首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Experimental induction of plant chemical defences with methyl jasmonate (MeJa) is a valuable tool for understanding the ecology of plant defensive responses. However, few studies have examined whether MeJa-induced defences in conifers are effective against insect herbivores. We studied, in 17 half-sib Pinus pinaster families, (i) the effect of MeJa application on plant growth and on the induction of diterpenoid resin in different sections of the stem; (ii) whether MeJa-induced defences increase the resistance of living pine juveniles against the large pine weevil Hylobius abietis in an in vivo bioassay and (iii) the induction of resin content after weevil wounding. Resin concentration was greater in the upper section of the stem compared with basal sections in both MeJa-induced and non-induced seedlings. Sixty days after MeJa application, treated plants showed 40% greater resin content all along the stem, but reduced height growth compared to control plants. MeJa-induction was effective against the pine weevil, as induced seedlings were 21% less damaged than control plants. Wounding activity by H. abietis produced a strong local defensive response after 48 h, where resin concentration was double that observed in the basal and apical sections not exposed to the insects.  相似文献   

2.
Scots pine (Pinus sylvestris L., Pinaceae) produces a terpenoid resin which consists of monoterpenes and resin acids that offer protection against herbivores and pathogen attacks. Methyl jasmonate (MJ) is a potential plant elicitor which induces a wide range of chemical and anatomical defence reactions in conifers and might be used to increase resistance against biotic damage. Different amounts of MJ (control, 10 mm , and 100 mm ) were applied to Scots pine to examine the vigour, physiology, herbivory performance, and induction of secondary compound production in needles, bark, and xylem of 2‐year‐old Scots pine seedlings. Growth decreased significantly in both MJ treated plants, and photosynthesis decreased in the 100 mm MJ treated plants, when compared to 10 mm MJ or control plants. The large pine weevil (Hylobius abietis L.) (Coleoptera: Curculionidae) gnawed a significantly smaller area of stem bark in the 100 mm treated plants than in the control or 10 mm treated plants. The 100 mm MJ treatment increased the resin acid concentration in the needles and xylem but not in the bark. Furthermore, both MJ treatments increased the number of resin ducts in newly developing xylem. The changes in plant growth and chemical parameters after the MJ treatments indicate shifts in carbon allocation, but MJ also affects plant physiology and xylem development. Terpenoid resin production was tissue‐specific, but generally increased after MJ treatments, which means that this compound may offer potential protection of conifers against herbivores.  相似文献   

3.
Hylobius abietis is an important pest of coniferous plantations in Europe, to which high mortality, stem deformities, and growth loss are typically attributed. In pine trees, as in other long-lived organisms, there is uncertainty regarding the long-term costs of short-term resistance against invading organisms. We examined the nutritional status of Pinus pinaster after a 2-year long H. abietis attack, measuring needle and phloem N and P concentrations, and the impact of the damage on subsequent growth, survival, and stem deformities over a period of 5 years. The study sites were a P. pinaster family × fertilization trial, and a neighbouring twin trial with similar climate and soil characteristics that was not attacked. Growth losses after the H. abietis attack were important (up to 40%), but restricted to the first years after the attack. Five years after the attack, the annual height increment of pines in the attacked stand was not related to the initial damage suffered, and plants showed regular stems, normal leader dominance, and regular height after 5 years. These findings suggest strong compensatory growth in P. pinaster and indicate relatively high tolerance to the large pine weevil. Needle nutrient concentrations in the healthy stand were, as expected, significantly greater in experimentally fertilized plants, and they were linearly related to those in phloem showing equilibrated stoichiometry both for nitrogen (r = 0.86; P < 0.01; N = 25) and phosphorus (r = 0.84; P < 0.01; N = 25). However, at the attacked stand, nutrient concentrations in the needles did not follow the experimentally manipulated nutrient availability in soils, and phosphorus concentration in the needles was unexpectedly not related to those in the phloem. The pine seedlings attacked by H. abietis showed altered potential of allocating nutrients to their tissues according to the nutrient availability existing in the soil, as well as altered stoichiometry in N and P concentrations among phloem and leaves. Maritime pine seems to be tolerant to the pine weevil attack, at least in the conditions of this study, where pine weevil damage caused a deep alteration of nutrient allocation and nutritional status. Further research is needed to elucidate to what extent altered nutrient allocation may be part of an induced response to the attack or just derived from the vascular injury caused by the weevil wounding in the phloem.  相似文献   

