首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tryptophanase purified from Escherichia coli B/1t7-A was irreversibly inactivated by chloramine T (sodium N-chloro-p-toluenesulfonamide). The mode of inactivation was rather complex and did not follow pseudo-first-order kinetics. The inactivation of the apoenzyme was much faster than that of the holoenzyme. The Km value for the synthetic substrate S-o-nitrophenyl-L-cysteine (SOPC) increased concomitantly with the modification. In contrast, the Km value for the coenzyme, pyridoxal 5'-phosphate (PLP), was not altered. L-Serine, another substrate, and L-alanine, a competitive inhibitor, protected the enzyme from inactivation. Determination of SH groups in the enzyme protein with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) showed that modification of two SH groups per enzyme subunit resulted in a complete inactivation. When the enzyme was subjected to chloramine T-modification following the SH group modification with DTNB, further inactivation was still observed, even after the addition of dithiothreitol. The SH-blocked enzyme preparation thus obtained, however, exhibited less pH dependency of inactivation by chloramine T than that of the native enzyme. The amino acid analysis of the chloramine T-modified enzyme showed that modification of four or five methionine residues among the 16 residues per subunit proceeded concomitantly with the complete inactivation. Modification of the enzyme with chloramine T quenched the absorption peak near 500 nm, characteristic of a quinoidal structure formed by labilization of the alpha-proton. These results suggest the possibility that chloramine T modifies not only the SH groups, but also methionine residues important for the catalytic activity of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
J J Witt  R Roskoski 《Biochemistry》1975,14(20):4503-4507
Adenosine 3',5'-monophosphate (cAMP) dependent protein kinase (EC 2.7.1.37) catalyzes the phosphorylation of serine and threonine residues of a number of proteins according to the following chemical equation: ATP + protein leads to phosphoprotein + ADP. The DEAE-cellulose peak II holoenzyme from bovine brain, which is composed of regulatory and catalytic subunits, is resistant to ethoxyformic anhydride inactivation. After adding cAMP, the protein kinase becomes susceptible to ethoxyformic anhydride inhibition. Ethoxyformic anhydride (2mM) inhibits the enzyme 50% (5 min, pH 6.5, 30 degrees) in the presence of 10 muM cAMP, but less than 5% in its absence. The substrate, Mg2+-ATP, protects against inactivation suggesting that inhibition is associated with modification of the active site. Addition of regulatory subunit or Mg2+-ATP to the isolated catalytic subunit also prevents ethoxyformic anhydride inactivation. These results suggest that the regulatory subunit shields the active site of the catalytic subunit thereby inhibiting it. In contrast to the bovine brain or muscle DEAE-cellulose peak II holoenzyme, the bovine muscle peak I holoenzyme is susceptible to ethoxyformic anhydride inactivation in the absence of cAMP.  相似文献   

3.
Yu S  Mei FC  Lee JC  Cheng X 《Biochemistry》2004,43(7):1908-1920
Although individual structures of cAMP-dependent protein kinase (PKA) catalytic (C) and regulatory (R) subunits have been determined at the atomic level, our understanding of the effects of cAMP activation on protein dynamics and intersubunit communication of PKA holoenzymes is very limited. To delineate the mechanism of PKA activation and structural differences between type I and II PKA holoenzymes, the conformation and structural dynamics of PKA holoenzymes Ialpha and IIbeta were probed by amide hydrogen-deuterium exchange coupled with Fourier transform infrared spectroscopy (FT-IR) and chemical protein footprinting. Binding of cAMP to PKA holoenzymes Ialpha and IIbeta leads to a downshift in the wavenumber for both the alpha-helix and beta-strand bands, suggesting that R and C subunits become overall more dynamic in the holoenzyme complexes. This is consistent with the H-D exchange results showing a small change in the overall rate of exchange in response to the binding of cAMP to both PKA holoenzymes Ialpha and IIbeta. Despite the overall similarity, significant differences in the change of FT-IR spectra in response to the binding of cAMP were observed between PKA holoenzymes Ialpha and IIbeta. Activation of PKA holoenzyme Ialpha led to more conformational changes in beta-strand structures, while cAMP induced more apparent changes in the alpha-helical structures in PKA holoenzyme IIbeta. Chemical protein footprinting experiments revealed an extended docking surface for the R subunits on the C subunit. Although the overall subunit interfaces appeared to be similar for PKA holoenzymes Ialpha and IIbeta, a region around the active site cleft of the C subunit was more protected in PKA holoenzyme Ialpha than in PKA holoenzyme IIbeta. These results suggest that the C subunit assumes a more open conformation in PKA holoenzyme IIbeta. In addition, the chemical cleavage patterns around the active site cleft of the C subunit were distinctly different in PKA holoenzymes Ialpha and IIbeta even in the presence of cAMP. These observations provide direct evidence that the R subunits may be partially associated with the C subunit with the pseudosubstrate sequence docked in the active site cleft in the presence of cAMP.  相似文献   

