首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria isolated from pea leaves (Pisum sativum L.) readily oxidized malate and glycine as substrates. The addition of glycine to mitochondria oxidizing malate in state 3 diminished the rate of malate oxidation. When glycine was added to mitochondria oxidizing malate in state 4, however, the rate of malate oxidation was either unaffected or stimulated. The reason both glycine and malate can be metabolized in state 4 appears to be that malate only used part of the electron transport capacity available in these mitochondria in this state. The remaining electron transport capacity was used by glycine, thus allowing both substrates to be oxidized simultaneously. This can be explained by differential use of two NADH dehydrogenases by glycine and malate and an increase in alternate oxidase activity upon glycine addition. These results help explain why photorespiratory glycine oxidation and its associated demand for NAD do not inhibit citric acid cycle function in leaves.  相似文献   

2.
External NADH and succinate were oxidized at similar rates by soybean (Glycine max) cotyledon and leaf mitochondria when the cytochrome chain was operating, but the rate of NADH oxidation via the alternative oxidase was only half that of succinate. However, measurements of the redox poise of the endogenous quinone pool and reduction of added quinones revealed that external NADH reduced them to the same, or greater, extent than did succinate. A kinetic analysis of the relationship between alternative oxidase activity and the redox state of ubiquinone indicated that the degree of ubiquinone reduction during external NADH oxidation was sufficient to fully engage the alternative oxidase. Measurements of NADH oxidation in the presence of succinate showed that the two substrates competed for cytochrome chain activity but not for alternative oxidase activity. Both reduced Q-1 and duroquinone were readily oxidized by the cytochrome oxidase pathway but only slowly by the alternative oxidase pathway in soybean mitochondria. In mitochondria isolated from the thermogenic spadix of Philodendron selloum, on the other hand, quinol oxidation via the alternative oxidase was relatively rapid; in these mitochondria, external NADH was also oxidized readily by the alternative oxidase. Antibodies raised against alternative oxidase proteins from Sauromatum guttatum cross-reacted with proteins of similar molecular size from soybean mitochondria, indicating similarities between the two alternative oxidases. However, it appears that the organization of the respiratory chain in soybean is different, and we suggest that some segregation of electron transport chain components may exist in mitochondria from nonthermogenic plant tissues.  相似文献   

3.
Storey BT 《Plant physiology》1972,49(3):314-322
The cytochromes c of mung bean (Phaseolus aureus) mitochondria become reduced when sulfide, a cytochrome oxidase inhibitor free from uncoupling side effects, is added to the aerobic mitochondrial suspension in the absence of added substrate. The cytochromes b remain largely oxidized. Subsequent addition of ATP results in partial oxidation of the cytochromes c and partial reduction of the cytochromes b due to ATP-driven reverse electron transport through the second site of energy conservation, or coupling site, of the respiratory chain. Cytochrome a is also oxidized under these conditions, but there is no concomitant reduction of the flavoprotein components, of ubiquinone, or of endogenous pyridine nucleotide. The reaction is abolished by oligomycin. The reducing equivalents transported from the cytochromes c and a in ATP-driven reverse electron transport are about 2-fold greater than those which appear in the cytochromes b. It is suggested that the equivalents not accounted for are present in a coupling site enzyme at the second site of energy conservation which interacts with the respiratory chain carriers by means of the dithiol-disulfide couple; this couple would not show absorbance changes with redox state over the wavelength range examined. With succinate present, reverse electron transport can be demonstrated at both coupling sites in both the aerobic steady state and in anaerobiosis. ATP-driven reverse electron transport in anaerobiosis maintains cytochrome a 30% oxidized while endogenous pyridine nucleotide is 50% reduced.  相似文献   

4.
Whole cell respiration rates were measured polarographically for Naegleria gruberi during growth in agitated cultures. Log growth phase amebae consumed 80 ng atoms O/min/mg cell protein. At stationary phase, respiration rate decreased 4–fold. Intact mitochondria were isolated from N. gruberi and their oxidative and phosphorylative capacities were studied polarographically. As with the mammalian system, the mitochondria oxidized succinate and NAD-linked substrates, but unlike rat liver mitochondria, those from the protozoan rapidly oxidized citrate and NADH. The rates of substrate oxidation were ADP-dependent, with ADP:O ratios equalling ? 2.8 for NAD-linked substrates and ? 2.2 for succinate. The respiratory control ratios. 2 to 4 for 11 substrates, were dependent on Pi, Mg2+, and serum albumin. Potassium cyanide, azide, malonale, and rotenone inhibited electron transport the same way as that of the mammalian system: however, amytal inhibited both glutamate and succinate respiration. Pentachlorophenol, DNP, and bilirubin uncoupled oxidation from phosphorylation. Difference spectra of oxidized and dithionite-reduced mitochondria had distinct absorption bands of flavins and of c-, b-, and α-type cytochromes.  相似文献   

