首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solubilized myocardial adenylate cyclase: activation by prostaglandins   总被引:1,自引:0,他引:1  
Prostaglandins E1, E2, F, and F activated solubilized myocardial adenylate cyclase from guinea pigs and cats. The activation did not require the presence of added phospholipids in contrast to stimulation of the solubilized enzyme by catecholamines, glucagon, and histamine. The data may provide insight into the mechanism and cellular site of action of the prostaglandins.  相似文献   

2.
The stimulatory and inhibitory effects of adenosine on the adenylate cyclases of human and pig platelets were studied. Stimulation occurred at lower concentrations than did inhibition, and the stimulatory effect was prevented by methylxanthines. Stimulation by adenosine was immediate in onset and was reversible, under conditions when cyclic AMP formation was linear with respect to time and protein concentration. The stimulatory and inhibitory effects could be distinguished further by the use of various analogues of adenosine and could be prevented by adenosine deaminase. The data suggest that both stimulation and inhibition were due to adenosine itself and not one of its degradation products and that in the platelet preparation, neither formation nor degradation of adenosine during the adenylate cyclase incubation appreciably influenced measured activity. Stimulation by adenosine was additive with the effects of GMP-P(NH)P, and alpha- or beta-adrenergic stimulation, but was abolished by prostaglandin E1 or by NaF. Prostaglandin E1 and NaF increased the sensitivity of adenylate cyclase to inhibition by adenosine. The data suggest that guanyl-5'-yl-(beta-gamma-imino)diphosphate and/or adrenergic stimulation and adenosine exert their effects on adenylate cyclase by distinct mechanisms, but that prostaglandin E1 or F- and adenosine increase enzyme activity by mechanisms which may involve common intermediates in the coupling to adenylate cyclase.  相似文献   

3.
Regulation of adenylate cyclase by adenosine   总被引:15,自引:0,他引:15  
Summary Adenosine may well be as important in the regulation of adenylate cyclase as hormones. Sattin and Rall first demonstrated in 1970 that adenosine was a potent stimulator of adenylate cyclase in the brain. However, adenosine is an equally potent inhibitor of adenylate cyclase in other cells such as adipocytes. The concentration of adenosine required for this regulation of adenylate cyclase is in the nanomolar range (10 to 100 nm). Both the inhibitory and stimulatory effects of low concentrations of adenosine on adenylate cyclase are antagonized by methylxanthines. This antagonism of adenosine action may account for all or part of the effects of methyl xanthines on cyclic AMP levels in many tissues. Adenosine appears to be a particularly important endogenous regulator of adenylate cyclase in brain, smooth muscle and fat cells. Under conditions in which intracellular AMP rises, adenosine formation and release is accelerated. In addition to its direct effects on adenylate cyclase, adenosine (at higher concentrations approaching millimolar) exerts multiple effects on cellular metabolism as a result of its intracellular metabolism and especially conversion to nucleotides.The effects of nanomolar concentrations of adenosine on adenylate cyclase are mediated through an adenosine site possessing strict structural specificity for the ribose moiety of the molecule (the R adenosine site) which is presumably located on the external surface of the plasma membrane. In brain, lung, platelets, bone, lymphocytes, skin, adrenals, Leydig tumors, and coronary arteries adenosine stimulates adenylate cyclase via this site. However, in rat adipocytes, brain astroblasts and ventricular myocardium adenosine inhibits adenylate cyclase through the R or adenosine site. Although the R site requires an intact ribose moiety, adenosine analogs modified in the purine ring such as N6-phenylisopropyladenosine appear to be potent agonists for this site. All effects of adenosine mediated via the R site are competitively antagonized by methyl xanthines.The effects of micromolar concentrations of adenosine appear to be mediated via a site with strict structural specificity with respect to the purine moiety of the molecule (the P or adenine adenosine site). This P site is postulated to be located on the intracellular face of the plasma membrane and mediates the effects of adenosine due to conversion of adenosine to 5-AMP or perhaps other nucleotides. The effects of high concentrations of adenosine are always inhibitory to adenylate cyclase activity, are readily demonstrated in broken cell preparations, and are unaffected by methylxanthines. An intact purine ring is required for these adenosine effects but modifications of the ribose moiety of the molecule generally increases the potency of the analog. A prime example is 2,5-dideoxyadenosine, which is the most potent known R-site specific adenosine analog.We propose a unitary model which explains both the stimulatory and inhibitory effects of low concentrations of adenosine on adenylate cyclase. In brief, adenylate cyclase is postulated to exist in three interconvertible activity states: (i) an inactive state (E0); (ii) a GTP-liganded state with high activity (EGTP); and (iii) a GDP-liganded state (EGDP) which is inactive in cells where adenosine stimulates adenylate cyclase, but active in cells where adenosine inhibits adenylate cyclase. We postulate that the enzyme cycles through these states in the following manner: the E0 state binds GTP and forms the EGTP state; hydrolysis of bound GTP converts the EGTP to the EGDP state; and release of bound GDP converts EGDP to the E0 state. The E0 state is the only form of the enzyme which can be stimulated by either hormones or GTP and its formation from the EGDP state is rate-limiting in this cycle. The conversion of EGDP to E0 regulates the ability of hormones and GTP to activate adenylate cyclase and is postulated to be adenosine sensitive.In cells where both EGDP and E0 states are inactive, adenosine stimulates adenylate cyclase activity. In cells where E0 is inactive, but EGDP is active, adenosine inhibits adenylate cyclase activity. In addition we suggest that in cells where adenosine inhibits adenylate cyclase activity (cells postulated to have an EGDP state which is active) high concentrations of GTP favor accumulation of the enzyme in EGDP and thus are inhibitory to activity. Prostaglandins may also regulate adenylate cyclase in a manner similar to that described above for adenosine.We conclude that adenosine is an important regulator of adenylate cyclase whose role has only been appreciated recently. Further studies are warranted on both its binding to cells and mechanisms by which it regulates adenylate cyclase.This work was supported by United States Public Health Service Research Grant AM-10149 from the National Institute of Arthritis, Metabolism and Digestive Diseases.  相似文献   