4.
One of the intermediates involved in dissociation and reassociation of the subunits of the type II cAMP-dependent protein kinase has been characterized. This intermediate can be generated when the protein kinase is prepared from the isolated catalytic subunit (C) and the isolated regulatory subunit-[3H]cAMP complex (R2-[3H]cAMP4) by dialysis for 18 h followed by gel filtration. The intermediate, which could be separated from the holoenzyme and the isolated subunits by polyacrylamide gel electrophoresis, had an apparent molecular weight of 149,000, consistent with an R2C form. Following electrophoresis, measurements of R and bound nucleotide indicated that R2C was half-saturated with [3H]cAMP. The bound [3H]cAMP exhibited biphasic dissociation kinetics indicating that both types of cAMP binding sites were occupied. These findings suggested that the intermediate is R2C-cAMP2. This intermediate was not seen when the dialysis time was increased to 5 days, but could be observed when cAMP was added to the holoenzyme or when holoenzyme was mixed with R2cAMP4 and cAMP. The presence of two occupied cAMP binding sites on this intermediate suggests that there is minimal cooperativity between the two members of the regulatory subunit dimer, i.e. one member of the dimer binds 2 molecules of cAMP while the other binds C.  相似文献   

5.
Protein kinase A from the fungus Mucor circinelloides shows high affinity interaction between regulatory (R) and catalytic (C) subunits. Its R subunit shows a differential presence of several acidic residues in linker I region, in the amino terminus. Mutants R1, lacking the N-terminal region, and R2, lacking the acidic cluster, were used to analyze its effect on the interaction with the C subunit, assessed through inhibition of catalytic activity and cAMP activation of reconstituted holoenzyme. A similar decrease in the interaction was obtained when using R1 and R2 with the homologous C subunit; however when using heterologous bovine C, only R1 had a decreased interaction. The results show the general importance of linker I region in the R-C interaction in protein kinases A and point to the importance of the acidic cluster present in the N-terminus of M. circinelloides R subunit in the high affinity interaction between R and C in this holoenzyme.  相似文献   

6.
The cAMP-dependent protein kinase (PKA) from Candida albicans is a tetramer composed of two catalytic subunits (C) and two type II regulatory subunits (R). To evaluate the role of a putative autophosphorylation site of the R subunit (Ser(180)) in the interaction with C, this site was mutated to an Ala residue. Recombinant wild-type and mutant forms of the R subunit were expressed in Escherichia coli and purified. The wild-type recombinant R subunit was fully phosphorylated by the purified C subunit, while the mutant form was not, confirming that Ser(180) is the target for the autophosphorylation reaction. Association and dissociation experiments conducted with both recombinant R subunits and purified C subunit showed that intramolecular phosphorylation of the R subunit led to a decreased affinity for C. This diminished affinity was reflected by an 8-fold increase in the concentration of R subunit needed to reach half-maximal inhibition of the kinase activity and in a 5-fold decrease in the cAMP concentration necessary to obtain half-maximal dissociation of the reconstituted holoenzyme. Dissociation of the mutant holoenzyme by cAMP was not affected by the presence of MgATP. Metabolic labeling of yeast cells with [(32)P]orthophosphate indicated that the R subunit exists as a serine phosphorylated protein. The possible involvement of R subunit autophosphorylation in modulating C. albicans PKA activity in vivo is discussed.  相似文献   