5.
Oxidative phosphorylation couples ATP synthesis to respiratory electron transport. In eukaryotes, this coupling occurs in mitochondria, which carry DNA. Respiratory electron transport in the presence of molecular oxygen generates free radicals, reactive oxygen species (ROS), which are mutagenic. In animals, mutational damage to mitochondrial DNA therefore accumulates within the lifespan of the individual. Fertilization generally requires motility of one gamete, and motility requires ATP. It has been proposed that oxidative phosphorylation is nevertheless absent in the special case of quiescent, template mitochondria, that these remain sequestered in oocytes and female germ lines and that oocyte mitochondrial DNA is thus protected from damage, but evidence to support that view has hitherto been lacking. Here we show that female gametes of Aurelia aurita, the common jellyfish, do not transcribe mitochondrial DNA, lack electron transport, and produce no free radicals. In contrast, male gametes actively transcribe mitochondrial genes for respiratory chain components and produce ROS. Electron microscopy shows that this functional division of labour between sperm and egg is accompanied by contrasting mitochondrial morphology. We suggest that mitochondrial anisogamy underlies division of any animal species into two sexes with complementary roles in sexual reproduction. We predict that quiescent oocyte mitochondria contain DNA as an unexpressed template that avoids mutational accumulation by being transmitted through the female germ line. The active descendants of oocyte mitochondria perform oxidative phosphorylation in somatic cells and in male gametes of each new generation, and the mutations that they accumulated are not inherited. We propose that the avoidance of ROS-dependent mutation is the evolutionary pressure underlying maternal mitochondrial inheritance and the developmental origin of the female germ line.  相似文献   

6.
Isolated mitochondria are capable of undergoing dramatic reversible ultrastructural transformations between a condensed and an orthodox conformation. These two conformations are the extremes in ultrastructural organization between which structually and functionally intact mitochondria transform during reversible respiratory cycles. It has been found that electron transport is required for the condensed-to-orthodox ultrastructural transformation which occurs in mitochondria under State IV conditions, i.e., under conditions in which exogenous substrate is present and ADP is deficient. Inhibition of State IV electron transport at the cyanide-, antimycin A-, or Amytal-sensitive sites in the respiratory chain results in inhibition of this transformation. Resumption of electron transport in initially inhibited mitochondrial systems, initiated by channeling electrons through pathways which bypass the inhibited sites, results in resumption of the ultrastructural transformation. The condensed-to-orthodox transformation is DNP insensitive and, therefore, does not require participation of the coupling enzymes of the energy-transfer pathway. It is concluded that this ultrastructural transformation is manifest by the conversion of the chemical energy of electron transport directly into mechanical work. The reversed ultrastructural transformation, i.e., orthodox-to-condensed, which occurs during ADP-activated State III electron transport, is inhibited by DNP and parallels suppression of acceptor control and oxidative phosphorylation. Mechanochemical ultrastructural transformation as a basis for energy transfer in mitochondria is considered with respect to the results presented.  相似文献   

7.
8.
The Photosystem I-dependent transport of electrons from diaminodurene to methylviologen is linear with reaction time and supports a constant rate of phosphorylation. However, if the diaminodurene is not kept fully reduced by the presence of excess ascorbate, the oxidized diaminodurene accumulates and begins to compete with the methylviologen as the electron acceptor. Thus, although the rate of ATP formation remains unchanged, an increasing proportion of the electron transport becomes cyclic and hence unmeasured. This leads to a rapid increase in the apparent efficiency of phosphorylation which is misleading.In contrast, it is known that the oxidized form of 3,3′-diaminobenzidine polymerizes to form an insoluble substance which should not be available to serve as an electron acceptor. However, 3,3′-diaminobenzidine is not a satisfactory donor of electrons in Photosystem I reactions for two reasons: the rate of electron transport quickly falls with reaction time and the oxidized form of 3,3′-diaminobenzidine seems to be an exceptionally efficient electron acceptor near the beginning of the period of illumination when it is presumably not yet polymerized. Thus in the first 2–3 sec of illumination when the reaction is still rapid much of the electron transport is cyclic and therefore unmeasured, especially in the absence of excess ascorbate. This cycling of electrons, which leads to an inflated apparent efficiency (Pe2 > 2), is particularly pronounced at low donor concentrations.When cyclic electron transport is avoided by the use of ascorbate or by the selection of appropriate reaction times, both diaminodurene and 3,3′-diaminobenzidine support phosphorylation with an efficiency which is approximately half of the efficiency exhibited by the overall Hill reaction. The same is true when 2,5-diaminotoluene, tetrachlorohydroquinone, 4,5-dimethyl-o-phenylenediamine, and reduced 2,6-dichloroindophenol serve as electron donors. With these six substances, the phosphorylation efficiences were 0.57 ± 0.1 molecules of ATP formed for each pair of electrons transferred (Pe2). In the same chloroplasts preparations, the transport of electrons from water to methylviologen-supported phosphorylation with a Pe2 of 1.2.  相似文献   

