首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was undertaken to examine the effects of oxygen free radicals on mitochondrial creatine kinase activity in rat heart. Xanthine plus xanthine oxidase (superoxide anion radical generating system) reduced mitochondrial creatine kinase activity both in a dose- and a time-dependent manner. Superoxide dismutase showed a protective effect on depression in creatine kinase activity due to xanthine plus xanthine oxidase. Hydrogen peroxide inhibited creatine kinase activity in a dose-dependent manner, this inhibition was protected by the addition of catalase. In order to understand the detailed mechanisms by which oxygen free radicals inhibit mitochondrial creatine kinase activity, the effects of oxygen free radicals on mitochondrial sulfhydryl groups were examined. Mitochondrial sulfhydryl groups contents were decreased by xanthine plus xanthine oxidase or hydrogen peroxide; this depression in sulfhydryl groups contents was prevented by the addition of superoxide dismutase or catalase. N-Ethylmaleimide (sulfhydryl group reagent) expressed inhibitory effects on the creatine kinase activity both in a dose- and a time-dependent manner; dithiothreitol or cysteine (sulfhydryl group reductant) showed protective effects on the creatine kinase activity depression induced by N-ethylmaleimide. Dithiothreitol or cysteine also blocked the depression of mitochondrial creatine kinase activity caused by xanthine plus xanthine oxidase or hydrogen peroxide. These results lead us to conclude that oxygen free radicals may inhibit mitochondrial creatine kinase activity by modifying sulfhydryl groups in the enzyme protein.  相似文献   

2.
Although in vitro studies have shown that oxygen free radicals depress the sarcolemmal Ca2+-pump activity and thereby may cause the occurrence of intracellular Ca2+ overload for the genesis of contractile failure, the exact relationship between changes in sarcolemmal Ca2+-pump activity and cardiac function due to these radicals is not clear. In this study we examined the effects of oxygen radicals on sarcolemmal Ca2+ uptake and Ca2+-stimulated ATPase activities as well as contractile force development by employing isolated rat heart preparations. When hearts were perfused with medium containing xanthine plus xanthine oxidase, the sarcolemmal Ca2+-stimulated ATPase activity and ATP-dependent Ca2+ accumulation were depressed within 1 min whereas the developed contractile force, rate of contraction and rate of relaxation were increased at 1 min and decreased over 3–20 min of perfusion. The resting tension started increasing at 2 min of perfusion with xanthine plus xanthine oxidase. Catalase showed protective effects against these alterations in heart function and sarcolemmal Ca2+-pump activities upon perfusion with xanthine plus xanthine oxidase whereas superoxide dismutase did not exert such effects. The combination of catalase and superoxide dismutase did not produce greater effects in comparison to catalase alone. These results are consistent with the view that the depression of heart sarcolemmal Ca2+ pump activities may result in myocardial dysfunction due to the formation of hydrogen peroxide and/or hydroxyl radicals upon perfusing the hearts with xanthine plus xanthine oxidase.  相似文献   

3.
Modification of contractile proteins by oxygen free radicals in rat heart   总被引:2,自引:0,他引:2  
This study was undertaken to investigate the effects of oxygen free radicals on myofibrillar creatine kinase activity. Isolated rat heart myofibrils were incubated with xanthine+xanthine oxidase (a superoxide anion radical-generating system) or hydrogen peroxide and assayed for creatine kinase activity. To clarify the involvement of changes in sulfhydryl groups in causing alterations in myofibrillar creatine kinase activity, 1) effects of N-ethylmaleimide (sulfhydryl groups reagent) on myofibrillar creatine kinase activity, 2) effect of oxygen free radicals on myofibrillar sulfhydryl groups content, and 3) protective effects of dithiothreitol (sulfhydryl groups-reducing agent) on the changes in myofibrillar creatine kinase activity due to oxygen free radicals were also studied. Xanthine+xanthine oxidase inhibited creatine kinase activity both in a time-and a concentration-dependent manner. Superoxide dismutase (SOD) showed a protective effect on the depression in creatine kinase activity caused by xanthine+xanthine oxidase. Hydrogen peroxide inhibited creatine kinase activity in a concentration-dependent manner; this inhibition was prevented by the addition of catalase. N-ethylmaleimide reduced creatine kinase activity in a dose-dependent manner. The content of myofibrillar sulfhydryl groups was decreased by xanthine+xanthine oxidase; this reduction was protected by SOD. Furthermore, the depression in myofibrillar creatine kinase activity by xanthine+xanthine oxidase was protected by the addition of dithiothreitol. Oxygen free radicals may inhibit myofibrillar creatine kinase activity by modifying sulfhydryl groups in the enzyme protein. The reduction of myofibrillar creatine kinase activity may lead to a disturbance of energy utilization in the heart and may contribute to cardiac dysfunction due to oxygen free radicals.  相似文献   