7.
Gel electrophoresis and sucrose density gradient centrifugation techniques permitted the visualization for the first time of the ternary complex formed by the binding of cAMP to Mucor rouxii cAMP-dependent protein kinase holoenzyme. The addition of 0.5 M NaCl or histone plus ATP-Mg++, together with cAMP, dissociates the holoenzyme into free regulatory (R) and catalytic (C) subunits. At 4°C, cAMP bound to the holoenzyme is readily exchangeable with unlabeled cAMP (half life 2.5 min), while the nucleotide bound to the R subunit has a very slow exchange rate (half life 210 min). The amount of cAMP bound to R subunit is approximately twice the amount bound to holoenzyme at saturation.  相似文献   

8.
Dissociation and reassociation of regulatory (R) and catalytic (C) subunits of cAMP-dependent protein kinases I and II were studied in intact AtT20 cells. Cells were stimulated with 50 microM forskolin to raise intracellular cAMP levels and induce complete dissociation of R and C subunits. After the removal of forskolin from the incubation medium cAMP levels rapidly declined to basal levels. Reassociation of R and C subunits was monitored by immunoprecipitation of cAMP-dependent protein kinase activity using anti-R immunoglobulins. The time course for reassociation of R and C subunits paralleled the loss of cellular cAMP. Total cAMP-dependent protein kinase activity and the ratio of protein kinase I to protein kinase II seen 30 min after the removal of forskolin was the same as in control cells. Similar results were seen using crude AtT20 cell extracts treated with exogenous cAMP and Mg2+. Our data showed that after removal of a stimulus from AtT20 cells inactivation of both cAMP-dependent protein kinase isoenzymes occurred by the rapid reassociation of R and C subunits to form holoenzyme. Our studies also showed that half of the type I regulatory subunit (RI) present in control cells contained bound cAMP. This represented approximately 30% of the cellular cAMP in nonstimulated cells. The cAMP bound to RI was resistant to hydrolysis by cyclic nucleotide phosphodiesterase but was dissociated from RI in the presence of excess purified bovine heart C. The RI subunits devoid of C may function to sequester cAMP and, thereby, prevent the activation of cAMP-dependent protein kinase activity in nonstimulated AtT20 cells.  相似文献   

9.
Shell JR  Lawrence DS 《Biochemistry》2012,51(11):2258-2264
The mitochondrial cAMP-dependent protein kinase (PKA) is activatable in a cAMP-independent fashion. The regulatory (R) subunits of the PKA holoenzyme (R(2)C(2)), but not the catalytic (C) subunits, suffer proteolysis upon exposure of bovine heart mitochondria to digitonin, Ca(2+), and a myriad of electron transport inhibitors. Selective loss of both the RI- and RII-type subunits was demonstrated via Western blot analysis, and activation of the C subunit was revealed by phosphorylation of a validated PKA peptide substrate. Selective proteolysis transpires in a calpain-dependent fashion as demonstrated by exposure of the R and C subunits of PKA to calpain and by attenuation of R and C subunit proteolysis in the presence of calpain inhibitor I. By contrast, exposure of mitochondria to cAMP fails to promote R subunit degradation, although it does result in enhanced C subunit catalytic activity. Treatment of mitochondria with electron transport chain inhibitors rotenone, antimycin A, sodium azide, and oligomycin, as well as an uncoupler of oxidative phosphorylation, also elicits enhanced C subunit activity. These results are consistent with the notion that signals, originating from cAMP-independent sources, elicit enhanced mitochondrial PKA activity.  相似文献   

