首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitochondrial genome of trypanosomes, unlike that of most other eukaryotes, does not appear to encode any tRNAs. Therefore, mitochondrial tRNAs must be either imported into the organelle or created through a novel mitochondrial process, such as RNA editing. Trypanosomal tRNA(Tyr), whose gene contains an 11-nucleotide intron, is present in both the cytosol and the mitochondrion and is encoded by a single-copy nuclear gene. By site-directed mutagenesis, point mutations were introduced into this tRNA gene, and the mutated gene was reintroduced into the trypanosomal nuclear genome by DNA transfection. Expression of the mutant tRNA led to the accumulation of unspliced tRNA(Tyr) (A. Schneider, K. P. McNally, and N. Agabian, J. Biol. Chem. 268:21868-21874, 1993). Cell fractionation revealed that a significant portion of the unspliced mutant tRNA(Tyr) was recovered in the mitochondrial fraction and was resistant to micrococcal nuclease treatment in the intact organelle. Expression of the nuclear integrated, mutated tRNA gene and recovery of its gene product in the mitochondrial fraction directly demonstrated import. In vitro experiments showed that the unspliced mutant tRNA(Tyr), in contrast to the spliced wild-type form, was no longer a substrate for the cognate aminoacyl synthetase. The presence of uncharged tRNA in the mitochondria demonstrated that aminoacylation was not coupled to import.  相似文献   

2.
The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded   总被引:17,自引:0,他引:17  
The mitochondrial DNA of Trypanosoma brucei is organized as a catenated network of maxicircles and minicircles. The maxicircles are equivalent to the typical mitochondrial genome except that the genes for the mitochondrial tRNAs have not been identified by sequence analysis of the maxicircle DNA. The apparent absence of tRNA genes in the maxicircle DNA suggests that the mitochondrial tRNAs are encoded by either the minicircle or the nuclear DNA. In order to determine their genomic origin, we isolated and identified the mitochondrial tRNAs of T. brucei. We show that these mitochondrial tRNAs are truly mitochondrially located in vivo and that they are free from detectable contamination by cytosolic RNAs. By hybridization analysis, using mitochondrial tRNAs as the probe, we determined that the mitochondrial tRNAs are encoded by nuclear DNA. This implies that RNAs, like proteins, are imported into the mitochondria. We investigated the relationship between the cytosolic and the mitochondrial tRNA genes and show that there are unique cytosolic tRNA genes, unique mitochondrial tRNA genes, and tRNA genes which appear to be shared and whose products are therefore targeted to both the cytosol and the mitochondrion.  相似文献   

3.
RNAs that function in mitochondria are typically encoded by the mitochondrial DNA. However, the mitochondrial tRNAs of Trypanosoma brucei are encoded by the nuclear DNA and therefore must be imported into the mitochondrion. It is becoming evident that RNA import into mitochondria is phylogenetically widespread and is essential for cellular processes, but virtually nothing is known about the mechanism of RNA import. We have identified and characterized mitochondrial precursor tRNAs in T. brucei. The identification of mitochondrially located precursor tRNAs clearly indicates that mitochondrial tRNAs are imported as precursors. The mitochondrial precursor tRNAs hybridize to cloned nuclear tRNA genes, label with [alpha-32P]CTP using yeast tRNA nucleotidyltransferase and in isolated mitochondria via an endogenous nucleotidyltransferase-like activity, and are processed to mature tRNAs by Escherichia coli and yeast mitochondrial RNase P. We show that T. brucei mitochondrial extract contains an RNase P activity capable of processing a prokaryotic tRNA precursor as well as the T. brucei tRNA precursors. Precursors for tRNA(Asn) and tRNA(Leu) were detected on Northern blots of mitochondrial RNA, and the 5' ends of these RNAs were characterized by primer extension analysis. The structure of the precursor tRNAs and the significance of nuclear encoded precursor tRNAs within the mitochondrion are discussed.  相似文献   