9.
Mitochondria is obtained from yeast Candida lipolytica 695 grown in the presence of glucose, lactate or citrate. Yeast mitochondria were shown to be practically indistinguishable from animal tissue mitochondria in [ADP]/[O] values and in their sensitivity to electron transport inhibitors, to inhibitors and uncoupling agents of oxidative phosphorylation. The only exception was more low value of the respiration control under succinate oxidation. Mitochondria from yeast, grown in the presence of lactate or citrate were capable of the reduction of endogenous pyridine nucleotides under succinate oxidation for the expense of the reverse electron transport. No reverse electron transport from succinate to NAD(P) was observed in mitochondria from yeast grown in the presence of glucose, but it was found under oxidation of alpha-glycerophosphate. All three types of yeast mitochondria were not capable of the reverse electron transport coupled with the pyridine nucleotides reduction under lactate oxidation.  相似文献   

10.
《BBA》1985,810(2):184-199
(1) Mitochondria were prepared from leaves of spinach, green and etiolated seedlings and roots of pea, potato tuber and rat liver and heart. In the case of leaf mitochondria, an improved isolation procedure resulted in high respiratory rates (460–510 nmol/mg protein per min) and good respiratory control ratio (6.8–9.8) with glycine as substrate. (2) In these mitochondria oxaloacetate transport was studied either by following the inhibitory effect of oxaloacetate on the respiration of NADH-linked substrates or by determining the consumption of [4-14C]oxaloacetate. (3) Studies of the competition by other carboxylates and effect of inhibitors on the oxaloacetate transport demonstrate that mitochondria from spinach leaves, green pea seedlings, etiolated pea seedlings and pea roots contain a specific translocator for oxaloacetate with a very high affinity to its substrate (Km = 3–7 μM) and an even higher sensitivity to its competitive inhibitor phthalonate (Ki = 3–5 μM). The Vmax values ranged from 150 to 180 nmol/mg protein per min for mitochondria from etiolated pea seedlings and pea roots and from 550 to 570 nmol/mg protein per min for mitochondria from spinach leaves and green pea seedlings. In mitochondria from potato tuber, the Km was about one order of magnitude higher (Vmax = 450 nmol/mg protein per min). In mitochondria from rat liver and rat heart, a specific translocator for oxaloacetate was not found. (4) The oxaloacetate translocator enables the functioning of a malate-oxaloacetate shuttle for the transfer of reducing equivalents across the inner mitochondrial membrane. (5) This malate-oxaloacetate shuttle appears to play a role in the photorespiratory cycle in catalyzing the transfer of reducing equivalents generated in the mitochondria during glycine oxydation to the peroxysomal compartment for the reduction of β-hydroxypyruvate. (6) Interaction between the mitochondrial and the chloroplastic malate oxaloacetate shuttles would make it possible for surplus-reducing equivalents, generated by photosynthetic electron transport, to be oxidized by mitochondrial electron transport.  相似文献   

11.
Respiration and the phosphorylating capability of mitochondria isolated from one-celled fertilized eggs, 10-day vermiform embryos, 21-day infective larvae, and adult body wall muscle from Ascaris suum were compared with that of rat liver mitochondria. Although oligomycin-sensitive ATPase and O2 consumption/ mitochondrion in the presence of succinate and malate was lower in eggs than in liver, other properties such as respiratory control, ADP:O and P:O ratios at sites I, II, III, and the sensitivity of respiration to cyanide, azide, oligomycin, rotenone, and malonate were similar. In muscle mitochondria, the oligomycin-sensitive ATPase and O2 consumption/ mitochondrion were sharply reduced, respiratory control was poor, and electron transport at sites II and III in particular was inefficiently coupled with phosphorylation. In addition, about 60% of the respiration was insensitive to cyanide or azide but sensitive to salicylhydroxamic acid. The results support earlier evidence that the free-living eggs of A. suum are aerobes. The adult parasite, while continuing to ferment actively in the presence of oxygen, nevertheless possesses one or more electron transport systems that are inefficiently coupled with aerobic phosphyorylations. The physiological significance of these systems has yet to be elucidated.  相似文献   