10.
Regulatory (R) subunits and their association with catalytic subunits to form cAMP-dependent protein kinase holoenzymes were investigated in corpora lutea of pregnant rats. Following separation by DEAE-cellulose chromatography, R subunits were identified by labeling with 8-N3[32P]cAMP and autophosphorylation on one and two-dimensional gel electrophoresis and by reactivity with antisera. DEAE-cellulose elution of R subunits with catalytic subunits as holoenzymes or without catalytic subunits was determined by sedimentation characteristics on sucrose density gradient centrifugation and by cAMP-stimulated kinase activation characteristics on Eadie-Scatchard analysis. We identified the presence of a type I holoenzyme containing RI alpha (Mr 47,000) subunits, a prominent type II holoenzyme containing RII beta (Mr 52,000) subunits, and a second more acidic type II holoenzyme peak containing both RII beta and RII alpha (Mr 54,000) subunits. However, the majority of total R subunit activity was associated with a catalytic subunit-free peak of RI alpha protein which on elution from DEAE-cellulose was associated with cAMP. This report establishes the more basic elution position from DEAE-cellulose of the prominent rat luteal RII beta holoenzyme in very close proximity to free RI alpha and presents one of the few reports of a normal tissue containing a large percentage of catalytic subunit-free RI alpha.  相似文献   

11.
A new method of affinity chromatography using blue dextran-Sepharose 4B resin was established to purify NADP+-dependent isocitrate dehydrogenase [EC 1.1.1.42] from Bacillus stearothermophilus in high yield. The purified preparation was found to be homogeneous on disc gel electrophoresis. The SH groups of the enzyme were modified with 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) to determine the number of SH groups per molecule and their contribution to the enzyme activity. One SH group was titrated with DTNB per subunit (the native enzyme consisted of two subunits) and after complete denaturation with 4 M guanidine-HCl the number of titratable SH groups remained unchanged. ORD and CD measurements showed that the alpha-helical conformation of the polypeptide backbone was unaffected by DTNB modification, though the near ultraviolet CD spectrum was evidently altered. The fluorescence derived from tryptophanyl residue(s) was quenched by the modification to 30% of the native level, which may indicate the presence of SH in the vicinity of tryptophanyl residue(s). A remarkable decrease of the enzyme activity was detected upon modification with DTNB, but there was some discrepancy between the rate of inactivation and that of modification of SH groups. The presence of substrate and Mg2+ gave partial protection against modification of the SH groups by DTNB. Complete protection of the native enzyme activity against heating at 65 degrees was observed in the presence of substrate and Mg2+, but the thermostability of the enzyme was markedly reduced by modification of the SH groups.  相似文献   

12.
By a new procedure, the holoenzyme of bovine heart type II cAMP-dependent protein kinase was purified to homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). A high performance liquid chromatography-DEAE purification step resolved two distinct peaks of protein kinase activity, which were designated Peak 1 and Peak 2 based on their order of elution. The two peaks exhibited similar Stokes radii and sedimentation coefficients. They had similar ratios of regulatory to catalytic subunits both by densitometric scanning of SDS-PAGE bands and by the ratios of equilibrium [3H]cAMP binding to maximal kinase activity. These results suggested that the holoenzyme of each peak contained two regulatory subunits and two catalytic subunits, although a subpopulation of holoenzyme lacking one catalytic subunit also appeared to be present in Peak 2. Assays of cAMP indicated that the Peak 1 holoenzyme was cAMP-free, but half of the Peak 2 holoenzyme cAMP binding sites contained cAMP. Determination of [3H]cAMP dissociation rates showed that the cAMP was equally distributed in binding Site 1 and Site 2 of Peak 2. Although SDS-PAGE analysis ruled out conversions by proteolysis or autophosphorylation-dephosphorylation, Peak 1 could be partially converted to Peak 2 by the addition of subsaturating amounts of cAMP. Interconvertibility of the two holoenzyme peaks strongly suggested that the difference between the two peaks was caused by the presence of cAMP in Peak 2. Peak 2 holoenzyme, as compared to Peak 1, had enhanced binding in nonequilibrium [3H]cIMP and [3H]cAMP binding assays, as was expected due to the presence of cAMP and to the known positive cooperativity in binding of cyclic nucleotides to the kinase. The positive cooperativity in kinase activation, as indicated by the Hill coefficient, was greater for Peak 2 than Peak 1, but the cAMP concentration required for half-maximal activation (Ka) of each of the two peaks was very similar. In conclusion, Peak 2 is an inactive ternary complex of cAMP, regulatory subunit, and catalytic subunit, and Peak 1 is a cAMP-free holoenzyme. The cAMP-bound form may represent a major cellular form of the enzyme which is primed for activation.  相似文献   