4.
Moreira X  Zas R  Sampedro L 《PloS one》2012,7(3):e34006
Optimal defense theory (ODT) predicts that the within-plant quantitative allocation of defenses is not random, but driven by the potential relative contribution of particular plant tissues to overall fitness. These predictions have been poorly tested on long-lived woody plants. We explored the allocation of constitutive and methyl-jasmonate (MJ) inducible chemical defenses in six half-sib families of Pinus radiata juveniles. Specifically, we studied the quantitative allocation of resin and polyphenolics (the two major secondary chemicals in pine trees) to tissues with contrasting fitness value (stem phloem, stem xylem and needles) across three parts of the plants (basal, middle and apical upper part), using nitrogen concentration as a proxy of tissue value. Concentration of nitrogen in the phloem, xylem and needles was found to be greater higher up the plant. As predicted by the ODT, the same pattern was found for the concentration of non-volatile resin in the stem. However, in leaf tissues the concentrations of both resin and total phenolics were greater towards the base of the plant. Two weeks after MJ application, the concentrations of nitrogen in the phloem, resin in the stem and total phenolics in the needles increased by roughly 25% compared with the control plants, inducibility was similar across all plant parts, and families differed in the inducibility of resin compounds in the stem. In contrast, no significant changes were observed either for phenolics in the stems, or for resin in the needles after MJ application. Concentration of resin in the phloem was double that in the xylem and MJ-inducible, with inducibility being greater towards the base of the stem. In contrast, resin in the xylem was not MJ-inducible and increased in concentration higher up the plant. The pattern of inducibility by MJ-signaling in juvenile P. radiata is tissue, chemical-defense and plant-part specific, and is genetically variable.  相似文献   

5.
Studies were conducted to determine whether herbivore-induced synthesis of monoterpenes occurs in the needles of ponderosa pine (Pinus ponderosa Lawson), lodgepole pine (P. contorta Douglas var. latifolia Engelmann), white fir (Abies concolor Lindl. and Gordon) and Engelmann spruce [Picea engelmanii (Parry) Engelm.]. In the needles of all species except Engelmann spruce, simulated herbivory significantly induced the activity of monoterpene cyclases 4–8 days after wounding. In ponderosa pine, real herbivory by last-instar tiger moth larvae (Halisdota ingens Hy. Edwards: Lepidoptera) induced a significantly larger response (4.5-fold increase in monoterpene cyclase activity) than did simulated herbivory (2.5-fold increase). To our knowledge, this is the first report of herbivore-induced increases in monoterpene synthesis in needle tissue. Despite this increase in monoterpene synthesis, we observed no significant increase in total monoterpene pool size in wounded needles compared to controls. Large increases in the rate of monoterpene volatilization were observed in response to wounding. We conclude that the volatile losses caused by tissue damage compensate for herbivore-induced monoterpene synthesis, resulting in no change in pool size. Tiger moth larvae consume ponderosa pine needles in a pattern that begins at the tip and proceeds downward to midway along the needle, at which point they move to an undamaged needle. Constitutive monoterpene concentrations and monoterpene cyclase activities were highest in the lower half of ponderosa pine needles. The monoterpene profile also differed between the upper and lower needle halves, the lower half possessing an additional one to four monoterpene forms. We propose that the increasing gradient in monoterpene concentrations and number of monoterpenes along the needle from tip to base deters feeding beyond the midway point and provides time for the induction of increased cyclase activity and production of new monoterpenes. The induction of new monoterpene synthesis may have a role in replacing monoterpenes lost through damage-induced volatilization and preventing extreme compromise of the constitutive defense system. Received: 4 June 1997 / Accepted: 2 December 1997  相似文献   

6.
  • The induction of defences in response to herbivory is a key mechanism of plant resistance. While a number of studies have investigated the time course and magnitude of plant induction in response to a single event of herbivory, few have looked at the effects of recurrent herbivory. Furthermore, studies measuring the effects of the total amount and recurrence of herbivory on both direct and indirect plant defences are lacking. To address this gap, here we asked whether insect leaf herbivory induced changes in the amount and concentration of extrafloral nectar (an indirect defence) and concentration of leaf phenolic compounds (a direct defence) in wild cotton (Gossypium hirsutum).
  • We conducted a greenhouse experiment where we tested single event or recurrent herbivory effects on defence induction by applying mechanical leaf damage and caterpillar (Spodoptera frugiperda) regurgitant.
  • Single events of 25% and 50% leaf damage did not significantly influence extrafloral nectar production or concentration. Extrafloral nectar traits did, however, increase significantly relative to controls when plants were exposed to recurrent herbivory (two episodes of 25% damage). In contrast, phenolic compounds increased significantly in response to single events of  leaf damage but not to recurrent damage. In addition, we found. that local induction of extrafloral nectar production was stronger than systemic induction, whereas the reverse pattern was observed for phenolics.
  • Together, these results reveal seemingly inverse patterns of induction of direct and indirect defences in response to herbivory in wild cotton.
  相似文献   

