首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Schug  B.  Hoß  T.  Düring  R. -A.  Gäth  S. 《Plant and Soil》1999,213(1-2):181-187
To fulfill the purpose as a sink for trace elements, soils must not be overloaded with As and Cd. Therefore, it is necessary to get knowledge of the sorption capacities of soils on a regional scale. The determination of these sorption capacities for large areas is, however, impeded by the great expenditure of laboratory work involved. With data presented here retention capacities for cadmium and arsenic from routinely determined soil parameters are estimated. In batch experiments the sorption behaviour of 40 soils from the area of Freiberg/Saxony in Germany was examined. The obtained sorption isotherms from the laboratory were fitted to the Freundlich equation (S = k*Cm). The two constants (k, m) of this equation were used for multiple linear regression to correlate the sorption capacity and the soil parameters, namely clay content, pH value, total organic carbon, and dithionite extractable Fe contents. Due to long lasting ore mining of Freiberg there exist high background levels in that area for the two surveyed elements As and Cd. Therefore, this study offers two different mathematical procedures to take these contaminations into account. Thus the experimental data were corrected before they were fitted to Freundlich and pedotransfer equations were determined. Using the transfer equation, parameter k and m for cadmium sorption could be estimated with statistical certainties of 91% and 61% (adjusted R2), respectively, whereas the predictability for the arsenic sorption is not practicable because achieved R2 values are very low (17% and 7%). This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
3.
The chlorophyll fluorescence imaging technique is a valuable tool for studying the impact of heavy metal stress in plants. The toxic effects of cadmium (50 mg/kg soil) and arsenic (5 mg/kg soil) on growth and the photosynthetic apparatus of two soybean cultivars (Glycine max (L.) Merr. cvs. Bólyi 44 and Cordoba) were assessed. After 10 days of growth in the contaminated soil, fresh and dry weights of shoots and maximum quantum yield of photosystem II (Fv/Fm) for the three types of leaves (UL—unifoliate leaf, TL1—first fully expanded trifoliate leaf, TL2—newly expanding trifoliate leaf) were determined. No statistically significant change in the growth parameters was recorded. In the youngest leaves (TL2) of cultivar Bólyi 44, arsenic caused decrease in Fv/Fm by 8.6%. In the cultivar Cordoba we recorded the arsenic impact, conversely, having the highest inhibition rate of fluorescence in the oldest leaves (UL decrease of 5.62%). A similar difference in trend of changes in Fv/Fm as the impact of cadmium was also recorded. With the Bólyi 44 variety, the TL2 leaves showed most sensitive response (a decrease of 10.75%); while in the case of Cordoba variety TL2 leaves showed the highest tolerance (a decrease of 1.2%). The results suggest possible genotypic differences in defense strategy against cadmium and arsenic in the different types of leaves.  相似文献   

4.
5.
6.
Arsenic (As) and cadmium (Cd) are two of the most hazardous substances in the environment and have been implicated in a number of human diseases including cancer. Their mechanisms of toxicity and subsequent carcinogenesis are not understood. To identify the genes involved in As/Cd detoxification, we screened a random insertional mutagenesis library of Schizosaccharomyces pombe for mutants that are hypersensitive to As/Cd. Mutations were mapped to spc1 + ( sty1 +) and SPBC17G9.08c . Spc1 is a stress-activated protein kinase orthologous to human p38. A fragment of SPBC17G9.08c was previously identified as csx2 , a high-copy suppressor of cut6 that encodes an acetyl-CoA carboxylase involved in fatty acid biosynthesis. SPBC17G9.08c is a member of the centaurin ADP ribosylation factor GTPase activating protein family found in a variety of fungi, plants and metazoans, but not in Saccharomyces cerevisiae . Cnt5, so named because its closest human homolog is centaurin β-5, binds to phosphatidic acid and phosphatidyl serine in vitro . Microscopic localization of Cnt5-GFP indicates significant redistribution of Cnt5 from the cytoplasm to the cell membranes in response to As stress. These data suggest a model in which Cnt5 contributes to As/Cd resistance by maintaining membrane integrity or by modulating membrane trafficking.  相似文献   

7.
8.
The susceptibilities to arsenic and cadmium together with the detection of plasmid DNA were evaluated for use as epidemiological markers for the subtyping of Listeria monocytogenes. Plasmid DNA was detected in 34% of 322 apparently unrelated isolates of L. monocytogenes. The resistance to cadmium and arsenic differentiated 565 apparently unrelated cultures into four groups, the smallest being 5% of cultures resistant to both agents, and the largest (53%) being sensitive to cadmium and resistant to arsenic. The resistance patterns to these agents and the presence of plasmid DNA varied markedly between the serotypes of the cultures. The detection of plasmid DNA was strongly associated with cadmium resistance in serogroup 1/2 cultures, but not within those of serogroup 4. Arsenic resistance was not associated with plasmid DNA. All methods were sufficiently stable to be useful for epidemiological investigations. The techniques described here offer simple methods which can be easily utilized in laboratories without a specialized expertise for this bacterium.  相似文献   