4.
The ability of various adenosine analogs to inhibit cholera toxin activation of the intestinal epithelial cell adenylate cyclase-cyclic AMP system was investigated. After incubation of cells with cholera toxin for 6 hr, large increases in cellular cyclic AMP content were observed. Addition of 2', 5'-dideoxyadenosine during the last 30 min of this 6-hr incubation resulted in 70% reduction in elevated cyclic AMP content. Other analogs were not effective inhibitors. 2', 5'-Dideoxyadenosine was also a potent inhibitor of cholera toxin-activated intestinal cell adenylate cyclase activity with half-maximal inhibition occuring at 16 muM. NaF-stimulated cyclase was less susceptible to inhibition. The data suggest that inhibition by 2', 5'-dideoxyadenosine is due at least in part to direct inhibition of the cholera toxin-activated intestinal adenylate cyclase activity.  相似文献   

5.
6.
The stimulatory and inhibitory effects of adenosien of the adenylate cyclases of human and pig platelets were studied. Stimulation occurred at lower concentrations than did inhibition, and stimulatory effect was prevented by methylxanthines. Stimulation by adenosine was immediate in onset and was reversible, under conditions when cyclic AMP formation was linear with respect to time and protein concentration.The stimulatory and inhibitory effects could be distinguished further by the use of various analogues of adenosine and could be prevented by adenosine deaminase. The data suggest that both stimulation and inhibition were due to adenosine itself and not one of its degradation products and that in the platelet preparation, neither formation nor degradation of adenosine during the adenylate cyclase incubation appreciably influenced measured activity.Stimulation by adenosine was additive with the effects of GMP-P(NH)P, and α- or β-adrenergic stimulation, but was abolished by prostaglandin E1 or by NaF. Prostaglandin E1 and NaF increased the sensitivity of adenylate cyclase to inhibition by adenosine. The data suggests that guanly-5′-yl(β-γ imino)diphosphate and/or adrenergic stimulation and adenosine exert their effects on adenylate cyclase by distinct mechanisms, but that prostaglandin E1 or F? and adenosine increase enzyme activity by mechanisms which may involve common intermediates in the coupling to adenylate cyclase.  相似文献   