12.
Electron transport, using succinate as a substrate, was measured polarographically in mitochondria isolated from Phaseolus vulgaris and P. acutifolius plants at 25°C and 32°C. Mitochondria isolated from P. vulgaris plants grown at 32°C had reduced electron transport and were substantially uncoupled. Growth at 32°C had no effect on electron transport or oxidative phosphorylation in P. acutifolius compared to 25°C grown plants. Mitochondria isolated from 25°C grown P. vulgaris plants measured at 42°C were completely uncoupled. Similarly treated P. acutifolius mitochondria remained coupled. The uncoupling of P. vulgaris was due to increased proton permeability of inner mitochondrial membrane. The alternative pathway was more sensitive to heat than the regular cytochrome pathway. At 42°C, no alternative pathway activity was detected. The substantially greater heat tolerance of P. acutifollus compared to P. vulgaris mitochondrial electron transport suggests that mitochondrial sensitivity to elevated temperatures is a major limitation to growth of P. vulgaris at high temperatures and is an important characteristic conveying tolerance in P. acutifolius.  相似文献   

13.
Formate oxidation and oxygen reduction by leaf mitochondria   总被引:6,自引:3,他引:3       下载免费PDF全文
Oliver DJ 《Plant physiology》1981,68(3):703-705
Mitochondria isolated from the leaves of several plant species were investigated for the presence of NAD-linked formate dehydrogenase. The NADH produced was oxidized by the electron transport sequence and was coupled to ATP synthesis. The amounts of formate dehydrogenase, and, thereby, the capacity for formate-dependent O2 uptake, varied greatly among species. While no activity was detectable in mitochondria from soybean leaves, the rate of formate oxidation by spinach mitochondria was about one-half the rate of malate oxidation. In spinach, only mitochondria from green tissues oxidized formate. These last two observations raise questions as to the role of this reaction and the possible sources of the formate metabolized.  相似文献   

14.
The effect of α-ketoglutarate deficiency on the oxidative phosphorylation in yeast mitochondria was studied. By determining the properties of electron transport and energy transduction systems of mutant mitochondria it was found that the lack of α-ketoglutarate dehydrogenase activity in mitochondria does not result in any functional defect in the oxidative phosphorylation system.  相似文献   

15.
Treatment of barley (Hordeum vulgare) seedlings with 400 millimolar NaCl for 3 days resulted in a reduction in plant growth and an increase in the leaf content in ions (K+ + Na+) and proline. Purified mitochondria were successfully isolated from barley leaves. Good oxidative and phosphorylative properties were observed with malate as substrate. Malate-dependent electron transport was found to be only partly inhibited by cyanide, the remaining oxygen uptake being SHAM sensitive. The properties of mitochondria from NaCl-treated barley were modified. The efficiency of phosphorylation was diminished with only a slight decrease in the oxidation rates. In both isolated mitochondria and whole leaf tissue of treated plants, the lower respiration rate was due to a lower cytochrome pathway activity. In mitochondria, the activity of the alternative pathway was not modified by salt treatment, whereas this activity was increased in whole leaf tissue. The possible participation of the alternative pathway in response to salt stress will be discussed.  相似文献   

16.
  • 1.1. Treatment of isolated rat liver mitochondria with methyl methacrylate (MM) produced membrane disruption as evidenced by the release of citrate synthase, and changes in the ultrastructure of mitochondria.
  • 2.2. At concentration 0.1%, MM uncoupled oxidative phosphorylation as evidenced by stimulation of state 4 respiration supported either by pyruvate plus malate or succinate (+rotenone) and ATP-ase activity in intact mitochondria.
  • 3.3. At concentration 1% MM stimulated ATP-ase activity in intact mitochondria and succinate (+rotenone) oxidation at state 4 and was without effect on this substrate oxidation at state 3.
  • 4.4. MM inhibited pyruvate plus malate oxidation either at state 3 or in the presence of uncoupling agents.
  • 5.5. MM inhibited the NADH oxidase of electron transport particles at a concentration which failed to inhibit either succinic oxidase or the NADH-ferricyanide reductase activity.
  • 6.6. The data presented suggest that in the isolated mitochondria MM inhibits NADH oxidation in the vicinity of the rotenone sensitive site of complex I.
  • 7.7. The general conclusion is that MM may block an electron transport and to uncouple oxidative phosphorylation in rat liver mitochondria. The overall in vitro effect would be to prevent ATP synthesis which could result in cell death under in vivo conditions.
  相似文献   

