首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Introduction

Angiogenesis is an important factor in the development of osteoarthritis (OA). We investigated the efficacy of bevacizumab, an antibody against vascular endothelial growth factor and an inhibitor of angiogenesis, in the treatment of OA using a rabbit model of anterior cruciate ligament transection.

Methods

First, we evaluated the response of gene expression and histology of the normal joint to bevacizumab treatment. Next, in a rabbit model of OA induced by anterior cruciate ligament transection, we used macroscopic and histological evaluations and real-time polymerase chain reaction (PCR) to examine the responses to intravenous (systemic) administration of bevacizumab (OAB IV group). We also investigated the efficacy of intra-articular (local) administration of bevacizumab in OA-induced rabbits (OAB IA group).

Results

Histologically, bevacizumab had no negative effect in normal joints. Bevacizumab did not increase the expression of genes for catabolic factors in the synovium, subchondral bone, or articular cartilage, but it increased the expression of collagen type 2 in the articular cartilage. Macroscopically and histologically, the OAB IV group exhibited a reduction in articular cartilage degeneration and less osteophyte formation and synovitis compared with the control group (no bevacizumab; OA group). Real-time PCR showed significantly lower expression of catabolic factors in the synovium in the OAB IV group compared with the OA group. In articular cartilage, expression levels of aggrecan, collagen type 2, and chondromodulin-1 were higher in the OAB IV group than in the OA group. Histological evaluation and assessment of pain behaviour showed a superior effect in the OAB IA group compared with the OAB IV group 12 weeks after administration of bevacizumab, even though the total dosage given to the OAB IA group was half that received by the OAB IV group.

Conclusions

Considering the dosage and potential adverse effects of bevacizumab, the local administration of bevacizumab is a more advantageous approach than systemic administration. Our results suggest that intra-articular bevacizumab may offer a new therapeutic approach for patients with post-traumatic OA.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-014-0427-y) contains supplementary material, which is available to authorized users.  相似文献   

2.

Introduction  

Members of the ephrin system, the ephrin receptor erythropoietin-producing hepatocellular B4 (EphB4) and its specific ligand, ephrin B2, appear to be involved in the bone remodelling process. We recently showed that their interaction inhibits the resorptive activity of human osteoarthritic (OA) subchondral bone osteoblasts. Hence, we further investigated the possible implication of these ephrin members on the catabolic/anabolic activities of human OA chondrocytes.  相似文献   

3.

Introduction

Cannabis-based medicines have a number of therapeutic indications, including anti-inflammatory and analgesic effects. The endocannabinoid receptor system, including the cannabinoid receptor 1 (CB1) and receptor 2 (CB2) and the endocannabinoids, are implicated in a wide range of physiological and pathophysiological processes. Pre-clinical and clinical studies have demonstrated that cannabis-based drugs have therapeutic potential in inflammatory diseases, including rheumatoid arthritis (RA) and multiple sclerosis. The aim of this study was to determine whether the key elements of the endocannabinoid signalling system, which produces immunosuppression and analgesia, are expressed in the synovia of patients with osteoarthritis (OA) or RA.

Methods

Thirty-two OA and 13 RA patients undergoing total knee arthroplasty were included in this study. Clinical staging was conducted from x-rays scored according to Kellgren-Lawrence and Larsen scales, and synovitis of synovial biopsies was graded. Endocannabinoid levels were quantified in synovial fluid by liquid chromatography-mass spectrometry. The expression of CB1 and CB2 protein and RNA in synovial biopsies was investigated. Functional activity of these receptors was determined with mitogen-activated protein kinase assays. To assess the impact of OA and RA on this receptor system, levels of endocannabinoids in the synovial fluid of patients and non-inflamed healthy volunteers were compared. The activity of fatty acid amide hydrolase (FAAH), the predominant catabolic endocannabinoid enzyme, was measured in synovium.