4.
The mitochondrial genome of Trypanosoma brucei does not encode any tRNAs. Instead, mitochondrial tRNAs are synthesized in the nucleus and subsequently imported into mitochondria. The great majority of mitochondrial tRNAs have cytosolic counterparts showing identical primary sequences. The only difference found between mitochondrial and cytosolic isotypes of the tRNAs are mitochondria-specific nucleotide modifications which appear to be a common feature of imported tRNAs in trypanosomes. In this study, a mutated yeast cytosolic tRNAHis was expressed in trypanosomes and its import phenotype was analyzed by cell fractionation and nuclease treatment of intact mitochondria. Furthermore, cytosolic and mitochondrial isotypes of the yeast tRNA(His) were specifically labeled and analyzed by limited alkaline hydrolysis. These experiments revealed the presence of mitochondria-specific nucleotide modifications in the yeast tRNA(His). The positions of the modifications were determined by direct enzymatic sequencing of the tRNA(His) and shown to correspond to the ultimate and penultimate nucleotides before the anticodon, the same relative positions which are modified in the mitochondrial isotype of trypanosomal tRNA(Tyr). The results demonstrate that covalent modification of tRNAs; in trypanosomal mitochondria can be used, in analogy to processing of precursor proteins during mitochondrial protein import, as a marker for import of both endogenous and heterologous tRNAs.  相似文献   

5.
Sequence of a tRNA gene cluster in Trypanosoma brucei.   总被引:3,自引:2,他引:1       下载免费PDF全文
  相似文献   

6.
The mitochondrion of Trypanosoma brucei lacks tRNA genes. Its translation system therefore depends on the import of nucleus-encoded tRNAs. Thus, except for the cytosol-specific initiator tRNA(Met), all trypanosomal tRNAs function in both the cytosol and the mitochondrion. The only tRNA(Met) present in T. brucei mitochondria is therefore the one which, in the cytosol, is involved in translation elongation. Mitochondrial translation initiation depends on an initiator tRNA(Met) carrying a formylated methionine. This tRNA is then recognized by initiation factor 2, which brings it to the ribosome. To guarantee mitochondrial translation initiation, T. brucei has an unusual methionyl-tRNA formyltransferase that formylates elongator tRNA(Met). In the present study, we have identified initiation factor 2 of T. brucei and shown that its carboxyl-terminal domain specifically binds formylated trypanosomal elongator tRNA(Met). Furthermore, the protein also recognizes the structurally very different Escherichia coli initiator tRNA(Met), suggesting that the main determinant recognized is the formylated methionine. In vivo studies using stable RNA interference cell lines showed that knock-down of initiation factor 2, depending on which construct was used, causes slow growth or even growth arrest. Moreover, concomitantly with ablation of the protein, a loss of oxidative phosphorylation was observed. Finally, although ablation of the methionyl-tRNA formyltransferase on its own did not impair growth, a complete growth arrest was observed when it was combined with the initiation factor 2 RNA interference cell line showing the slow growth phenotype. Thus, these experiments illustrate the importance of mitochondrial translation initiation for growth of procyclic T. brucei.  相似文献   

7.
8.
The composition of the large, single, mitochondrion (mt) of Trypanosoma brucei was characterized by MS (2‐D LC‐MS/MS and gel‐LC‐MS/MS) analyses. A total of 2897 proteins representing a substantial proportion of procyclic form cellular proteome were identified, which confirmed the validity of the vast majority of gene predictions. The data also showed that the genes annotated as hypothetical (species specific) were overpredicted and that virtually all genes annotated as hypothetical, unlikely are not expressed. By comparing the MS data with genome sequence, 40 genes were identified that were not previously predicted. The data are placed in a publicly available web‐based database (www.TrypsProteome.org). The total mitochondrial proteome is estimated at 1008 proteins, with 401, 196, and 283 assigned to the mt with high, moderate, and lower confidence, respectively. The remaining mitochondrial proteins were estimated by statistical methods although individual assignments could not be made. The identified proteins have predicted roles in macromolecular, metabolic, energy generating, and transport processes providing a comprehensive profile of the protein content and function of the T. brucei mt.  相似文献   