13.
Cyclic AMP-dependent protein kinase (PKA) is a holoenzyme that consists of a regulatory (R) subunit dimer and two catalytic (C) subunits that are released upon stimulation by cAMP. Immunoblotting and immunoprecipitation of T-cell protein extracts, immunofluorescence of permeabilized T cells and RT/PCR of T-cell RNA using C subunit-specific primers revealed expression of two catalytically active PKA C subunits C alpha1 (40 kDa) and C beta2 (47 kDa) in these cells. Anti-RI alpha and Anti-RII alpha immunoprecipitations demonstrated that both C alpha1 and C beta2 associate with RI alpha and RII alpha to form PKAI and PKAII holoenzymes. Moreover, Anti-C beta2 immunoprecipitation revealed that C alpha1 coimmunoprecipitates with C beta2. Addition of 8-CPT-cAMP which disrupts the PKA holoenzyme, released C alpha1 but not C beta2 from the Anti-C beta2 precipitate, indicating that C beta2 and C alpha1 form part of the same holoenzyme. Our results demonstrate for the first time that various C subunits may colocate on the same PKA holoenzyme to form novel cAMP-responsive enzymes that may mediate specific effects of cAMP.  相似文献   

14.
The reaction between DTNB and the SH groups of N-acetylneuraminate lyase has been investigated in the presence and absence of pyruvic acid, substrate of the enzyme. It was found that DTNB inactivates N-acetylneuraminate lyase, while pyruvic acid protects the enzyme against this inactivation. When the enzyme was fully inactivated, two SH groups have reacted with DTNB. This result supports previous suggestions, that there is one cystein residue per active site responsible for enzyme activity. In the presence of SDS, approx. 6 SH groups reacted with DTNB suggesting the existence of 3 SH groups per enzyme subunit.  相似文献   

15.
The mouse wild type and four mutant regulatory type I (RI) subunits were expressed in Escherichia coli and subjected to kinetic analyses. The defective RI subunits had point mutations in either cAMP-binding site A (G200/E), site B (G324/D, R332/H), or in both binding sites. In addition, a truncated form of RI which lacked the entire cAMP-binding site B was generated. All of the mutant RI subunits which bound [3H]cAMP demonstrated more rapid rates of cAMP dissociation compared to the wild type RI subunit. Dissociation profiles showed only a single dissociation component, suggesting that a single nonmutated binding site was functional. The mutant RI subunits associated with purified native catalytic subunit to form chromatographically separable holoenzyme complexes in which catalytic activity was suppressed. Each of these holoenzymes could be activated but showed varying degrees of cAMP responsiveness with apparent Ka values ranging from 40 nM to greater than 5 microM. The extent to which the mutated cAMP-binding sites were defective was also shown by the resistance of the respective holoenzymes to activation by cAMP analogs selective for the mutated binding sites. Kinetic results support the conclusions that 1) Gly-200 of cAMP-binding site A and Gly-324 or Arg-332 of site B are essential to normal conformation and function, 2) activation of type I cAMP-dependent protein kinase requires that only one of the cAMP-binding sites be functional, 3) mutational inactivation of site B (slow exchange) has a much more drastic effect than that of site A on increasing the Ka of the holoenzyme for cAMP, as well as in altering the rate of cAMP dissociation from the remaining site of the free RI subunit. The strong dependence of one cAMP-binding site on the integrity of the other site suggests a tight association between the two sites.  相似文献   