Results

CB1 and CB2 protein and RNA were present in the synovia of OA and RA patients. Cannabinoid receptor stimulation of fibroblast-like cells from OA and RA patients produced a time-dependent phosphorylation of extracellular signal-regulated kinase (ERK)-1 and ERK-2 which was significantly blocked by the CB1 antagonist SR141716A. The endocannabinoids anandamide (AEA) and 2-arachidonyl glycerol (2-AG) were identified in the synovial fluid of OA and RA patients. However, neither AEA nor 2-AG was detected in synovial fluid from normal volunteers. FAAH was active in the synovia of OA and RA patients and was sensitive to inhibition by URB597 (3'-(aminocarbonyl) [1,1'-biphenyl]-3-yl)-cyclohexylcarbamate).

Conclusion

Our data predict that the cannabinoid receptor system present in the synovium may be an important therapeutic target for the treatment of pain and inflammation associated with OA and RA.  相似文献   

4.
5.

Background

In osteoarthritis (OA), an inflammatory environment is responsible for the imbalance between the anabolic and catabolic activity of chondrocytes and, thus, for articular cartilage derangement. This study was aimed at providing further insight into the impairment of the anabolic cytokine IL-4 and its receptors in human OA cartilage, as well as the potential ability of IL-4 to antagonize the catabolic phenotype induced by IL-1β.

Methodology/Principal Findings

The in vivo expression of IL-4 and IL-4 receptor subunits (IL-4R, IL-2Rγ, IL-13Rα1) was investigated on full thickness OA or normal knee cartilage. IL-4 expression was found to be significantly lower in OA, both in terms of the percentage of positive cells and the amount of signal per cell. IL-4 receptor type I and II were mostly expressed in mid-deep cartilage layers. No significant difference for each IL-4 receptor subunit was noted. IL-4 anti-inflammatory and anti-catabolic activity was assessed in vitro in the presence of IL-1β and/or IL-4 for 24 hours using differentiated high density primary OA chondrocyte also exhibiting the three IL-4 R subunits found in vivo. Chemokines, extracellular matrix degrading enzymes and their inhibitors were evaluated at mRNA (real time PCR) and protein (ELISA or western blot) levels. IL-4 did not affect IL-1β-induced mRNA expression of GRO-α/CXCL1, IL-8/CXCL8, ADAMTS-5, TIMP-1 or TIMP-3. Conversely, IL-4 significantly inhibited RANTES/CCL5, MIP-1α/CCL3, MIP-1β/CCL4, MMP-13 and ADAMTS-4. These results were confirmed at protein level for RANTES/CCL5 and MMP-13.

Conclusions/Significance

Our results indicate for the first time that OA cartilage has a significantly lower expression of IL-4. Furthermore, we found differences in the spectrum of biological effects of IL-4. The findings that IL-4 has the ability to hamper the IL-1β-induced release of both MMP-13 and CCL5/RANTES, both markers of OA chondrocytes, strongly indicates IL-4 as a pivotal anabolic cytokine in cartilage whose impairment impacts on OA pathogenesis.  相似文献   

6.

Purpose

In patients with osteoarthritis (OA), intraarticular injection of hyaluronic acid (HA) frequently results in reduced pain and improved function for prolonged periods of time, i.e. more than 6 months. However, the mechanisms underlying these effects are not fully understood. Our underlying hypothesis is that HA modifies the enzymatic breakdown of joint tissues.

Methods

To test this hypothesis, we examined osteochondral cylinders from 12 OA patients. In a bioreactor, these samples were stimulated by interleukin 1β (Il1ß) (2 ng/ml) plus mechanical load (2.0 Mpa at 0.5 Hz horizontal and 0.1 Hz vertical rotation), thus the experimental setup recapitulated both catabolic and anabolic clues of the OA joint.

Results

Upon addition of HA at either 1 or 3 mg/ml, we observed a significant suppression of expression of metalloproteinase (MMP)-13. A more detailed analysis based on the Kellgren and Lawrence (K&L) OA grade, showed a much greater degree of suppression of MMP-13 expression in grade IV as compared to grade II OA. In contrast to the observed MMP-13 suppression, treatment with HA resulted in a suppression of MMP-1 expression only at 1 mg/ml HA, while MMP-2 expression was not significantly affected by either HA concentration.