17.
Rustin P  Lance C 《Plant physiology》1986,81(4):1039-1043
The mechanisms and the controlling factors of malate oxidation by mitochondria from leaves of Kalanchoë blossfeldiana Poelln. plants performing Crassulacean acid metabolism were investigated using Percollpurified mitochondria. The effects of pH and of various cofactors (ATP, NAD+, coenzyme A) on malate dehydrogenase (EC 1.1.1.37) and malic enzyme (EC 1.1.1.39) solubilized from these mitochondria were examined. The crucial role of cofactor concentrations in the mitochondrial matrix on the pathways of malate oxidation is shown. The distribution of the electrons originating from malate between the different electron transport pathways and its consequence on the phosphorylation yield was studied. It was found that, depending on the electron transport pathway used, malate oxidation could yield from 3 to 0 ATP. Assayed under conditions of high reducing power and high energy charge, the ability of malic enzyme to feed electrons to the cyanide-resistant nonphosphorylating alternative pathway was found to be higher than that of other dehydrogenases linked to the functioning of the Krebs cycle (pyruvate dehydrogenase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase). The physiological significance of such a functional relationship between malic enzyme activity and the nonphosphorylating alternative pathway is discussed in relation to Crassulacean acid metabolism.  相似文献   

18.
At low uncoupler concentrations the binding of carbonyl-cyanide-m-chlorophenyl-hydrazone to mitochondria was found to depend sensitively on the metabolic state of mitochondria. The binding data are consistent with the assumption that at low concentrations and pH 7.4 the uncoupler is bound mainly in anionic form to the inner mitochondrial membrane and that upon energization the inner membrane undergoes conformation change, exposes buried ionizable groups and hence acquires a negative net membrane charge. Deenergization of the inner membrane by a small amount of uncoupler removes the negative net membrane charge and consequently increases the apparent binding constants. Based upon the present results on uncoupler binding and previous observations on the physiological properties of alkylating uncouplers, a possible molecular mechanism involving electron carriers and coupling factors is suggested for coupling electron transport to phosphorylation.  相似文献   

19.
《BBA》2013,1827(10):1213-1225
Polyethylenimines (PEIs) are highly efficient non-viral transfectants, but can induce cell death through poorly understood necrotic and apoptotic processes as well as autophagy. Through high resolution respirometry studies in H1299 cells we demonstrate that the 25 kDa branched polyethylenimine (25k-PEI-B), in a concentration and time-dependent manner, facilitates mitochondrial proton leak and inhibits the electron transport system. These events were associated with gradual reduction of the mitochondrial membrane potential and mitochondrial ATP synthesis. The intracellular ATP levels further declined as a consequence of PEI-mediated plasma membrane damage and subsequent ATP leakage to the extracellular medium. Studies with freshly isolated mouse liver mitochondria corroborated with bioenergetic findings and demonstrated parallel polycation concentration- and time-dependent changes in state 2 and state 4o oxygen flux as well as lowered ADP phosphorylation (state 3) and mitochondrial ATP synthesis. Polycation-mediated reduction of electron transport system activity was further demonstrated in ‘broken mitochondria’ (freeze-thawed mitochondrial preparations). Moreover, by using both high-resolution respirometry and spectrophotometry analysis of cytochrome c oxidase activity we were able to identify complex IV (cytochrome c oxidase) as a likely specific site of PEI mediated inhibition within the electron transport system. Unraveling the mechanisms of PEI-mediated mitochondrial energy crisis is central for combinatorial design of safer polymeric non-viral gene delivery systems.  相似文献   

20.
The activity of the pyruvate dehydrogenase complex (PDC), as controlled by reversible phosphorylation, was studied in situ with mitochondria oxidizing dfifferent substrates. PDCs from both plant and animal tissues were inactivated when pyruvate became limiting. The PDC did not inactivate in the presence of saturating levels of pyruvate. Calcium stimulated reactivation of PDC in chicken heart but not pea (Pisum sativum L.) leaf mitochondria. With pea leaf mitochondria oxidizing malate, inactivation of PDC was pH dependent corresponding to the production of pyruvate via malic enzyme. When pea leaf mitochondria oxidized succinate or glycine, PDC was inactivated. This inactivation was reversed by the addition of pyruvate. Reactivation by pyruvate was enhanced by the addition of thiamine pyrophosphate, as previously observed with nonrespiring mitochondria. These results indicate a major role for pyruvate in regulating the covalent modification of the PDC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号