首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The 2019–2020 Australian bushfires were unprecedented both in extent and severity, impacting wildlife through direct mortality as well as habitat damage. More than 10% of koala habitat is estimated to have been affected by fires. Estimating the number of koalas lost is crucial to assess koala conservation status and to determine the appropriate management actions required. However, this is not a trivial task, as accurate data on koala distribution and population density before the fires is patchy. Acknowledging this weakness, we sought to estimate fire impact on koalas at specific sites, by comparing habitat areas affected by the fire with habitat areas that were unaffected by the fire, pairing closely related study sites (based on geography and vegetation). To compare koala density, we deployed two koala detection methods; drone-acquired thermal imagery and detection dogs coupled with genetic fingerprinting, in four fire-affected sites paired with four control sites in New South Wales and Queensland. Through drone surveys, we detected 140 koalas in 5,240 ha in New South Wales. The detection dogs found 144 scat samples corresponding to 79 unique koalas in 77 ha of transects in Queensland. Our preliminary results show many koalas were still present in fire-affected areas after the 2019–2020 bushfire season. Koala density was 24 to 71% lower in fire-affected sites compared with control sites in three of the habitat pairs, whereas unexpectedly, in the fourth pair, we observed a 317% higher koala density in the fire-affected site. This underlined that koalas can be present in fire-affected areas and that monitoring their health could be critical for months after the fires.  相似文献   

2.
Species distribution models have great potential to efficiently guide management for threatened species, especially for those that are rare or cryptic. We used MaxEnt to develop a regional‐scale model for the koala Phascolarctos cinereus at a resolution (250 m) that could be used to guide management. To ensure the model was fit for purpose, we placed emphasis on validating the model using independently‐collected field data. We reduced substantial spatial clustering of records in coastal urban areas using a 2‐km spatial filter and by modeling separately two subregions separated by the 500‐m elevational contour. A bias file was prepared that accounted for variable survey effort. Frequency of wildfire, soil type, floristics and elevation had the highest relative contribution to the model, while a number of other variables made minor contributions. The model was effective in discriminating different habitat suitability classes when compared with koala records not used in modeling. We validated the MaxEnt model at 65 ground‐truth sites using independent data on koala occupancy (acoustic sampling) and habitat quality (browse tree availability). Koala bellows (n = 276) were analyzed in an occupancy modeling framework, while site habitat quality was indexed based on browse trees. Field validation demonstrated a linear increase in koala occupancy with higher modeled habitat suitability at ground‐truth sites. Similarly, a site habitat quality index at ground‐truth sites was correlated positively with modeled habitat suitability. The MaxEnt model provided a better fit to estimated koala occupancy than the site‐based habitat quality index, probably because many variables were considered simultaneously by the model rather than just browse species. The positive relationship of the model with both site occupancy and habitat quality indicates that the model is fit for application at relevant management scales. Field‐validated models of similar resolution would assist in guiding management of conservation‐dependent species.  相似文献   

3.
In the spring and summer of 2019–2020, the ‘Black Summer’ bushfires burned more than 97 000 km2 of predominantly Eucalyptus dominated forest habitat in eastern Australia. The Black Summer bushfires prompted great concern that many species had been imperilled by the fires. Here, we investigate the effects that fire severity had on the habitat and abundance of a cool climate lizard Eulamprus tympanum that was identified as a species of concern because 37% of its habitat was burnt in the Black Summer bushfires. We quantified habitat structure and the abundance of E. tympanum at sites which were unburnt, burnt at low severity and at high severity 10, 15 and 23 months after the fires. Our classification of fire severity based on scorch height and canopy status corresponded well with the Australian Government Google Earth Engine Burnt Area Map (AUS GEEBAM) fire severity layer. Ten months after the fires, sites burnt at high severity had less canopy cover, more bare ground and less fine fuel than sites burnt at low severity or unburnt sites. The abundance of E. tympanum varied with survey occasion and was greatest during the warmest sampling period and lowest during the coolest sampling period. The abundance of E. tympanum was consistently lower on sites burnt at high severity than sites burnt at low severity or unburnt sites. Our findings show that higher severity fires had a greater effect on E. tympanum than low severity fires. Our results suggest that E. tympanum were likely to have persisted in burnt sites, with populations in low severity and unburnt sites facilitating population recovery in areas burnt at high severity. Our results also suggest that wildfire impacts on E. tympanum populations will increase because the frequency and extent of severe fires are expected to increase due to climate change.  相似文献   