Conclusion

Together, these data suggest that under concurrent catabolic and anabolic stimulation, HA exhibits a pronounced suppressive effect on MMP-13. In the long-run these findings may benefit the development of treatment strategies aimed at blocking tissue degradation in OA patients.  相似文献   

7.
Chan SS  Li HJ  Hsueh YC  Lee DS  Chen JH  Hwang SM  Chen CY  Shih E  Hsieh PC 《PloS one》2010,5(12):e14414

Background

The fibroblast growth factor (FGF) family is essential to normal heart development. Yet, its contribution to cardiomyocyte differentiation from stem cells has not been systemically studied. In this study, we examined the mechanisms and characters of cardiomyocyte differentiation from FGF family protein treated embryonic stem (ES) cells and induced pluripotent stem (iPS) cells.

Methodology/Principal Findings

We used mouse ES cells stably transfected with a cardiac-specific α-myosin heavy chain (αMHC) promoter-driven enhanced green fluorescent protein (EGFP) and mouse iPS cells to investigate cardiomyocyte differentiation. During cardiomyocyte differentiation from mouse ES cells, FGF-3, -8, -10, -11, -13 and -15 showed an expression pattern similar to the mesodermal marker Brachyury and the cardiovascular progenitor marker Flk-1. Among them, FGF-10 induced cardiomyocyte differentiation in a time- and concentration-dependent manner. FGF-10 neutralizing antibody, small molecule FGF receptor antagonist PD173074 and FGF-10 and FGF receptor-2 short hairpin RNAs inhibited cardiomyocyte differentiation. FGF-10 also increased mouse iPS cell differentiation into cardiomyocyte lineage, and this effect was abolished by FGF-10 neutralizing antibody or PD173074. Following Gene Ontology analysis, microarray data indicated that genes involved in cardiac development were upregulated after FGF-10 treatment. In vivo, intramyocardial co-administration of FGF-10 and ES cells demonstrated that FGF-10 also promoted cardiomyocyte differentiation.

Conclusion/Significance

FGF-10 induced cardiomyocyte differentiation from ES cells and iPS cells, which may have potential for translation into clinical applications.  相似文献   

8.

Background

Blockade of Prostaglandin (PG) E2 production via deletion of microsomal Prostaglandin E synthase-1 (mPGES-1) gene reduces tumor cell proliferation in vitro and in vivo on xenograft tumors. So far the therapeutic potential of the pharmacological inhibition of mPGES-1 has not been elucidated. PGE2 promotes epithelial tumor progression via multiple signaling pathways including the epidermal growth factor receptor (EGFR) signaling pathway.

Methodology/Principal Findings

Here we evaluated the antitumor activity of AF3485, a compound of a novel family of human mPGES-1 inhibitors, in vitro and in vivo, in mice bearing human A431 xenografts overexpressing EGFR. Treatment of the human cell line A431 with interleukin-1beta (IL-1β) increased mPGES-1 expression, PGE2 production and induced EGFR phosphorylation, and vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) expression. AF3485 reduced PGE2 production, both in quiescent and in cells stimulated by IL-1β. AF3485 abolished IL-1β-induced activation of the EGFR, decreasing VEGF and FGF-2 expression, and tumor-mediated endothelial tube formation. In vivo, in A431 xenograft, AF3485, administered sub-chronically, decreased tumor growth, an effect related to inhibition of EGFR signalling, and to tumor microvessel rarefaction. In fact, we observed a decrease of EGFR phosphorylation, and VEGF and FGF-2 expression in tumours explanted from treated mice.