7.
Changes in resource availability and biotic and abiotic stress may alter the defensive mechanisms of pine trees. The effect of fertilisation on the resin canal structure of Pinus pinaster seedlings established in two trials in NW Spain, one attacked by Hylobius abietis and the other non-attacked, was studied. The leaders of 50 plants were destructively sampled and the resin canal density, the canal area and its relative conductive area in the phloem and xylem were assessed. Experimentally increased nutrient availability significantly decreased resin canal density in the phloem of the seedlings in the two analysed trials, where unfertilised seedlings presented up to 30% more resin canal density than the fertilised seedlings (mean value ± SEM = 0.32 ± 0.02 resin canals mm−2 in the fertilised plants versus 0.45 ± 0.04 resin canals mm−2 in the control plants). Fertilisation had no effect on the resin canal system in the xylem, but significantly increased tracheid size. Significant differences of resin canals among sites were observed mainly in the xylem; the resin canal density was 1.7-fold greater in the attacked site than in the non-attacked site. The similar structure of phloem resin canals in both sites supports that phloem resin canals are constitutive mechanisms of defence in P. pinaster, whereas xylem resin canals would be constitutive mechanisms but also inducible mechanisms of resistance following the attack of pine weevils or bark beetles. XM and LS equally contributed to this paper.  相似文献   

8.
Members of the Pinaceae family have complex chemical defense strategies. Conifer defenses associated with specialized cell types of the bark involve constitutive and inducible accumulation of phenolic compounds in polyphenolic phloem parenchyma cells and oleoresin terpenoids in resin ducts. These defenses can protect trees against insect herbivory and fungal colonization. The phytohormone ethylene has been shown to induce the same anatomical and cellular defense responses that occur following insect feeding, mechanical wounding, or fungal inoculation in Douglas fir (Pseudotsuga menziesii) stems (Hudgins and Franceschi in Plant Physiol 135:2134–2149, 2004). However, very little is known about the genes involved in ethylene formation in conifer defense or about the temporal and spatial patterns of their protein expression. The enzyme 1-aminocyclopropane-1-carboxylate oxidase (ACO) catalyzes the final step in ethylene biosynthesis. We cloned full-length and near full-length ACO cDNAs from three conifer species, Sitka spruce (Picea sitchensis), white spruce (P. glauca), and Douglas fir, each with high similarity to Arabidopsis thaliana ACO proteins. Using an Arabidopsis anti-ACO antibody we determined that ACO is constitutively expressed in Douglas fir stem tissues and is up-regulated by mechanical wounding, consistent with the wound-induced increase of ethylene levels. Immunolocalization showed cytosolic ACO is predominantly present in specialized cell types of the wound-induced bark, specifically in epithelial cells of terpenoid-producing cortical resin ducts, in polyphenolic phloem parenchyma cells, and in ray parenchyma cells.J.W. Hudgins and Steven G. Ralph contributed equally to this work.  相似文献   

9.
Plants respond to feeding injury by chewing insects by inducing both a general response to mechanical wounding and a specific response to herbivore-associated elicitors. In both cases, plant response involves complex biochemical and physiological changes. We compared chemical and physical responses of paper birch (B. papyrifera) and European white birch (B. pendula) stems to mechanical injury to determine if aspects of their wound response correspond with the much higher resistance of paper birch to bronze birch borer (Agrilus anxius). We also characterized stem responses to mechanical wounding plus bronze birch borer larval homogenate to determine if larval cues elicited a more specific response than mechanical wounding alone. In both species, wounding decreased concentrations of individual phenolics, total phenolics, and condensed tannins, perhaps because they were diverted to lignin biosynthesis, the concentration of which increased. Nitrogen concentration increased in both species while free amino acid concentrations declined, perhaps because they were utilized to synthesize proteins. Application of larval homogenate did not elicit a response different from that induced by mechanical injury. When comparing wound responses of the two birch species, phenolic profiles differed most conspicuously. However, multivariate analyses revealed no differences between constitutive and wound-induced phenolic profiles within each species, and the rate of wound periderm growth was equivalent between species. These results suggest that components of the wound response we measured may not contribute to interspecific variation in bronze birch borer resistance of paper birch and European white birch.  相似文献   

