strong limitations due to the slow pace of succession and the time-consuming task of monitoring processes. The occurrence of tree rings in secondary forest trees may help expand our knowledge on succession in these systems and may be useful for fallow dating in chronosequence studies. We examine here the potential of tree rings to study forest succession by sampling 70 species along chronosequences of dry and wet forests in southern Mexico. Based on wood anatomical features, we estimated that about 37 percent of the species presented distinct growth rings useful for ring studies. Overall, maximum number of rings matched well the interview-based fallow ages but, at some sites, trees had consistently higher numbers of rings, probably due to errors in fallow ages derived from interviews. Best fallow age estimations were obtained by examining rings in both pioneer and nonpioneer species. Reconstruction of species' establishment dates revealed that pioneer and nonpioneer species establish early during succession, and that species of both groups continue to recruit after many years. Our study clearly shows that tree ring analysis is a promising tool for studies on secondary forest succession in the tropics.  相似文献   

16.
For a better understanding of forest ecology, tree-ring studies can provide information on climate sensitivity, tree growth patterns and population age structure that can inform about stand dynamics such as recruitment of new individuals, and other interspecific interactions related to competition and facilitation. Little is known about the ecology of the recently identified high Andean tree species Polylepis rodolfo-vasquezii. Here, we analyzed the relationship between tree size and age of two P. rodolfo-vasquezii forest stands located in the central Peruvian Andes at 11°S in latitude, and compared their growth patterns and climate sensitivity. We measured the height and diameter of each individual tree and collected tree core samples of living trees and cross sections of dead standing trees to generate two centennial tree-ring chronology at Toldopampa (1825–2015 CE) and at Pomamanta (1824–2014 CE) sites. The dendrochronological dates were evaluated by 14C analysis using the bomb-pulse methods analyzing a total of 9 calendar years that confirm the annual periodicity of this tree species. At the Toldopampa stand most trees ranged from 70 to 80 years old, with a 190-year old individual, being an older and better preserve forest than Pomamanta, with younger trees, probably because more human disturbances due to closer village proximity. No significant relationships were found between tree age and size in the oldest stand alerting that tree diameter should not be used as a metric for estimating tree ages as a general rule. The distinct growth patterns and the size-age relationship observed at the two forests may reflect distinct histories regarding human activities such as fire and logging. Nevertheless, both the Toldopampa and the Pomamanta tree-ring width chronologies exhibited common growth patterns and shared a similar positive response to temperature of the current growing season. Overall, our study confirmed the annual radial growth periodicity in P. rodofolfo-vasquezii trees using an independent method such as 14C analyses and a strong climate sensitivity of this tree species. These findings encourage the development of an extensive P. rodolfo-vasquezii tree-ring network for ecological and paleoclimate studies in the tropical Andes in South America.  相似文献   

17.
In an old‐growth tropical wet forest at La Selva, Costa Rica, we combined radiocarbon (14C) dating and tree‐ring analysis to estimate the ages of large trees of canopy and emergent species spanning a broad range of wood densities and growth rates. We collected samples from the trunks of 29 fallen, dead individuals. We found that all eight sampled species formed visible growth rings, which varied considerably in distinctiveness. For five of the six species for which we combined wood anatomical studies with 14C‐dates (ring ages), the analyses demonstrated that growth rings were of annual formation. The oldest tree we found by direct ring counting was a Hymenolobium mesoamericanum Lima (Papilionaceae) specimen, with an age of ca. 530 years at the time of death. All other sampled individuals, including very large trees of slow‐growing species, had died at ages between 200 and 300 years. These results show that, even in an everwet tropical rain forest, tree growth of many species can be rhythmic, with an annual periodicity. This study thus raises the possibility of extending tree‐ring analyses throughout the tropical forest types lacking a strong dry season or annual flooding. Our findings and similar measurements from other tropical forests indicate that the maximum ages of tropical emergent trees are unlikely to be much greater than 600 years, and that these trees often die earlier from various natural causes.  相似文献   