Conclusion

Our work demonstrates that the pharmacological inhibition of mPGES-1 reduces squamous carcinoma growth by suppressing PGE2 mediated-EGFR signalling and by impairing tumor associated angiogenesis. These results underscore the potential of mPGES-1 inhibitors as agents capable of controlling tumor growth.  相似文献   

9.
The potential role of the fibroblast growth factor (FGF) familyduring stretch-induced postnatal skeletal muscle hypertrophy wasanalyzed by using an avian wing-weighting model. After 2 or 11 days ofweighted stretch, anterior latissimus dorsi (ALD) muscles were, onaverage, 34 (P < 0.01) and 85%(P < 0.01) larger, respectively, than unweighted ALD control muscles. By using quantitative RT-PCR, FGF-1 mRNA expression was found to be significantly decreased in ALDmuscles stretched for 2 or 11 days. In contrast, FGF-4 and FGF-10 mRNAexpression was significantly increased 2 days after initiation ofstretch. FGF-2, FGF-10, fibroblast growth factor receptor 1, andFREK mRNA expression was significantly increased at 11 days poststretch. Increases in FGF-2 and FGF-4 protein could bedetected throughout the myofiber periphery after 11 days of stretch. Ona cellular level, FGF-2 and FGF-4 proteins were differentiallylocalized. This differential expression pattern and proteinlocalization of the FGF family in response to stretch-induced hypertrophy suggest distinct roles for individual FGFs during thepostnatal hypertrophy process.

  相似文献   

10.

Introduction

AMP-activated protein kinase (AMPK) maintains cultured chondrocyte matrix homeostasis in response to inflammatory cytokines. AMPK activity is decreased in human knee osteoarthritis (OA) chondrocytes. Liver kinase B1 (LKB1) is one of the upstream activators of AMPK. Hence, we examined the relationship between LKB1 and AMPK activity in OA and aging cartilages, and in chondrocytes subjected to inflammatory cytokine treatment and biomechanical compression injury, and performed translational studies of AMPK pharmacologic activation.

Methods

We assessed activity (phosphorylation) of LKB1 and AMPKα in mouse knee OA cartilage, in aging mouse cartilage (6 to 24 months), and in chondrocytes after mechanical injury by dynamic compression, via immunohistochemistry or western blot. We knocked down LKB1 by siRNA transfection. Nitric oxide, matrix metalloproteinase (MMP)-3, and MMP-13 release were measured by Griess reaction and ELISA, respectively.

Results

Knockdown of LKB1 attenuated chondrocyte AMPK activity, and increased nitric oxide, MMP-3 and MMP-13 release (P <0.05) in response to IL-1β and TNFα. Both LKB1 and AMPK activity were decreased in mouse knee OA and aged knee cartilage, and in bovine chondrocytes after biomechanical injury. Pretreatment of bovine chondrocytes with AMPK activators AICAR and A-769662 inhibited both AMPKα dephosphorylation and catabolic responses after biomechanical injury.

Conclusion

LKB1 is required for chondrocyte AMPK activity, thereby inhibiting matrix catabolic responses to inflammatory cytokines. Concurrent loss of LKB1 and AMPK activity in articular chondrocytes is associated with OA, aging and biomechanical injury. Conversely, pharmacologic AMPK activation attenuates catabolic responses to biomechanical injury, suggesting a potentially novel approach to inhibit OA development and progression.  相似文献   

11.

Background  

Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with physiological (for example wound healing) and pathological conditions (tumour development). Vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and epidermal growth factor (EGF) are the major angiogenic regulators. We have identified a natural product (cheiradone) isolated from a Euphorbia species which inhibited in vivo and in vitro VEGF- stimulated angiogenesis but had no effect on FGF-2 or EGF activity. Two primary cultures, bovine aortic and human dermal endothelial cells were used in in vitro (proliferation, wound healing, invasion in Matrigel and tube formation) and in vivo (the chick chorioallantoic membrane) models of angiogenesis in the presence of growth factors and cheiradone. In all cases, the concentration of cheiradone which caused 50% inhibition (IC50) was determined. The effect of cheiradone on the binding of growth factors to their receptors was also investigated.  相似文献   

12.

Introduction  

The purpose of this study was to correlate the level of anabolic and catabolic biomarkers in synovial fluid (SF) from patients with rheumatoid arthritis (RA), patients with osteoarthritis (OA) and asymptomatic organ donors.  相似文献   

13.