10.
1. Coniferous trees deploy a combination of constitutive (pre‐existing) and induced (post‐invasion), structural and biochemical defences against invaders. Induced responses can also alter host suitability for other organisms sharing the same host, which may result in indirect, plant‐mediated interactions between different species of attacking organisms. 2. Current range and host expansion of the mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) from lodgepole pine‐dominated forests to the jack pine‐dominated boreal forests provides a unique opportunity to investigate whether the colonisation of jack pine (Pinus banksiana Lamb.) by MPB will be affected by induced responses of jack pine to a native herbaceous insect species: the jack pine budworm (Choristoneura pinus pinus Freeman; JPBW). 3. We simulated MPB attacks with one of its fungal associates, Grosmannia clavigera Robinson‐Jeffrey & Davidson, and tested induction of either herbivory by JPBW or inoculation with the fungus followed by a challenge treatment with the other organism on jack pine seedlings and measured and compared monoterpene responses in needles. 4. There was clear evidence of an increase in jack pine resistance to G. clavigera with previous herbivory, indicated by smaller lesions in response to fungal inoculations. In contrast, although needle monoterpenes greatly increased after G. clavigera inoculation and continued to increase during the herbivory challenge, JPBW growth was not affected, but JPBW increased the feeding rate to possibly compensate for altered host quality. 5. Jack pine responses varied greatly and depended on whether seedlings were treated with single or multiple organisms, and their order of damage.  相似文献   

11.
12.
分析了麦二叉蚜在小麦98-10-30上不同诱导处理后发育时间、成虫重量和平均相对生长率,以及不同诱导处理下小麦98-10-30特异基因的表达.结果表明,用针刺、蚜虫取食和BTH(benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester)处理98-10-30后,蚜虫发育成成虫的时间缩短,成虫体重下降,平均相对生长率在各处理间无显著差异.对处理后小麦体内特异基因的表达研究表明,LOX、AOS、PDF1.2、PAL1、PR-1和BGL2基因在mRNA的表达量或质上存在差异.PDF1.2基因在蚜虫取食后mRNA的量显著增加,但BTH处理却不诱导PDF1.2基因的表达,同时,BGL2基因在蚜虫取食和BTH处理后,mRNA的量增加,但对照和针刺处理后BGL2基因不表达.不同诱导处理表明,98-10-30诱导的抗性对麦二叉蚜的生长发育有一定影响,蚜虫取食诱导的防卫反应与机械损伤和BTH处理有相似或相同之处,但存在明显差异.这说明蚜虫诱导的抗性是一种特异反应,与受伤反应和抗病反应有重叠交叉之处,但又不同于二者诱导产生的抗性反应.  相似文献   

13.
Luchi N  Ma R  Capretti P  Bonello P 《Planta》2005,221(1):75-84
The potential role of the resin system in the response of Austrian pine (Pinus nigra Arn.) seedlings to mechanical injury and fungal infection was studied in greenhouse experiments. Anatomical observations were performed on 2-year-old plants wounded at collar level and inoculated with Sphaeropsis sapinea (Fr.: Fr.) Dyko & Sutton in Sutton or Diplodia scrobiculata (J. de Wet, B. Slippers & M. J. Wingfield, sp. nov.; sensu de Wet et al. 2003), two fungal pathogens that cause shoot blight and canker on conifers, and that are characterized by different levels of aggressiveness. Histological examination of host tissue taken from the stem at 0, 8, and 12 cm above the treatment site revealed significant treatment- and time-dependent effects on the course of locally and systemically induced traumatic resin duct (TRD) development. Occurrence of TRDs was observed after 4 days only in seedlings inoculated with D. scrobiculata. At 12 days, TRDs were present also in mock-inoculated controls. No TRDs appeared in seedlings inoculated with S. sapinea. However, S. sapinea caused loss of vacuolar phenolics, severe disruption of cambial tissue and invaded the host xylem quickly and apparently unimpeded, whereas D. scrobiculata was never detected in the host xylem. Five-year-old Austrian pines subjected to the same stem base treatments were used to determine the resin mass flowing from the stem 30 cm above the treatment sites. Wounding and/or inoculation induced a significant, 8.3-fold average increase in systemic resin flow over the untreated trees 3 weeks after basal treatment, suggesting that wounding is the sole prerequisite for systemic induction of resin flow. The results are discussed in the context of current disease resistance models.  相似文献   