9.
10.
11.
12.
Mitochondria consist of four compartments, outer membrane, intermembrane space, inner membrane, and matrix; each harboring specific functions and structures. In this study, we used LC‐MS/MS to characterize the protein composition of Trypanosoma brucei mitochondrial (mt) membranes, which were enriched by different biochemical fractionation techniques. The analyses identified 202 proteins that contain one or more transmembrane domain(s) and/or positive GRAVY scores. Of these, various criteria were used to assign 72 proteins to mt membranes with high confidence, and 106 with moderate‐to‐low confidence. The sub‐cellular localization of a selected subset of 13 membrane assigned proteins was confirmed by tagging and immunofluorescence analysis. While most proteins assigned to mt membrane have putative roles in metabolic, energy generating, and transport processes, ~50% have no known function. These studies result in a comprehensive profile of the composition and sub‐organellar location of proteins in the T. brucei mitochondrion thus, providing useful information on mt functions.  相似文献   

13.
Macrophages collected from BCG-infected mice or exposed in vitro to interferon-gamma plus lipopolysaccharide developed a cytostatic activity on Trypanosoma brucei gambiense and Trypanosoma brucei brucei. This trypanostatic activity of activated macrophages was inhibited by addition of N-monomethyl-L-arginine, an inhibitor of the L-arginine-nitric oxide (NO) metabolic pathway, indicating a role for NO as the effector molecule. Contrary to trypanosomes treated with N2gas, trypanosomes treated with NO gas did not proliferate in vitro on normal macrophages. Compared to mice infected with control parasites, mice infected with NO-treated parasites had decreased parasitemias in the first days postinfection and had a prolonged survival. Addition of excess iron reversed the trypanostatic effect of both activated macrophages and NO gas. These data show that activated macrophages exert an antimicrobial effect on T.b. gambiense and T.b. brucei through the L-arginine-NO metabolic pathway. In trypanosomes, NO could trigger iron loss from critical targets involved in parasite division. The participation of this effector mechanism among the other immune elements involved in the control of African trypanosomes (antibodies, complement, phagocytic events) remains to be defined.  相似文献   

14.
In Trypanosoma brucei the U snRNA B gene (J. C. Mottram, K. L. Perry, P. M. Lizardi, R. Lührmann, N. Agabian, and R. G. Nelson (1989) Mol. Cell. Biol. 9, 1212-1223) is very tightly linked with other small RNA genes coding for tRNA(ACGArg), tRNA(CUULys), and a approximately 275-nucleotide RNA (RNA X) of unknown function. A similar genomic organization is found at the U6 snRNA locus, where the U6 gene is linked to tRNA(CGUThr) and tRNA(GUATyr) genes. The tRNA(Lys) and tRNA(Arg) genes are members of a multigene family, whereas the tRNA(Thr) and tRNA(Tyr) genes are single copy. Two additional tRNA(CUULys) genes and one tRNA(UUULys) gene were also isolated and sequenced and, together with a sequence previously published (D. A. Campbell (1989) Nucleic Acids Res. 17, 9479), appear to represent the entire gene family. Probes for tRNA(Lys), tRNA(Arg), tRNA(Thr), and tRNA(Tyr) were found to hybridize with mitochondrial and cytoplasmic tRNAs but not with mitochondrial DNA. This supports the hypothesis that mitochondrial tRNAs may be nuclear-encoded and imported from the cytosol into the mitochondrion.  相似文献   