4.
The koala's Phascolarctos cinereus distribution is currently restricted to eastern and south‐eastern Australia. However, fossil records dating from 70 ± 4 ka (ka = 103 yr) from south‐western Australia and the Nullarbor Plain are evidence of subpopulation extinctions in the southwest at least after the Last Interglacial (~128–116 ka). We hypothesize that koala sub‐population extinctions resulted from the eastward retraction of the koala's main browse species in response to unsuitable climatic conditions. We further posit a general reduction in the distribution of main koala‐browse trees in the near future in response climate change. We modelled 60 koala‐browse species and constructed a set of correlative species distribution models for five time periods: Last Interglacial (~128–116 ka), Last Glacial Maximum (~23–19 ka), Mid‐Holocene (~7–5 ka), present (interpolations of observed data, representative of 1960–1990), and 2070. We based our projections on five hindcasts and one forecast of climatic variables extracted from WorldClim based on two general circulation models (considering the most pessimistic scenario of high greenhouse‐gas emissions) and topsoil clay fraction. We used 17 dates of koala fossil specimens identified as reliable from 70 (± 4) to 535 (± 49) ka, with the last appearance of koalas at 70 ka in the southwest. The main simulated koala‐browse species were at their greatest modelled extent of suitability during the Last Glacial Maximum, with the greatest loss of koala habitat occurring between the Mid‐Holocene and the present. We predict a similar habitat loss between the present and 2070. The spatial patterns of habitat change support our hypothesis that koala extinctions in the southwest, Nullarbor Plain and central South Australia resulted from the eastward retraction of the dominant koala‐browse species in response to long‐term climate changes. Future climate patterns will likely increase the extinction risk of koalas in their remaining eastern ranges.  相似文献   

5.
The therapeutic benefits of dopamine (DA) agonists after traumatic brain injury (TBI) imply a role for DA systems in mediating functional deficits post‐TBI. We investigated how experimental TBI affects striatal dopamine systems using fast scan cyclic voltammetry (FSCV), western blot, and d‐amphetamine‐induced rotational behavior. Adult male Sprague–Dawley rats were injured by a controlled cortical impact (CCI) delivered unilaterally to the parietal cortex, or were naïve controls. Amphetamine‐induced rotational behavior was assessed 10 days post‐CCI. Fourteen days post‐CCI, animals were anesthetized and underwent FSCV with bilateral striatal carbon fiber microelectrode placement and stimulating electrode placement in the medial forebrain bundle (MFB). Evoked DA overflow was assessed in the striatum as the MFB was electrically stimulated at 60 Hz for 10 s. In 23% of injured animals, but no naïve animals, rotation was observed with amphetamine administration. Compared with naïves, striatal evoked DA overflow was lower for injured animals in the striatum ipsilateral to injury (p < 0.05). Injured animals exhibited a decrease in Vmax (52% of naïve, p < 0.05) for DA clearance in the hemisphere ipsilateral to injury compared with naïves. Dopamine transporter (DAT) expression was proportionally decreased in the striatum ipsilateral to injury compared with naïve animals (60% of naïve, p < 0.05), despite no injury‐related changes in vesicular monoamine transporter or D2 receptor expression (DRD2) in this region. Collectively, these data appear to confirm that the clinical efficacy of dopamine agonists in the treatment of TBI may be related to disruptions in the activity of subcortical dopamine systems.  相似文献   

6.
The lady beetle Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae) is an important predator of aphids in agroecosystems. The inundative release of coccinellid beetles can be an effective biological control strategy. An understanding of how biological control agents perceive and use stimuli from host plants is the key to successfully implement commercially produced predators. Here, we studied the relative role of visual and volatile cues. Dual‐choice assays using foraging‐naïve and foraging‐experienced P. japonica adults were conducted using cotton plants [Gossypium hirsutum L. (Malvaceae)] with or without infestation by the cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae). Overall, experienced beetles were more attracted than naïve beetles toward cues associated with aphid‐infested plants. Experienced beetles were also more responsive to olfactory cues compared with naïve beetles. Both foraging‐naïve and ‐experienced lady beetles integrate olfactory and visual cues from plants infested with aphids, with an apparently greater reliance on olfactory cues. The results suggest that foraging experience may increase prey location in P. japonica.  相似文献   