14.
Breeding for resistance to forest pests and pathogens is emerging as a promising tool for minimising the impact of the increasing biotic threats that our forests are experiencing as a consequence of global change. Efficient phenotyping protocols of resistance are urgently needed. Here we present the results of two experiments aimed to determine whether the variation in resistance to the pine weevil Hylobius abietis, a harmful pest of European conifers, can be inferred by nondestructive bioassays using excised plant material collected in forest genetic trials. Weevil damage and amount of nonvolatile resin induced by weevil feeding were assessed in young trees and in branches of adult trees using several phenotyping procedures (bioassays using either living trees, excised plant material and cut stem twigs) on four pine species (Pinus pinaster, P. radiata, P. sylvestris and P. pinea). Half of the plants were previously induced with methyl jasmonate (MJ), a treatment that is known to affect resistance to the pine weevil. In Experiment 1, living and excised plants showed parallel results: MJ treatment significantly reduced weevil damage, and saplings responded to weevil damage locally increasing the nonvolatile resin (NVR) in the stems proportionally to the damage suffered. This response was, however, slightly lower in excised than in living saplings. On the contrary, patterns of weevil feeding on stem twigs completely departed from those observed in living and excised seedlings. Moreover, cut stem twigs were unable to respond to weevil feeding increasing NVR according to the weevil damage. In Experiment 2, assessment of weevil damage on excised branches explained around 50% of variation in damage on living branches. This relationship became much more pronounced (R2 = 0.81) when explored at the mean treatment level; branch manipulation did not alter the patterns of variation in resistance across pine species or MJ treatments. Irrespective of the assessment procedure, MJ consistently decreased weevil damage in all pine species, with larger reduction in weevil damage in stone and maritime pine than in radiata and Scots pine. Radiata pine was the most resistant while Scots pine was the most susceptible to the pine weevil. Overall, results suggest that using excised plant material is an operative alternative for phenotyping weevil resistance whenever care is taken to maintain the functionality of the excised plant material. This will allow taking advantage of multiple available conifer genetic trials to deepen the ecological genetics of resistance to the pine weevil and to screen for resistance without compromising the long‐term utility of those genetic trials.  相似文献   

15.
The large pine weevil (Hylobius abietis L.) is an important pest of young forest stands in Europe. Larvae develop under the bark of freshly cut pine and spruce stumps, but maturing weevils feed on the bark of coniferous seedlings. Such seedlings frequently die because of bark consumption near the root collar. We tested the effect of three treatments (the insecticide alpha cypermethrin, a wax coating and a glue coating) on the feeding damage caused by H. abietis on Douglas fir (Pseudotsuga menziesii) and Norway spruce (Picea abies) seedlings under semi-natural conditions. In two experiments (one in 2016 and another in 2017) seedlings in cages were subjected to pine weevil feeding for 16 weeks under shaded outdoor conditions. The experiment in 2016 compared insecticide and wax treatments and an untreated control on Douglas fir and Norway spruce, and the experiment in 2017 compared insecticide, wax and glue treatments and an untreated control on Norway spruce. In both experiments, all treatments significantly reduced H. abietis feeding damage at week 8 at the end of both experiments (week 16); the effect of treatments was significant only on spruce seedlings. The damages on Douglas fir seedlings was less on treated seedlings than on untreated control seedlings but differences were not significant. Coating stems with glue and especially with wax was generally effective at reducing weevil damage and in most cases provided control that was not significantly different from that provided by insecticide treatment. Our results suggest that a wax coating has the potential to replace the protection of seedlings provided by insecticides.  相似文献   

16.
  • 1 The pine weevil Hylobius abietis (L.) feeds on the bark of young conifer seedlings and is one of the most economically important forest pests in Europe.
  • 2 In a field experiment, we examined the combined effects of the treatments: nutrient‐loading of seedlings, planting in scarified plots and protection of seedlings against pine weevil damage for either half a season or a full season.
  • 3 Nutrient loading had no significant effect on the amount of pine weevil feeding.
  • 4 Seedling mortality was significantly reduced when seedlings were protected from pine weevil feeding during establishment. This occurred even though the debarked area of protected seedlings 5 weeks after the shields had been removed was similar to that of the unprotected seedlings. This indicates that initial protection rendered the seedlings more tolerant to later wounding by pine weevil.
  • 5 Planting in soil inversion significantly reduced feeding compared with planting in humus.
  • 6 We conclude that nutrient‐loading of seedlings in the autumn before planting would not increase pine weevil feeding after planting. Mortality could be reduced by treatments that postpone the start of pine weevil feeding on seedlings. Such treatments, combined with planting in soil inversion, would result in increased seedling growth, vitality and tolerance to pine weevil attack.
  相似文献   