Background  

Osteoarthritis (OA) is a degenerative joint disease which affects the entire joint structure, including the synovial membrane. Disease progression was shown to involve inflammatory changes mediated by proteinase-activated receptor (PAR)-2. Previous studies demonstrated that PAR-2 messenger (m)RNA and protein levels increased in OA synovial cells, suggesting that PAR-2 is a potential therapeutic target of the disease.  相似文献   

14.

Introduction

This study was performed to evaluate the attenuation of osteoarthritic (OA) pathogenesis via disruption of the stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4) signaling with AMD3100 in a guinea pig OA model.

Methods

OA chondrocytes and cartilage explants were incubated with SDF-1, siRNA CXCR4, or anti-CXCR4 antibody before treatment with SDF-1. Matrix metalloproteases (MMPs) mRNA and protein levels were measured with real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The 35 9-month-old male Hartley guinea pigs (0.88 kg ± 0.21 kg) were divided into three groups: AMD-treated group (n = 13); OA group (n = 11); and sham group (n = 11). At 3 months after treatment, knee joints, synovial fluid, and serum were collected for histologic and biochemical analysis. The severity of cartilage damage was assessed by using the modified Mankin score. The levels of SDF-1, glycosaminoglycans (GAGs), MMP-1, MMP-13, and interleukin-1 (IL-1β) were quantified with ELISA.

Results

SDF-1 infiltrated cartilage and decreased proteoglycan staining. Increased glycosaminoglycans and MMP-13 activity were found in the culture media in response to SDF-1 treatment. Disrupting the interaction between SDF-1 and CXCR4 with siRNA CXCR4 or CXCR4 antibody attenuated the effect of SDF-1. Safranin-O staining revealed less cartilage damage in the AMD3100-treated animals with the lowest Mankin score compared with the control animals. The levels of SDF-1, GAG, MMP1, MMP-13, and IL-1β were much lower in the synovial fluid of the AMD3100 group than in that of control group.

Conclusions

The binding of SDF-1 to CXCR4 induces OA cartilage degeneration. The catabolic processes can be disrupted by pharmacologic blockade of SDF-1/CXCR4 signaling. Together, these findings raise the possibility that disruption of the SDF-1/CXCR4 signaling can be used as a therapeutic approach to attenuate cartilage degeneration.  相似文献   

15.

Background

Atsttrin, an engineered protein composed of three tumor necrosis factor receptor (TNFR)-binding fragments of progranulin (PGRN), shows therapeutic effect in multiple murine models of inflammatory arthritis . Additionally, intra-articular delivery of PGRN protects against osteoarthritis (OA) progression. The purpose of this study is to determine whether Atsttrin also has therapeutic effects in OA and the molecular mechanisms involved.

Methods

Surgically induced and noninvasive rupture OA models were established in mouse and rat, respectively. Cartilage degradation and OA were evaluated using Safranin O staining, immunohistochemistry, and ELISA. Additionally, expressions of pain-related markers, degenerative factors, and anabolic and catabolic markers known to be involved in OA were analyzed. Furthermore, the anabolic and anti-catabolic effects and underlying mechanisms of Atsttrin were determined using in-vitro assays with primary chondrocytes.

Results

Herein, we found Atsttrin effectively prevented the accelerated OA phenotype associated with PGRN deficiency. Additionally, Atsttrin exhibited a preventative effect in OA by protecting articular cartilage and reducing OA-associated pain in both nonsurgically induced rat and surgically induced murine OA models. Mechanistic studies revealed that Atsttrin stimulated TNFR2-Akt-Erk1/2-dependent chondrocyte anabolism, while inhibiting TNFα/TNFR1-mediated inflammatory catabolism.

Conclusions

These findings not only provide new insights into the role of PGRN and its derived engineered protein Atsttrin in cartilage homeostasis as well as OA in vivo, but may also lead to new therapeutic alternatives for OA as well as other relative degenerative joint diseases.
  相似文献   

16.