15.
The U6 small nuclear RNA from Trypanosoma brucei.   总被引:8,自引:1,他引:7  
  相似文献   

16.
Translocases of mitochondrial inner membrane (TIMs) are multiprotein complexes. The only Tim component so far characterized in kinetoplastid parasites such as Trypanosoma brucei is Tim17 (TbTim17), which is essential for cell survival and mitochondrial protein import. Here, we report that TbTim17 is present in a protein complex of about 1,100 kDa, which is much larger than the TIM complexes found in fungi and mammals. Depletion of TbTim17 in T. brucei impairs the mitochondrial import of cytochrome oxidase subunit IV, an N-terminal signal-containing protein. Pretreatment of isolated mitoplasts with the anti-TbTim17 antibody inhibited import of cytochrome oxidase subunit IV, indicating a direct involvement of the TbTim17 in the import process. Purification of the TbTim17-containing protein complex from the mitochondrial membrane of T. brucei by tandem affinity chromatography revealed that TbTim17 associates with seven unique as well as a few known T. brucei mitochondrial proteins. Depletion of three of these novel proteins, i.e. TbTim47, TbTim54, and TbTim62, significantly decreased mitochondrial protein import in vitro. In vivo targeting of a newly synthesized mitochondrial matrix protein, MRP2, was also inhibited due to depletion of TbTim17, TbTim54, and TbTim62. Co-precipitation analysis confirmed the interaction of TbTim54 and TbTim62 with TbTim17 in vivo. Overall, our data reveal that TbTim17, the single homolog of Tim17/22/23 family proteins, is present in a unique TIM complex consisting of novel proteins in T. brucei and is critical for mitochondrial protein import.  相似文献   

17.
D A Melton  R Cortese 《Cell》1979,18(4):1165-1172
  相似文献   

18.
Nucleotide sequences of three cloned restriction fragments of Tetrahymena mtDNA which showed hybridization with mitochondrial tRNA have been determined. EcoRI fragment 5 (4.1 kbp) contains the tRNAphe gene sequence with anticodon GAA; Hind III fragment 6 (2.0 kbp) the tRNAhis with anticodon GTG; and EcoRI fragment 7 (1.9 kbp) the tRNAtrp with anticodon TCA. The CCA end is not encoded. All three tRNAs show usual features with common invariant and semi-invariant bases and can be folded into a cloverleaf structure with standard loops and regular base pairs in the stems. However, some minor irregular features are present including several GT pairs and an unmatched TT in the stems, and TCC instead of T psi C. All exhibit high G+C contents (about 50%); in contrast, the flanking regions are extremely A+T rich (about 80%). Several short coding frames can be deduced in these sequences, but their significance is not known.  相似文献   

19.
Activity and kinetics of phospholipase A2 (PLA2) from Trypanosoma brucei gambiense (Wellcome strain) and Trypanosoma brucei brucei (GUTat 3.1) were examined using two different fluorescent substrates. The activity in the supernatants of sonicated parasites was Ca2+-independent, strongly stimulated by Triton X-100 with optimum activity at 37°C and pH 6.5–8.5. To encourage a possible interaction between the parasite enzyme and organotin compounds, fatty acid derivatives of dibutyltin dichloride were synthesized and evaluated as potential inhibitors of PLA2. The enzyme from the two-trypanosome species differ with respect to kinetic parameters and are noncompetitively inhibited by the organotin compounds. The Michaelis constant (KM) for PLA2 from T. b. brucei is 63.87 and 30.90 μM while for T. b. gambiense it is 119.64 and 32.90 μM for the substrates l,2-bis-(1-pyrenebutanoyl-sn-glycero-3-phosphocholine (PBGPC) and 2-(12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)dode-canoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBDC12-HPC), respectively.  相似文献   

20.
Activity and kinetics of phospholipase A2 (PLA2) from Trypanosoma brucei gambiense (Wellcome strain) and Trypanosoma brucei brucei (GUTat 3.1) were examined using two different fluorescent substrates. The activity in the supernatants of sonicated parasites was Ca2+-independent, strongly stimulated by Triton X-100 with optimum activity at 37 degrees C and pH 6.5-8.5. To encourage a possible interaction between the parasite enzyme and organotin compounds, fatty acid derivatives of dibutyltin dichloride were synthesized and evaluated as potential inhibitors of PLA2. The enzyme from the two-trypanosome species differ with respect to kinetic parameters and are noncompetitively inhibited by the organotin compounds. The Michaelis constant (KM) for PLA2 from T. b. brucei is 63.87 and 30.90 microM while for T. b. gambiense it is 119.64 and 32.91 microM for the substrates 1,2-bis-(1-pyrenebutanoyl)-sn-glycero-3-phosphocholine (PBGPC) and 2-(12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)dodecanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBDC12-HPC), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号