7.
Biodiversity monitoring is crucial for effective conservation efforts. Effective monitoring allows managers to determine the status and trends of biodiversity, as well as the success of conservation actions. The population of the Broad-toothed Rats (Mastacomys fuscus) in the Barrington Tops National Park New South Wales, Australia has been monitored since 1999 via scat and live-trapping surveys. We reviewed the methods used and analysed the data produced with the aim of describing patterns of population change over time using a range of outcome variables and identifying different climate correlates. A secondary aim was to explore the use of population statistics that account for imperfect detection by comparing naïve occupancy, with an index of relative abundance based on trap effort, the latency to find scats during scat surveys and an occupancy model based on trapping surveys. Neither of these three methods accounts for detectability variation. Naïve occupancy decreased slightly over time, while the relative abundance based on trap effort revealed no evidence of change. Additionally, naïve occupancy decreased with increasing temperature while temperature had no clear impact on relative abundance. Finally, precipitation had no impact on either naïve occupancy or relative abundance. We found no evidence of a relationship between the latency to find scats and the index of relative abundance, suggesting that one or neither is related to actual abundance. Finally, a multi-season occupancy model found occupancy probability to be 0.78 ± 0.23 (standard error); detection probability as 0.51 ± 0.06; seasonal colonisation rate as 0.36 ± 0.13 and seasonal extinction rate at 0.44 ± 0.13. We conclude that despite significant investment in monitoring, this historical data set does not allow managers to ascertain whether population change has occurred and to identify potential drivers of change. Careful consideration of future methods, in particular, whether there is imperfect detection in scat surveys, will help to inform future monitoring.  相似文献   

8.
Comprehensive evaluation of the humoral immune response to Coxiella burnetii may identify highly needed diagnostic antigens and potential subunit vaccine candidates. Here we report the construction of a protein microarray containing 1901 C. burnetii ORFs (84% of the entire proteome). This array was probed with Q‐fever patient sera and naïve controls in order to discover C. burnetii‐specific seroreactive antigens. Among the 21 seroreactive antigens identified, 13 were significantly more reactive in Q‐fever cases than naïve controls. The remaining eight antigens were cross‐reactive in both C. burnetii infected and naïve patient sera. An additional 64 antigens displayed variable seroreactivity in Q‐fever patients, and underscore the diversity of the humoral immune response to C. burnetii. Nine of the differentially reactive antigens were validated on an alternative immunostrip platform, demonstrating proof‐of‐concept development of a consistent, safe, and inexpensive diagnostic assay alternative. Furthermore, we report here the identification of several new diagnostic antigens and potential subunit vaccine candidates for the highly infectious category B alphaproteobacteria, C. burnetii.  相似文献   

9.
Predation is a pervasive selective agent shaping a prey's behaviour, morphology and life history. To survive, prey animals have to respond adaptively to predation threats and this can be achieved through learned predator recognition. Cultural transmission of predator recognition is likely a widespread means of learning in social animals, including mammals, birds and fishes. However, no studies have investigated the cultural transmission of predator recognition in amphibians. In our study, we examined whether naïve woodfrog (Rana sylvatica) tadpoles can acquire the recognition of the odour of a predatory tiger salamander (Ambystoma tigrinum) from experienced conspecifics. After conditioning some tutors to recognize salamander odour, we paired naïve observer tadpoles with either a salamander‐naïve or salamander‐experienced tutor and exposed the pairs to either salamander odour or a water control. Observers were subsequently tested alone for a response to salamander odour. We found that when given salamander odour, observer tadpoles that were paired with a salamander‐experienced tutor successfully learned to recognize the salamander odour as a threat, whereas the observers paired with salamander‐naïve tutors did not. Likewise, tadpoles exposed to the water control did not learn to recognize the salamander regardless of whether they were paired with a naïve or experienced tutor. This is the first study demonstrating cultural transmission of predator recognition in an amphibian species.  相似文献   