4.
《Mutation Research Letters》1993,301(4):243-248
The effect of histidine on damage induced by oxygen radicals was studied in peripheral blood lymphocytes treated with free oxygen radical-inducing agents: hydrogen peroxide, xanthine oxidase plus hypoxanthine, bleumycin and γ-rays. l-Histidine, at a concentration of 1 mM, was found to potentiate both cell killing and inhibition of PHA-stimulated cell division brought about by hydrogen peroxide or xanthine oxidase plus hypoxanthine. In contrast, l-histidine did not affect γ-ray- or bleomycin-induced cell killing and inhibition of PHA-stimulated cell division. We suggest that l-histidine potentiation of cell damage is mainly mediated by interaction of the amino acid with hydrogen peroxide and/or iron rather than with other reactive oxygen species. In addition, these results also indicate that hydrogen peroxide produced by γ-radiation- or bleomycin-treated cells plays no role in the toxic effects elicited by these agents.  相似文献   

5.
A novel modulatory site on the N-methyl-D-aspartate (NMDA) receptor that is sensitive to sulfhydryl redox reagents was recently described. Here we report that this redox modulatory site is susceptible to oxidation by reactive oxygen species endogenous to the CNS. Oxygen free radicals generated by xanthine and xanthine oxidase were observed to decrease NMDA-induced changes in intracellular free Ca2+ concentrations and NMDA-evoked cation currents in cortical neurons in culture. Additionally, a sublethal production of free radicals by xanthine and xanthine oxidase reversed a dithiothreitol-induced enhancement of NMDA-mediated neurotoxicity in vitro. These results show that NMDA receptor function is modulated at its redox site by endogenous substances that normally accompany tissue reperfusion following an ischemic event. This novel mechanism for NMDA receptor regulation may have profound implications in the outcome of glutamate neurotoxicity in vivo.  相似文献   

6.
The release of D-[3H]aspartate, [3H]noradrenaline, and of endogenous glutamate and aspartate from rat hippocampal slices was significantly increased when the slices were incubated with xanthine oxidase plus xanthine to produce superoxide and hydroxyl free radicals locally. Allopurinol, a specific xanthine oxidase inhibitor, the hydroxyl-radical scavenger D-mannitol, or the superoxide-radical scavenger system formed by superoxide dismutase plus catalase prevented this release. These results suggest that endogenous excitatory amino acids are released consequent to the formation of free radicals. The excess of glutamate and aspartate released by this mechanism could be one of the factors contributing to the death of neurons after anoxic or ischemic injuries.  相似文献   

7.
Exposure of red blood cells to oxygen radicals can induce hemoglobin damage and stimulate protein degradation, lipid peroxidation, and hemolysis. To determine if these events are linked, rabbit erythrocytes were incubated at 37 degrees C with various oxygen radical-generating systems and antioxidants. Protein degradation, measured by the production of free alanine, increased more than 11-fold in response to xanthine (X) + xanthine oxidase (XO). A similar increase in proteolysis occurred when the cells were incubated with acetaldehyde plus XO, with ascorbic acid plus iron (Asc + Fe), or with hydrogen peroxide (H2O2) alone. Upon addition of XO, increased proteolysis was evident within 5 min and was linear for up to 5 h. In contrast, lipid peroxidation, as shown by the production of malonyldialdehyde, conjugated dienes, or lipid hydroperoxides was observed only after 2 h of incubation with X + XO, acetaldehyde + XO, or H2O2. Ascorbate plus Fe2+ induced both protein degradation and lipid peroxidation; however, the addition of various antioxidants (urate, xanthine, glucose, or butylated hydroxytoluene) decreased lipid peroxidation without affecting proteolysis. Thus, these processes seem to occur by distinct mechanisms. Furthermore, at low concentrations of XO, protein degradation was clearly increased in the absence of detectable lipid peroxidation products. Hemolysis occurred only in a small number of cells (9%) and followed the appearance of lipid peroxidation products. Thus, an important response of red cells to oxygen radicals is rapid degradation of damaged cell proteins. Increased proteolysis seems to occur independently of membrane damage and to be a more sensitive indicator of cell exposure to oxygen radicals than is lipid peroxidation.  相似文献   