16.
Catecholamines in adipose tissue promote lipolysis via cAMP, whereas insulin stimulates lipogenesis. Here we show that H(2)O(2) generated by insulin in rat adipocytes impaired cAMP-mediated amplification cascade of lipolysis. These micromolar concentrations of H(2)O(2) added before cAMP suppressed cAMP activation of type IIbeta cyclic AMP-dependent protein kinase (PKA) holoenzyme, prevented hormone-sensitive lipase translocation from cytosol to storage droplets, and inhibited lipolysis. Similarly, H(2)O(2) impaired activation of type IIalpha PKA holoenzyme from bovine heart and from that reconstituted with regulatory IIalpha and catalytic alpha subunits. H(2)O(2) was ineffective (a) if these PKA holoenzymes were preincubated with cAMP, (b) if added to the catalytic alpha subunit, which is active independently of cAMP activation, and (c) if the catalytic alpha subunit was substituted by its C199A mutant in the reconstituted holoenzyme. H(2)O(2) inhibition of PKA activation remained after H(2)O(2) elimination by gel filtration but was reverted with dithiothreitol or with thioredoxin reductase plus thioredoxin. Electrophoresis of holoenzyme in SDS gels showed separation of catalytic and regulatory subunits after cAMP incubation but a single band after H(2)O(2) incubation. These data strongly suggest that H(2)O(2) promotes the formation of an intersubunit disulfide bond, impairing cAMP-dependent PKA activation. Phylogenetic analysis showed that Cys-97 is conserved only in type II regulatory subunits and not in type I regulatory subunits; hence, the redox regulation mechanism described is restricted to type II PKA-expressing tissues. In conclusion, phylogenetic analysis results, selective chemical behavior, and the privileged position in holoenzyme lead us to suggest that Cys-97 in regulatory IIalpha or IIbeta subunits is the residue forming the disulfide bond with Cys-199 in the PKA catalytic alpha subunit. A new molecular point for cross-talk among heterologous signal transduction pathways is demonstrated.  相似文献   

17.
An adenosine cyclic 3',5'-monophosphate (cAMP) dependent protein kinase has recently been shown to exist in Dictyostelium discoideum and to be developmentally regulated. In this report we have followed the chromatographic behavior of both the holoenzyme and its subunits. A cAMP-dependent holoenzyme could be obtained from the 100000 g soluble fraction after passage through DE-52 cellulose (pH 7.5) and Sephacryl S300. Under conditions of low pH the holoenzyme could be further purified by flat-bed electrofocusing (pI = 6.8). Application of the holoenzyme to electrofocusing at high pH resulted in dissociation of the holoenzyme into a cAMP binding component (pI = 6.1) and a cAMP-independent catalytic activity (pI = 7.4). Dissociation of the holoenzyme into subunits also occurred during histone affinity chromatography and gel filtration chromatography (S300) in the presence of a dissociating buffer. Although the subunit structure was clearly evident during chromatography, the holoenzyme could not be dissociated by simple addition of cAMP to the extract. The catalytic subunit could be purified further by CM-Sephadex, DE-52 cellulose (pH 8.5), histone affinity, and hydrophobic chromatography. The regulatory subunit was further purified by DE-52 cellulose (pH 8.5) and cAMP affinity chromatography. Proof that the cAMP binding activity and the cAMP-independent catalytic activity were in fact the regulatory and catalytic subunits was shown by reconstitution of the cAMP-dependent holoenzyme from the purified subunits. By using these separation procedures, one can obtain from extracts of Dictyostelium the subunits that are free of each other as well as free of any endogenous protein substrates.  相似文献   