10.
Invasive species may undergo rapid change as they invade. Native species persisting in invaded areas may also experience rapid change over this short timescale relative to native populations in uninvaded areas. We investigated the response of the native Achillea millefolium to soil from Holcus lanatus‐invaded and uninvaded areas, and we sought to determine whether differential responses between A. millefolium from invaded (invader experienced) and uninvaded (invader naïve) areas were mediated by soil community changes. Plants grown from seed from experienced and naïve areas responded differently to invaded and uninvaded soil with respect to germination time, biomass, and height. Overall, experienced plants grew faster and taller than their naïve counterparts. Naïve native plants showed negative feedbacks with their home soil and positive feedbacks with invaded soil; experienced plants were less responsive to soil differences. Our results suggest that native plants naïve to invasion may be more sensitive to soil communities than experienced plants, consistent with recent studies. While differences between naïve and experienced plants are transgenerational, our design cannot differentiate between differences that are genetically based, plastic, or both. Regardless, our results highlight the importance of seed source and population history in restoration, emphasizing the restoration potential of experienced seed sources.  相似文献   

11.
We examined the role of B‐1 cells in protection against Toxoplasma gondii infection using B cell‐deficient mice (μMT mice). We found that primed but not naïve B‐1 cells from wild‐type C57BL/6 mice protected B cell‐deficient recipients from challenge infection. All μMT mice transferred with primed B‐1 cells survived more than 5 months after T. gondii infection, whereas 100% of μMT mice transferred with naïve B‐1 cells succumbed by 18 days after infection. Additionally, high expression of both T help (Th) 1‐ and Th2‐type cytokines and a high level of nitric oxide production were observed in T. gondii‐infected μMT mice transferred with primed B‐1 cells. Thus, it was clearly demonstrated that B‐1 cells play an important role in host protection against T. gondii infection in μMT mice.  相似文献   

12.
Conserving habitats crucial for threatened koala (Phascolarctos cinereus) populations requires rating habitat quality from a fine spatial scale to patches, landscapes and then regions. The koala has a specialized diet focused on the leaves of a suite of Eucalyptus species. We asked: what are the key regional influences on habitat selection by koalas in the far north coast of New South Wales? We addressed this question by investigating the multi-scale factors, and within-scale and cross-scale interactions, that influence koala habitat selection and distribution across four local government areas on the far north coast of New South Wales. We assembled and analysed a large data set of tree selection, identified by the presence of scats, in a wide range of randomly selected 5 × 5 km grids across the region. This resulted in more than 9000 trees surveyed for evidence of koala use from 302 field sites, together with associated biophysical site features. The dominant factor influencing habitat use and koala occurrence was the distribution of five Eucalyptus species. Koalas were more likely to use medium-sized trees of these species where they occurred on soils with high levels of Colwell phosphorous. We also identified new interactions among the distribution of preferred tree species and soil phosphorous, and their distribution with the amount of suitable habitat in the surrounding landscape. Our study confirmed that non-preferred species of eucalypts and non-eucalypts are extensively used by koalas and form important components of koala habitat. This finding lends support to restoring a mosaic of koala-preferred tree species and other species recognized for their value as shelter. Our study has provided the ecological foundation for developing a novel regional-scale approach to the conservation of koalas, with adaptability to other wildlife species.  相似文献   

13.
Qiu J  Hwang JT 《Biometrics》2007,63(3):767-776
Summary Simultaneous inference for a large number, N, of parameters is a challenge. In some situations, such as microarray experiments, researchers are only interested in making inference for the K parameters corresponding to the K most extreme estimates. Hence it seems important to construct simultaneous confidence intervals for these K parameters. The naïve simultaneous confidence intervals for the K means (applied directly without taking into account the selection) have low coverage probabilities. We take an empirical Bayes approach (or an approach based on the random effect model) to construct simultaneous confidence intervals with good coverage probabilities. For N= 10,000 and K= 100, typical for microarray data, our confidence intervals could be 77% shorter than the naïve K‐dimensional simultaneous intervals.  相似文献   

14.
It is generally assumed that resistance to parasitism entails costs. Consequently, hosts evolving in the absence of parasites are predicted to invest less in costly resistance mechanisms than hosts consistently exposed to parasites. This prediction has, however, rarely been tested in natural populations. We studied the susceptibility of three naïve, three parasitized and one recently isolated Asellus aquaticus isopod populations to an acanthocephalan parasite. We found that parasitized populations, with the exception of the isopod population sympatric with the parasite strain used, were less susceptible to the parasite than the naïve populations. Exposed but uninfected (resistant) isopods from naïve populations, but not from parasitized populations, exhibited greater mortality than controls, implying that resistance entails survival costs primarily for naïve isopods. These results suggest that parasites can drive the evolution of host resistance in the wild, and that co‐existence with parasites may increase the cost‐effectiveness of defence mechanisms.  相似文献   