8.
Xanthine oxidase has been recognized as an important source of oxygen free radicals in ischemia-reperfusion injury. In order to study this enzyme in biological tissues, the conversion of pterin (2-amino-4-hydroxypteridine) to isoxanthopterin provides the basis for a very sensitive fluorometric assay. Xanthine oxidase is typically assayed in the presence of pterin only, while an electron acceptor which replaces NAD+ is used to determine the combined xanthine dehydrogenase plus xanthine oxidase activity. 2,6-Dichlorophenol-indophenol has been used as an electron acceptor in this assay. However, it was found in this study that it acts as an effective competitive inhibitor for xanthine oxidase. We concluded that methylene blue is the electron acceptor of choice in the fluorometric assays for xanthine oxidase.  相似文献   

9.
Recent evidence suggests that free oxygen radicals are produced by ischaemic tissues, accounting for at least part of the damage that results. These free oxygen radicals are produced by xanthine oxidase, amongst others, and removed by scavenger enzymes (catalase, superoxide dismutase and glutathione peroxidase) and anti-oxidants. As mitochondria are oxygen-utilising organelles, they are capable of producing free oxygen radicals. Our results indicate that the removal of free oxygen radicals are not diminished during ischaemia, but the activity of the free oxygen radical generator, xanthine oxidase, is increased. This could lead to an increased superoxide anion concentration.  相似文献   

10.
Oxygen radical generation in the xanthine- and NADH-oxygen reductase reactions by xanthine oxidase, was demonstrated using the ESR spin trap 5,5'-dimethyl-1- pyrroline-N-oxide. No xanthine-dependent oxygen radical formation was observed when allopurinol-treated xanthine oxidase was used. The significant superoxide generation in the NADH-oxygen reductase reaction by the enzyme was increased by the addition of menadione and adriamycin. The NADH-menadione and -adriamycin reductase activities of xanthine oxidase were assessed in terms of NADH oxidation. From Lineweaver-Burk plots, the Km and Vmax of xanthine oxidase were estimated to be respectively 51 microM and 5.5 s-1 for menadione and 12 microM and 0.4 s-1 for adriamycin. Allopurinol-inactivated xanthine oxidase generates superoxide and OH.radicals in the presence of NADH and menadione or adriamycin to the same extent as the native enzyme. Adriamycin radicals were observed when the reactions were carried out under an atmosphere of argon. The effects of superoxide dismutase and catalase revealed that OH.radicals were mainly generated through the direct reaction of H2O2 with semiquinoid forms of menadione and adriamycin.  相似文献   

11.
Summary Culture conditions modulating cell damage from xanthine plus xanthine oxidase-derived partially reduced oxygen species were studied. Porcine thoracic aorta endothelial cells and porcine lung fibroblasts were maintained in monolayer culture. Cells were prelabeled with51Cr before xanthine plus xanthine oxidase exposure. Endothelial cells showed 30 to 100% more lysis than fibroblasts and thus seemed more sensitive to this oxidant stress. The effect of cell culture age, as indicated by population doubling level (PDL), was examined. Response of low PDL endothelial cells and fibroblasts subjected to oxidant stress was compared with the response of PDL 15 cells. Both low PDL endothelial cells and fibroblasts responded differently to the lytic effect of xanthine oxidase-derived free radicals than did higher PDL cells. Specific activities of the antioxidant enzymes catalase, managanese superoxide dismutase, copper-zinc superoxide dismutase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase were measured in both low and high PDL fibroblasts and endothelial cells. Antioxidant enzyme specific activities could only partially explain the differences in response to oxidant stress between fibroblasts and endothelial cells and between low and high PDL cells. Cell culture medium composition modulated the rate of production, and relative proportions of xanthine plus xanthine oxidase-derived partially reduced species of oxygen, i.e. superoxide, hydrogen peroxide, and hydroxyl radical. Serum content of medium was important in modulating free radical generation; superoxide production rates decreased 32%, H2O2 became undetectable, and hydroxyl radical generation decreased 54% in the presence of 10% serum. The medium protein and iron content also modulated free radical generation. The data suggest that cell culture media constituents, cell type, and cell culture age greatly affect in vitro response of cells subjected to oxidant stress. Research supported by American Lung Association Fellowship Training Grant and Research Training Grant, the R. J. Reynolds Corporation, and National Institutes of Health Grants HL29784 and 1 HL 23805.  相似文献   