17.
Elevated atmospheric carbon dioxide (CO2) and ozone (O3) concentrations have both been shown to affect plant tissue quality, which in turn could affect litter decomposition and carbon (C) and nutrient cycling. In order to evaluate effects of climate change on litter chemistry, needle litter was collected from Scots pine (Pinus sylvestris L.) saplings exposed to elevated CO2 or O3 concentration and their combination over three growing seasons in open‐top chambers. The decomposition of needle litter was followed for 19 months in a pine forest. During decomposition, needle samples for secondary compound analysis were collected and the mass loss of needles was followed. Main nutrients and total phenolics were analysed from litter in the beginning and at the end of the experiment. After 19‐month decomposition, the accumulated mass loss was about 34%; however, no significant differences were found in decomposition rates of needle litter between various treatments. Concentrations of total monoterpenes were about 4%, total resin acids 21% and total phenolics 14% of the initial concentrations in litter after 19‐month decomposition. In the beginning of litter decomposition, concentrations of individual monoterpenes –α‐pinene and β‐pinene – were significantly higher in needle litter grown under elevated CO2. However, concentrations of total monoterpenes during the whole decomposition period were not significantly affected by CO2 or O3 treatments. Concentrations of some individual and total resin acids were higher in needle litter grown under elevated CO2 or O3 than under ambient air. There were no significant differences in concentrations of total phenolics as well as nitrogen (N) and the main nutrient concentrations between treatments during decomposition. High concentrations of monoterpenes and resin acids in needles might slightly delay C recycling in forest soils. It is concluded that elevated CO2 and O3 concentrations do not have remarkable impacts on litter decomposition processes in Scots pine forests.  相似文献   

18.
Both herbivory and mechanical damage result in increases in the concentration of the wound-signal molecule, jasmonic acid (JA), and the defense metabolite, nicotine, in native tobacco plants, Nicotiana sylvestris Speg. et Comes (Solanaceae). We found that higher concentrations of JA resulted from herbivory by Manduca sexta (L.) larvae than from the mechanical damage designed to mimic the herbivory. While both herbivory and mechanical damage increased JA concentrations in roots of wounded plants, herbivory did not induce either higher root JA or nicotine responses than mechanical damage. In a separate experiment in which mechanical damage was not designed to mimic herbivory, JA responses to herbivory were higher than those to mechanical damage, but the whole-plant (WP) nicotine responses were smaller. Furthermore, when regurgitants from M. sexta larvae were applied to standardized mechanical leaf wounds, leaf JA responses were dramatically amplified. However, neither the root JA response nor the WP nicotine response was comparably amplified by application of regurgitants. Our findings demonstrate that the response of N. sylvestris to herbivory is different from its response to mechanical damage; moreover, oral secretions from larvae may be partly responsible for the difference. During feeding, M. sexta larvae appear to modify the plant's normal defensive response to leaf wounding by reducing the systemic increase in root JA after leaf damage and the subsequent WP nicotine response. Received: 28 February 1997 / Accepted: 9 June 1997  相似文献   

19.
This study analyses the consequences of previous defoliation on the survival of the larvae of the pine processionary moth Thaumetopoea pityocampa (Denis and Schiffermüller) feeding on relict Scots pine Pinus sylvestris (L.) ssp. nevadensis Christ in the Sierra Nevada mountains (SE Spain). Egg batches of the pine processionary moth were placed on four groups of Scots pines that underwent different periods of herbivory. The larval survival was related to the nitrogen content, fibre, phenolics and terpenes in the needles. Larval survival was higher in undefoliated pines, lower in pines defoliated two consecutive years, and intermediate in pines defoliated only one year, suggesting a direct relationship between previous defoliation and larval survival. In contrast, none of the characteristics of the needles showed a clear relationship with larval survival. The resulting reduction in larval number also affects the capacity of the larvae to develop during winter, because it hampered nest warming. Thus, previous defoliation limits, although it does not impede, the possibility of repeated defoliation on Scots pine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号