15.
Aim An important consideration when planning to conserve a species under climate change is to understand how the distribution of its food resources may also contract or shift under those same climatic conditions. Here, we use a case study to demonstrate a spatial conservation planning approach to inform decisions about where, under climate change, to protect and restore critical food and habitat resources for highly specialized species. Location Eastern Australia. Methods We developed fitted models for the koala (Phascolarctos cinereus) and five of its key eucalypt food trees using the maximum entropy algorithm available in Maxent. We then projected these models using a range of IPCC A1FI climate change scenarios and identified areas with a higher probability of occurrence. We calculated where the koala and its food trees may co‐occur under future climate change. Results The koala and its food trees experienced significant range contractions as climate change progressed, sometimes to regions outside their current distributions. The inland species Eucalyptus camaldulensis and Eucalyptus coolabah contracted from the more arid interior, which is outside the koala range, but persisted in the eastern regions of the koala’s range, while Eucalyptus viminalis, Eucalyptus populnea and Eucalyptus tereticornis contracted eastwards and southwards, with a fragmented distribution. The highest probabilities of overlap between koalas and their food trees were identified in fragmented coastal and southern regions of the koala’s current range. Main conclusions The application of a robust species distribution modelling decision support tool identified important changes, under climate change, in the distribution of a specialist species and its key food trees. These distributions did not change in complete synergy and therefore areas of overlap varied, depending on the food tree species modelled. This is of particular importance in a conservation planning context, when considering targeted protection and restoration of species‐specific habitat resources.  相似文献   

16.
We report on the use of infrared‐triggered cameras as an effective tool to survey phasianid populations in Wanglang and Wolong Nature Reserves, China. Surveys at 183 camera‐trapping sites recorded 30 bird species, including nine phasianids (one grouse and eight pheasant species). Blood Pheasant Ithaginis cruentus and Temminck’s Tragopan Tragopan temminckii were the phasianids most often detected at both reserves and were found within the mid‐elevation range (2400–3600 m asl). The occupancy rate and detection probability of both species were examined using an occupancy model relative to eight sampling covariates and three detection covariates. The model estimates of occupancy for Blood Pheasant (0.30) and Temminck’s Tragopan (0.14) are close to the naïve estimates based on camera detections (0.27 and 0.13, respectively). The estimated detection probability during a 5‐day period was 0.36 for Blood Pheasant and 0.30 for Temminck’s Tragopan. The daily activity patterns for these two species were assessed from the time/date stamps on the photographs and sex ratios calculated for Blood Pheasant (152M : 72F) and Temminck’s Tragopan (48M : 21F). Infrared cameras are valuable for surveying these reclusive species and our protocol is applicable to research or monitoring of phasianids.  相似文献   

17.
Invaders exert new selection pressures on the resident species, for example, through competition for resources or by using novel weapons. It has been shown that novel weapons aid invasion but it is unclear whether native species co‐occurring with invaders have adapted to tolerate these novel weapons. Those resident species which are able to adapt to new selective agents can co‐occur with an invader while others face a risk of local extinction. We ran a factorial common garden experiment to study whether a native plant species, Anthriscus sylvestris, has been able to evolve a greater tolerance to the allelochemicals exerted by the invader, Lupinus polyphyllus. Lupinus polyphyllus produces allelochemicals which potentially act as a novel, strong selective agent on A. sylvestris. We grew A. sylvestris seedlings collected from uninvaded (naïve) and invaded (experienced) sites growing alone and in competition with L. polyphyllus in pots filled with soil with and without activated carbon. Because activated carbon absorbs allelochemicals, its addition should improve especially naïve A. sylvestris performance in the presence of the invader. To distinguish the allelochemicals absorption and fertilizing effects of activated carbon, we grew plants also in a mixture of soil and fertilizer. A common garden experiment indicated that the performances of naïve and experienced A. sylvestris seedlings did not differ when grown with L. polyphyllus. The addition of activated carbon, which reduces interference by allelochemicals, did not induce differences in their performances although it had a positive effect on the aboveground biomass of A. sylvestris. Together, these results suggest that naïve and experienced A. sylvestris plants tolerated equally the invader L. polyphyllus and thus the tolerance has not occurred over the course of invasion.  相似文献   