12.
Exhaustive exercise generates free radicals. However, the source of this oxidative damage remains controversial. The aim of this paper was to study further the mechanism of exercise-induced production of free radicals. Testing the hypothesis that xanthine oxidase contributes to the production of free radicals during exercise, we found not only that exercise caused an increase in blood xanthine oxidase activity in rats but also that inhibiting xanthine oxidase with allopurinol prevented exercise-induced oxidation of glutathione in both rats and in humans. Furthermore, inhibiting xanthine oxidase prevented the increases in the plasma activity of cytosolic enzymes (lactate dehydrogenase, aspartate aminotransferase, and creatine kinase) seen after exhaustive exercise. Our results provide evidence that xanthine oxidase is responsible for the free radical production and tissue damage during exhaustive exercise. These findings also suggest that mitochondria play a minor role as a source of free radicals during exhaustive physical exercise.  相似文献   

13.
The genetic toxicity of active oxygen species produced during the enzymic oxidation of xanthine has been investigated using Chinese hamster ovary (CHO) cells. Incubation of cells with xanthine plus xanthine oxidase resulted in extensive chromosome breakage and sister-chromatid exchange and gave a small increase in frequency of thioguanine-resistant cells (HGPRT test). Inclusion of superoxide dismutase or catalase in the xanthine/xanthine oxidase system inhibited chromosome breakage, whereas only catalase prevented SCE and mutant induction. It is concluded that hydrogen peroxide is responsible for most of the genetic effects observed in CHO cells exposed to xanthine/xanthine oxidase but that superoxide plays a key role in chromosome breakage.  相似文献   

14.
The mono-electronic reduction of oxygen in the hypoxanthine-xanthine oxidase system led to the formation of active species eliciting an evident and highly reproducible mutagenic response in strain TA104 of S. typhimurium. Similar effects were observed by generating oxy radicals either extracellularly or inside bacterial cells. Mutagenicity was selectively detected in TA104 and not in other Salmonella strains, which points out the importance of the hisG428 mutation and of the deletion excising the uvrB gene, as far as sensitivity to oxy radicals is concerned. The mutagenicity of the system was further enhanced in the presence of superoxide dismutase. Catalase did not affect the mutagenicity of hypoxanthine plus xanthine oxidase, whereas it inhibited the mutagenicity induced by the mixture of hypoxanthine with xanthine oxidase and superoxide dismutase. This demonstrates that not only hydrogen peroxide but also the superoxide radical anion is positive in this system. Glutathione and 2 synthetic thiols, i.e., N-acetylcysteine and alpha-mercaptopropionylglycine, besides decreasing the high spontaneous mutagenicity of TA104, efficiently prevented the mutagenicity of active oxygen species.  相似文献   

15.
An efficient scavenger for radiolytically generated hydroxyl (OH) radicals, p-nitrosodimethylaniline, was used to try to substantiate the presence of this oxygen radical species in several biochemical systems. Most of these systems which were investigated had previously been assumed to generate OH radicals, e.g. the autoxidation of 6-hydroxydopamine, the hydroxylating system NADH/phenazine methosulfate, and the oxidation of xanthine or acetaldehyde by xanthine oxidase. We did not observe inhibition of the bleaching of p-nitrosodimethylaniline in oxygenated solutions by other scavengers of OH radicals nor, in the case of xanthine/xanthine oxidase, by catalase and superoxide dismutase. We therefore conclude that, under biochemical conditions as opposed to radiolysis or photolysis, no freely diffusable OH radicals are formed. Rather, a strongly oxidizing OH-analogous complex is considered to represent the p-nitrosodimethylaniline-detectable species formed under these conditions.  相似文献   

16.
Free radical scavenging efficiency of Nano-Se in vitro   总被引:6,自引:0,他引:6  
In this study, we showed that smaller size particles of Nano-Se have better scavenging effects on the following free radicals: carbon-centered free radicals (R*) generated from 2,2'-azo-bis-(2-amidinopropane) hydrochloride (AAPH), the relatively stable free radical 1,1-diphenyl-2-picryhydrazyl (DPPH), the superoxide anion (O2*-) generated from the xanthine/xanthine oxidase (X/XO) system, singlet oxygen (1O2) generated by irradiated hemoporphyrin. Furthermore, the three sizes of Nano-Se studied also show protective effects against the oxidation of DNA. The three samples all have potential size-dependent characteristics on scavenging the free radicals. Although in this study we regarded Nano-Se as a whole without considering interactions between BSA and the red selenium nano-particles, there is the possibility that the apparent free radical scavenging effects may be partially contributed by such interactions.  相似文献   