7.
Following incubation of intact vascular endothelial cells with 1 mM 3-isobutyl-1-methylxanthine, and isoproterenol or PGI2, cyclic AMP levels increased 4- and 3-fold, respectively. Isoproterenol-stimulated adenylate cyclase activity of cell lysates was selectively inhibited by the β-adrenergic blocking agent propranolol. Catecholamines stimulated adenylate cyclase with the potency series: isoproterenol > epinephrine > norepinephrine. Prostaglandin did not stimulate adenylate cyclase activity in cell lysates, even in the presence of guanine nucleotides or following preincubation of the intact cells with prostaglandins prior to freeze-thaw lysis.  相似文献   

8.
1. Intact mouse neuroblastoma NS20 cells, in the presence of cyclic adenosine 3':5'-monophosphate (cAMP) phosphodiesterase inhibitor, responded to adenosine (200 muM) and 2-chloroadenosine (200 muM) with a 20-fold increase in intracellular cAMP levels. AMP (200 muM) additions caused only a 3.5-fold cAMP level elevation. ATP, ADP, guanosine, cytidine, uridine, and guanine, all at 200 muM, had no effect on the cAMP level of these cells. 2. Homogenate NS20 adenylate cyclase activity was increased 2.5- to 4-fold by addition of 200 muM adenosine, 2-chloroadenosine, 2-hydroxyadenosine, or 8-methylaminoadenosine. Prostaglandin E1 additions (1.4 muM) produced about an 8-fold stimulation of homogenate cyclase activity. The Km of homogenate cyclase activation by adenosine and 2-chloroadenosine was 67.6 and 6.7 muM, respectively. Addition of 7-deazaadenosine, tolazoline, yohimbine, guanosine, cytosine, guanine, 2-deoxy-AMP, and adenine 9-beta-D-xylopyranoside, all at 200 muM were found to be without effect on homogenate NS20 adenylate cyclase. Two classes of inhibitors of homogenate NS20 adenylate cyclase activity were observed. One class, which included AMP, adenine, and theophylline, blocked 2-chloroadenosine but not prostaglandin E1 stimulation of cyclase. Theophylline was shown to be a competitive inhibitor of 2-chloroadenosine, with a Ki of 35 muM. The second class of inhibitors, which included 2'- and 5'-deoxyadenosine, inhibited unstimulated, 2-chloroadenosine and prostaglandin E1-stimulated homogenate cyclase activity to about the same degree. 3. Activation of NS20 homogenate adenylate cyclase by adenosine appears to be noncooperative. 4. The inhibitory action of putative "purinergic" neurotransmitters is postulated to be due to their effects on adenylate cyclase activity.  相似文献   

9.
10.
Hypothyroidism is associated with an enhanced sensitivity of rat fat cells to the inhibitory action of adenosine and adenosine agonists. The sensitivity of the forskolin-stimulated cyclic AMP response of rat fat cells to the adenosine agonist N6-phenylisopropyladenosine is amplified 3-fold by hypothyroidism. Forskolin-stimulated adenylate cyclase activity is more sensitive to inhibition by this adenosine agonist in membranes of fat cells isolated from hypothyroid as compared to euthyroid rats. Hypothyroidism does not significantly alter the number of affinity of binding sites for N6-cyclohexyl[3H]adenosine or N6-phenylisopropyladenosine in membranes of rat fat cells. GTP-induced inhibition of forskolin-stimulated adenylate cyclase was markedly enhanced in the hypothyroid state, suggesting an alteration in the inhibitory regulatory component (Ni)-mediated control of adenylate cyclase. Incubating membranes with [alpha-32P]NAD+ and preactivated pertussis toxin results in the radiolabeling of two peptides with Mr = 40,000 and 41,000 as visualized in autoradiograms of polyacrylamide gels run in sodium dodecyl sulfate. The amount of label incorporated by pertussis toxin into these two peptides (putative subunits of Ni) per mg of protein of membrane is increased 2-3-fold in the hypothyroid state. The amount of the stimulatory regulatory component, Ns, in fat cell membranes is not altered by hypothyroidism (Malbon, C. C., Graziano, M. P., and Johnson, G. L. (1984) J. Biol. Chem. 259, 3254-3260). The amplified response of hypothyroid rat fat cells to the inhibitory action of adenosine appears to reflect a specific increase in the activity and abundance of Ni.  相似文献   