18.
The results of a landscape‐scale test of ALEX, a widely used metapopulation model for Population Viability Analysis (PVA), are described. ALEX was used to predict patch occupancy by the laughing kookkaburra and the sacred kingfisher in patches of eucalypt forest in south‐eastern Australia. These predictions were compared to field surveys to determine the accuracy of the model. Predictions also were compared to a “naïve” null model assuming no fragmentation effects.
The naïve null model significantly over‐predicted the number of eucalypt patches occupied by the sacred kingfisher, but the observed patch occupancy was not significantly different from that predicted using ALEX. ALEX produced a better fit to the field data than the naïve null model for the number of patches occupied by the laughing kookaburra. Nevertheless, ALEX still significantly over‐predicted the number of occupied patches, particularly remnants dominated by certain forest types – ribbon gum and narrow‐leaved peppermint. The predictions remained significantly different from observations, even when the habitat quality of these patches was reduced to zero. Changing the rate of dispersal improved overall predicted patch occupancy, but occupancy rates for the different forest types remained significantly different from the field observations. The lack of congruence between field data and model predictions could have arisen because the laughing kookaburra may move between an array of patches to access spatially separated food and nesting resources in response to fragmentation. Alternatively, inter‐specific competition may be heightened in a fragmented habitat. These types of responses to fragmentation are not incorporated as part of traditionally applied metapopulation models. Assessments of predictions from PVA models are rare but important because they can reveal the types of species for which forecasts are accurate and those for which they are not. This can assist the collection of additional empirical data to identify important factors affecting population dynamics.  相似文献   

19.
Insects have evolved amazing methods of defense to ward off enemies. Many aphids release cornicle secretions when attacked by predators and parasitoids. These se cretions contain an alarm pheromone that alerts other colony members of danger, thereby providing indirect fitness benefits to the releaser. In addition, contact with cornicle se cretions could also threaten an attacker and could provide direct fitness to the releaser. However, cornicle secretions may also be recruited as a kairomonal cue by aphid natural enemies. In this study, we investigated the effect of the cornicle droplet volatiles of the cabbage aphid, Brevicoryne brassicae (L.), on the hostsearching behavior of naive and experienced female Diaeretiella rapae (M'Intosh) parasitoids in olfactometer studies. In addition, we evaluated the role ofB. brassicae cornicle droplets on the oviposition prefer ence of the parasitoid in a twochoice bioassay. Naive females did not exhibit any preference between volatiles from aphids secreting cornicle droplets over nonsecreting aphids, while experienced parasitoids exploited the secretions in their host location. Experienced females were also able to choose volatiles from both secreting and nonsecreting aphids over clean air, while this ability was not observed in naive females. Although secretion of cornicle droplets did not influence the percentage of first attack in either naive or experienced females, the success of attack (i.e. resulting in a larva) was significantly different between secreting and nonsecreting aphids in the case of experienced parasitoids.  相似文献   

20.
Significant changes in the distribution and persistence of species have been driven by Pleistocene cyclical climate changes and, more recently, by human modification of the environment. In eastern Australia, Pleistocene cyclical patterns in temperature and aridity led to the expansion and retraction of rainforest and likely affected the distribution of the koala (Phascolarctos cinereus, family Phascolarctidae), a species preferring dry or open woodland. More recently, anthropogenic landscape modification has led to a large‐scale change in distribution of the koala following the destruction of approx. 75 000 ha of subtropical rainforest in north‐east New South Wales termed the ‘Big Scrub’. Sharing of the control region haplotypes to the north and south of this region indicate historical connectivity of coastal koala populations. However, the majority (110/115) of sampled koalas from this region shared a single mitochondrial control region haplotype, suggesting that koalas did not persist in multiple refugial pockets within a heterogenous rainforest but expanded into the region following deforestation. Bayesian cluster analysis of microsatellite data consistently identified two clusters of koalas. One cluster, in the north of the area, had high microsatellite diversity (10 alleles per locus, He = 0.79) and clustered with koalas further to the north, thus suggesting a southerly expansion into the cleared area. To the south was a cluster with significantly lower diversity (six alleles per locus, He = 0.59, P < 0.001). It is possible there has been restricted or filtered movement of koalas between these clusters, which coincides with a cleared river valley and associated roads or immigration from populations both to the north and to the south. This study gives an insight into the timescale of changes in species distribution following rapid alterations to suitable habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号