18.
Araucaria angustifolia (Bertol.) O. Kuntze (Araucariaceae) is a Neotropical tree, widely distributed in subtropical mountain rain forests and nearby natural grasslands of Southern Brazil. This species produces annual growth rings, but its dendroclimatic potential is barely known. In the present paper, the long‐term growth patterns of A. angustifolia were investigated using annual growth ring time series and association to climate over the last century. Wood cores of A. angustifolia trees growing in forest and grassland habitats were obtained with an increment borer. The cores were surfaced, measured and cross‐dated. The dated ring‐width time series were standardized and submitted to correlation and principal component analysis to verify growth trends among sites and trees. Growth‐climate relationships were investigated using correlation and regression analyses, comparing the ordination axes scores to regional time series of precipitation and temperature. Due to anatomical irregularities, mainly partial rings, only 35 out of 60 trees were cross‐dated. The correlation and ordination analyses showed common tree‐growth trends within and between sites, indicative of a regional environmental force determining inter‐annual cambial activity variation. Despite growing in distinct habitats and disturbance regimes, A. angustifolia trees share a common long‐term growth pattern, which is significantly related to thermal conditions during the current and previous growing seasons. Moreover, site‐specific characteristics may have influenced opposite growth responses and association to climate conditions between forest and grassland trees.  相似文献   

19.
Yellow-poplar (Liriodendron tulipifera L.) is a large, rapidly growing, shade-intolerant tree species common after disturbances on moist sites in the Appalachian Mountains. The species is typically scattered throughout old-growth mesophytic forests, where periodic gap formation creates conditions favorable for yellow-poplar establishment and growth. On abandoned agricultural fields, however, it is common for nearly monospecific forests of yellow-poplar to develop.This study examines stand dynamics of a yellow-poplar forest in western Virginia, USA that was established on agricultural fields abandoned in the late 1940s. Increment cores were collected from yellow-poplar trees growing on exposed ridgetops and in a more sheltered hollow. Tree-ring data show that the forest is even-aged. Tree establishment began about 5 years earlier on the ridgetops than in the hollow. Major ice storms disturbed the forest in 1978 and 1994, with two separate events in 1994. Ice storms disturb forests by depositing heavy loads of freezing rain on trees, breaking or uprooting them. The dendroecological data collected for this study provide little support for the hypothesis that ice storm disturbance promotes the establishment of new yellow-poplar cohorts. However, the data show that radial growth of some trees increased after ice storm disturbance, a pattern that reflects the increased availability of light following disturbance. Radial growth declined in some other trees as a consequence of severe injury during the storms.Radial growth responses following the 1978 ice storm were stronger on the ridgetops than in the hollow, suggesting that tree damage was more severe on the higher, more exposed sites. Growth responses were relatively mild following the storms of 1994, and did not exhibit pronounced topographic variations.  相似文献   

20.
 NEWCOP模型是一个新的适于模拟东北森林的种类组成动态的林窗类计算机模拟模型,它通过模拟在每一个林分斑块上的每株树木的更新、生长和死亡的全过程来反映森林群落的中长期生长和演替动态。由于 NEWCOP模型是一个由气候变量驱动的生态系统模型,故可用于评价气候变化对东北森林生长和演替的影响。在东北大兴安岭、小兴安岭和长白山地区对NEWCOP模型进行了验证和校准。沿环境梯度对NEWCOP模型的数字模拟实验表明:它能准确地再现顶极森林中树种组成及其在东北地区的垂直分布规律和水平分布规律;能准确地再现大兴安岭、小兴安岭和长白山的主要类型森林的生长和演替规律;在一定的场合NEWCOP还可反映林分的径级结构;NEWCOP模型还具有对现有森林的跟踪模拟能力。应用NEWCOP模型评估了东北森林生态系统对可能气候变化的敏感性。在GFDL 2×CO2和GISS 2×CO2气候变化情景下,东北森林的种类组成将发生很大变化,落叶阔叶树将取代目前长白山、小兴安岭的红松(Pinus koraiensis)和大兴安岭的兴安落叶松(Larix gmelinii)成为东北森林主要树种,而针叶树将在地带性森林中占很小的比重,阔叶树中蒙古栎(Quercus mongolica)将是最重要的树种,它将成为小兴安岭和大兴安岭最主要树种;东北地区适于森林生长的区域将大幅度减少,这些变化主要发生在气候变化过渡期。东北森林对不同的气候变化情景有不同响应。但是,总的趋势是未来东北森林中落叶阔叶树的比重将大幅度增加。这些结论对在全球气候变化背景下,我国东北合理地选择造林树种和制定现有森林的保护经营策略具有一定参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号