18.
cAMP regulates the expression of several genes by activation of a promoter consensus sequence which functions as a cAMP-response element. Evidence indicated that this is accomplished via cAMP dissociation of cAMP-dependent protein kinase into its regulatory (R) and catalytic (C) subunits. Our investigations of the role of these two subunits in gene expression provide direct and quantitative evidence that the C subunit is required for cAMP stimulation of the cAMP-response element in the vasoactive-intestinal-peptide gene in rat pheochromocytoma cells. After cotransfection of a metallothionein-regulated C-subunit expression vector (pCEV) and a vasoactive-intestinal-peptide--chloramphenicol acetyltransferase construct containing a cAMP-response element, we could demonstrate expression of transfected C-alpha-subunit mRNA (truncated size 1.7 kb) by Northern blot and a concentration-dependent C subunit stimulation of chloramphenicol acetyltransferase activity. Basal activity was stimulated 12- and 50-fold by pCEV (30 micrograms), in the absence and presence, respectively, of Zn2+. Metallothionein-regulated expression of C was demonstrated by results that showed a 2-4-fold increase in chloramphenicol acetyltransferase activity in the presence versus the absence of 90 microM Zn2+. In contrast, overexpression of the R-II beta regulatory subunit did not stimulate chloramphenicol acetyltransferase activity, and R-II beta transfected together with C (ratio 2:1 and 4:1) inhibited the stimulation by the C subunit 70% and 90% respectively. Our results indicate that transfection of cAMP-dependent protein kinase subunits results in functional expression of both C-alpha and R-II beta subunits. Expression of the C subunit mediated cAMP-regulated gene expression but this expression could be inhibited by cotransfected R-II beta subunit, indicating intracellular reconstitution of the inactive holoenzyme of cAMP-dependent protein kinase.  相似文献   

19.
The cAMP-dependent protein kinase (PKA) holoenzyme of Dictyostelium comprises a single regulatory (R) and catalytic (C) subunit, and both proteins increase in concentration during cellular aggregation. In order to determine the role of the kinase, we have constructed mutants of the R subunit that are defective in cAMP binding, in inhibition of the C subunit, or in both functions. Analysis of these mutants suggests that overexpression of the unmutated R subunit, which is known to block development, occurs by direct inactivation of the C subunit rather than by an effect on intracellular cAMP levels. Cells with an inactive C subunit (PKA- cells) are defective in cAMP relay, the production of cAMP in response to extracellular cAMP stimulation. This presumably accounts for their inability to undertake aggregation. When mixed with wild-type cells, PKA- cells migrate toward the signalling centre but remain confined to the periphery of the tight aggregate and are lost from the back of the migratory slug. This suggests that PKA may be required during the late, multicellular stages of development. Consistent with this, we find that a number of postaggregative genes are not expressed in PKA- cells, even when they are allowed to synergise with normal cells.  相似文献   

20.
The type I and type II regulatory subunits of cAMP-dependent protein kinase can be distinguished by autophosphorylation. The type II regulatory subunits have an autophosphorylation site at a proteolytically sensitive hinge region, while the type I regulatory subunits have a pseudophosphorylation site. Only holoenzyme formed with type I regulatory subunits has a high affinity binding site for MgATP. In order to determine the functional consequences of regulatory subunit phosphorylation on interaction with the catalytic subunit, an autophosphorylation site was introduced into the type I regulatory subunit using recombinant DNA techniques. When Ala97 at the hinge region of the type I regulatory subunit was replaced with Ser, the regulatory subunit became a good substrate for the catalytic subunit. Stoichiometric phosphorylation occurred exclusively at Ser97. Radioactivity was incorporated primarily into the recombinant regulatory subunit when catalytic subunit and [gamma-32P]ATP were added to the total bacterial extract. Phosphorylation of the mutant regulatory subunit also occurred readily following polyacrylamide gel electrophoresis and electrophoretic transfer to nitrocellulose. Phosphorylation occurred as an intramolecular event in the absence of cAMP indicating that the hinge region of the regulatory subunit occupies the substrate recognition site of the catalytic subunit in the holoenzyme complex. Holoenzyme formed with both the wild type and mutant regulatory subunits was susceptible to dissociation in the presence of high salt; however, only the native holoenzyme was stabilized by MgATP. In contrast to the wild type holoenzyme, the affinity of the mutant holoenzyme for cAMP was not reduced in the presence of MgATP. Holoenzyme formation also was not facilitated by MgATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号