Introduction  

Fibroblast growth factor 8 (FGF8) is isolated as an androgen-induced growth factor, and has recently been shown to contribute to limb morphogenesis. The aim of the present study was to clarify the role of FGF8 in animal models of osteoarthritis (OA).  相似文献   

17.
18.

Background

The options for medical use of signaling molecules as stimulators of tissue regeneration are currently limited. Preclinical evidence suggests that fibroblast growth factor (FGF)-2 can promote periodontal regeneration. This study aimed to clarify the activity of FGF-2 in stimulating regeneration of periodontal tissue lost by periodontitis and to evaluate the safety of such stimulation.

Methodology/Principal Findings

We used recombinant human FGF-2 with 3% hydroxypropylcellulose (HPC) as vehicle and conducted a randomized double-blinded controlled trial involving 13 facilities. Subjects comprised 74 patients displaying a 2- or 3-walled vertical bone defect as measured ≥3 mm apical to the bone crest. Patients were randomly assigned to 4 groups: Group P, given HPC with no FGF-2; Group L, given HPC containing 0.03% FGF-2; Group M, given HPC containing 0.1% FGF-2; and Group H, given HPC containing 0.3% FGF-2. Each patient underwent flap operation during which we administered 200 µL of the appropriate investigational drug to the bone defect. Before and for 36 weeks following administration, patients underwent periodontal tissue inspections and standardized radiography of the region under investigation. As a result, a significant difference (p = 0.021) in rate of increase in alveolar bone height was identified between Group P (23.92%) and Group H (58.62%) at 36 weeks. The linear increase in alveolar bone height at 36 weeks in Group P and H was 0.95 mm and 1.85 mm, respectively (p = 0.132). No serious adverse events attributable to the investigational drug were identified.

Conclusions

Although no statistically significant differences were noted for gains in clinical attachment level and alveolar bone gain for FGF-2 groups versus Group P, the significant difference in rate of increase in alveolar bone height (p = 0.021) between Groups P and H at 36 weeks suggests that some efficacy could be expected from FGF-2 in stimulating regeneration of periodontal tissue in patients with periodontitis.

Trial Registration

ClinicalTrials.gov NCT00514657  相似文献   

19.

Introduction

Recent studies demonstrated that circulating fibroblast growth factor (FGF)-23 was associated with risk of end stage renal disease (ESRD) and mortality. This study aims to examine whether the predictive effect of FGF-23 is independent from circulating levels of tumor necrosis factor receptor 1 (TNFR1), a strong predictor of ESRD in Type 2 diabetes (T2D).

Methods

We studied 380 patients with T2D who were followed for 8–12 years and were used previously to examine the effect of TNFR1. Baseline plasma FGF-23 was measured by immunoassay.

Results

During follow-up, 48 patients (13%) developed ESRD and 83 patients (22%) died without ESRD. In a univariate analysis, baseline circulating levels of FGF-23 and TNFR1 were significantly higher in subjects who subsequently developed ESRD or died without ESRD than in those who remained alive. In a Cox proportional hazard model, baseline concentration of FGF-23 was associated with increased risk of ESRD, however its effect was no longer significant after controlling for TNFR1 and other clinical characteristics (HR 1.3, p = 0.15). The strong effect of circulating level of TNFR1 on risk of ESRD was not changed by including circulating levels of FGF-23 (HR 8.7, p<0.001). In the Cox multivariate model, circulating levels of FGF-23 remained a significant independent predictor of all-cause mortality unrelated to ESRD (HR 1.5, p<0.001).

Conclusions

We demonstrated that the effect of circulating levels of FGF-23 on the risk of ESRD is accounted for by circulating levels of TNFR1. We confirmed that circulating levels of FGF-23 have an independent effect on all-cause mortality in T2D.  相似文献   

20.

Introduction  

Physiological and pathophysiological cartilage turnover may coexist in articular cartilage. The distinct enzymatic processes leading to irreversible cartilage damage, compared with those needed for continuous self-repair and regeneration, remain to be identified. We investigated the capacity of repair of chondrocytes by analyzing their ability to initiate an anabolic response subsequent to three different levels of catabolic stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号