17.
Abstract: To gain insight into the mechanism through which the neurotransmitter glutamate causally participates in several neurological diseases, in vitro cultured cerebellar granule cells were exposed to glutamate and oxygen radical production was investigated. To this aim, a novel procedure was developed to detect oxygen radicals; the fluorescent dye 2',7'-dichlorofluorescein was used to detect production of peroxides, and a specific search for the possible conversion of the enzyme xanthine dehydrogenase into xanthine oxidase after the excitotoxic glutamate pulse was undertaken. A 100 µ M glutamate pulse administered to 7-day-old cerebellar granule cells is accompanied by the onset of neuronal death, the appearance of xanthine oxidase, and production of oxygen radicals. Xanthine oxidase activation and superoxide (O2•−) production are completely inhibited by concomitant incubation of glutamate with MK-801, a specific NMDA receptor antagonist, or by chelation of external calcium with EGTA. Partial inhibition of both cell death and parallel production of reactive oxygen species is achieved with allopurinol, a xanthine oxidase inhibitor, leupeptin, a protease inhibitor, reducing agents such as glutathione or dithiothreitol, antioxidants such as vitamin E and vitamin C, and externally added superoxide dismutase. It is concluded that glutamate-triggered, NMDA-mediated, massive Ca2+ influx induces rapid conversion of xanthine dehydrogenase into xanthine oxidase with subsequent production of reactive oxygen species that most probably have a causal involvement in the initial steps of the series of intracellular events leading to neuronal degeneration and death.  相似文献   

18.
In view of the potential role of free radicals in the genesis of cardiac abnormalities under different pathophysiological conditions and the importance of contractile proteins in determining heart function, this study was undertaken to examine the effects of oxygen free radicals on the rat heart myofibrils. Xanthine plus xanthine oxidase (X + XO) which is known to generate superoxide anions (O2-) and hydrogen peroxide (H2O2), an activated species of oxygen, was found to decrease Ca(2+)-stimulated ATPase activity, increase Mg(2+)-ATPase activity and reduce sulfhydryl (SH) group contents in myofibrils; these effects were completely prevented by superoxide dismutase (SOD) plus catalase (CAT). Both H2O2 and hypochlorous acid (HOCl), an oxidant, produced actions on cardiac myofibrils similar to those observed by X + XO. The effects of H2O2 and HOCl were prevented by CAT and L-methionine, respectively. N-ethylmaleimide (NEM) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), inhibitors of SH groups, also produced effects similar to those seen with X + XO. Dithiothreitol (DTT), a well known sulfhydryl-reducing agent, prevented the actions of X + XO, H2O2, HOCl, NEM and DTNB. These results suggest that marked changes in myofibrillar ATPase activities by different species of oxygen free radicals may be mediated by the oxidation of SH groups.  相似文献   

19.
The mechanism of vitamin C-induced sister-chromatid exchanges in cultured mammalian cells was studied. Chinese hamster ovary cells, when exposed to an enzymatic oxygen radical-generating system (xanthine oxidase plus hypoxanthine), develop increased numbers of sister-chromatid exchanges. Inclusion of ascorbate (greater than or equal to 0.1 mM) in these incubations resulted in an augmentation of this effect. Superoxide dismutase (100 microliter/ml) and catalase (220 microliter/ml) caused a significant reduction in the number of sister-chromatid exchanges induced by xanthine oxidase, hypoxanthine and vitamin C. Their heat-inactivated counterparts had no effect. These results confirm that vitamin C (greater than or equal to 0.1 mM) potentiates the genetic toxicity of oxygen radicals and that this effect is mediated by toxic oxygen intermediates.  相似文献   

20.
This study was undertaken to examine the effects of oxygen free radicals on phosphatidylethanolamine (PE) N-methylation in rat heart sarcolemmal (SL) and sarcoplasmic reticular (SR) membranes. Three catalytic sites involved in the sequential methyl transfer reaction were studied by assaying the incorporation of radiolabeled methyl groups from S-adenosyl-L-methionine (0.055, 10, and 150 microM) into SL or SR PE molecules under optimal conditions. In the presence of xanthine + xanthine oxidase (superoxide anion radicals generating system), PE N-methylation was inhibited at site I and III in the heavy SL fraction isolated by the hypotonic shock-LiBr treatment method. In the light SL fraction isolated by sucrose-density gradient, a significant inhibition of PE N-methylation was seen at all three sites. These inhibitory effects of xanthine + xanthine oxidase on PE N-methylation were prevented by the addition of superoxide dismutase. Hydrogen peroxide showed a significant inhibition of PE N-methylation at site I in the heavy SL fraction, and at site I and II in the light SL fraction. Catalase blocked the inhibitory effects of hydrogen peroxide. The effects of both xanthine + xanthine oxidase and hydrogen peroxide on the SR membranes were similar to those seen for the heavy SL fraction. These results suggest that, in addition to lipid peroxidation, the oxygen free radicals may affect the function of cardiac membranes by decreasing the phospholipid N-methylation activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号