11.
Calcium-independent activation of adenylate cyclase by calmodulin   总被引:4,自引:0,他引:4  
Adenylate cyclase of Bordetella pertussis is stimulated by calmodulin by two distinct interactions. At low activator concentrations (approximately equal to 1 nM) the process is Ca2+-dependent (i.e. inhibited by EGTA added before calmodulin). High activator concentrations (approximately equal to 0.1-10 microM) stimulate adenylate cyclase also in the presence of EGTA, an effect not accounted for by residual Ca2+ or low concentrations of Ca X calmodulin, which thus appears to be due to calcium-free calmodulin. Some calmodulin dose-response curves show both phases of stimulation, separated by a plateau of activity, and half-maximal activating concentrations differ by 100-300-fold. Both effects are on the V and not the Km for ATP and are not mimicked by 10(5)-fold greater concentrations of parvalbumin or by various polyanions. In addition, adenylate cyclase stimulation at high calmodulin concentrations is greater in the presence of EGTA than in its absence. This enhancement is also produced by 1,10-phenanthroline and 8-hydroxyquinoline but not by non-chelating isomers. These compounds are poor Ca2+ chelators, stimulate at any calmodulin concentration (unlike EGTA), and suggest regulation of this adenylate cyclase by a second metal ion.  相似文献   

12.
13.
14.
15.
16.
17.
ATP-dependent activation of adenylate cyclase   总被引:3,自引:0,他引:3  
Incubation of rat liver plasma membranes with MgCl2, ATP, and an ATP-regenerating system at 4 degrees C provides a 4-7-fold persistent activation of adenylate cyclase. Enzyme activation is time-dependent and 48 h of incubation is usually required to achieve maximal stimulation of adenylate cyclase activity. The activation described is not affected by GTP, cAMP, or cGMP, and does not occur when ATP is replaced by a nonphosphorylating analogue, adenyl-5'-imidodiphosphate. In addition to ATP, the activation requires Mg2+ and an ATP-regenerating system. The activation described is not additive with that produced by fluoride and analysis of basal and fluoride activities following extended incubation for 48 h reveals identical activities which decay at the same rate. These results are consistent with our model (11) which invokes phosphorylation-dephosphorylation mechanisms in regulating adenylate cyclase activity.  相似文献   

18.
Receptor-mediated adenylate cyclase activation in Dictyostelium discoideum.   总被引:3,自引:0,他引:3  
W Roos  G Gerisch 《FEBS letters》1976,68(2):170-172
  相似文献   

19.
The reversibility of adenylate cyclase activation induced by vasopressin was studied by reducing the concentration of active peptide in contact with kidney medullo-papillary membranes. Reversibility of hormonal activation was only partial. The use of antagonists failed to demonstrate the reversibility of an adenylate cyclase activation induced by high affinity agonists. When antagonist was added after the agonist to membranes, a non-competitive inhibition was apparent. Active peptide was also eliminated from the incubation medium by treatment with agents capable of reducing the disulfide bridge of the hormonal molecule. Direct effects of reducers on adenylate cyclase activity were measured on enzyme activation induced by peptides lacking a disulfide bridge. There was no apparent correlation between the abilities of different reducers to inactivate free peptide in solution and their abilities to promote the reversibility of hormone-induced enzyme activation. Upon the addition of dithiothreitol, enzyme activity could be lowered to basal value and adenylate cyclase was again fully stimulatable. However, when dithiothreitol addition to stiumlated enzyme was combined with a 60-fold dilution of the incubation medium, no reversibility of hormonal activation occurred. These results illustrate that the processes involved in adenylate cyclase activation are only partially reversible.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号