9.
Sun Y  Zhou Q  Diao C 《Bioresource technology》2008,99(5):1103-1110
Remediation of heavy metal contaminated sites using hyperaccumulators presents a promising alternative to current environmental methodologies. In the pot-culture experiment, the effects of Cd, and Cd-As on the growth and its accumulation in the Cd-hyperaccumulator (Solanum nigrum L.) were determined. No reduction in plant height and shoot dry biomass was noted when the plants were grown at Cd concentration of 1.0. The plant can be classified as a Cd-hyperaccumulator. Growing in the presence of 10 mg/kg Cd and 50 mg/kg As, the plant height and shoot dry matter yields did not decrease significantly (p>0.05) compared to that at 10 mg/kg Cd, however the stem Cd content increased by 28%. It was also observed that S. nigrum used exclusion strategy to reduce As uptake in the roots and restricted translocation into the shoots, resulting in As contents of the plant being root>leaf>stem>seed. The Cd accumulation capacity coupled with its relatively high As tolerance ability could make it useful for phytoremediation of sites co-contaminated by Cd and As.  相似文献   

10.
Phytochelatin synthase (PCS) catalyzes the final step in the biosynthesis of phytochelatins, which are a family of cysteine-rich thiol-reactive peptides believed to play important roles in processing many thiol-reactive toxicants. A modified Arabidopsis thaliana PCS sequence (AtPCS1) was active in Escherichia coli. When AtPCS1 was overexpressed in Arabidopsis from a strong constitutive Arabidopsis actin regulatory sequence (A2), the A2::AtPCS1 plants were highly resistant to arsenic, accumulating 20-100 times more biomass on 250 and 300 microM arsenate than wild type (WT); however, they were hypersensitive to Cd(II). After exposure to cadmium and arsenic, the overall accumulation of thiol-peptides increased to 10-fold higher levels in the A2::AtPCS1 plants compared with WT, as determined by fluorescent HPLC. Whereas cadmium induced greater increases in traditional PCs (PC2, PC3, PC4), arsenic exposure resulted in the expression of many unknown thiol products. Unexpectedly, after arsenate or cadmium exposure, levels of the dipeptide substrate for PC synthesis, gamma-glutamyl cysteine (gamma-EC), were also dramatically increased. Despite these high thiol-peptide concentrations, there were no significant increases in concentrations of arsenic and cadmium in above-ground tissues in the AtPCS1 plants relative to WT plants. The potential for AtPCS1 overexpression to be useful in strategies for phytoremediating arsenic and to compound the negative effects of cadmium are discussed.  相似文献   

11.
12.
The biosynthesis of phytochelatins (PCs) plays a crucial role in the detoxification and homeostasis of heavy metals and metalloids in plants. However, in an increasing number of plant species metal(loid) tolerance is not well correlated with the accumulation of PCs: tolerant ecotypes frequently contain lower levels of PCs than non-tolerant ecotypes. In this study we have compared the responses of soybean (Glycine max L. cv. Resnik) and white lupin (Lupinus albus L. cv. Marta) to cadmium and arsenate in order to assess the role of homophytochelatins (hPCs) in the tolerance of soybean to these toxic elements. Soybean plants treated with Cd and As showed a high contribution of homo-glutathione (hGSH) to the pool of thiols in shoots in comparison to white lupin. Higher levels of hPCs in Cd-treated soybeans compared to PCs in lupins did not prevent growth inhibition. In contrast, the role of hPCs in the detoxification mechanism to arsenate in soybean seems to be clearer, showing higher thiol concentrations and lower growth reductions than those present in lupin plants.  相似文献   

13.
14.
The Xeroderma Pigmentosum A (XPA) protein is involved in the DNA damage recognition and repair complex formation steps of nucleotide excision repair (NER), and has been shown to preferentially bind to various forms of DNA damage including bulky lesions. DNA interstrand crosslinks are of particular interest as a form of DNA damage, since these lesions involve both strands of duplex DNA and present special challenges to the repair machinery, and mitomycin C (MMC) is one of several useful cancer chemotherapy drugs that induce these lesions. Purified XPA and the minimal DNA-binding domain of XPA are both fully capable of preferentially binding to MMC-DNA interstrand crosslinks in the absence of other proteins from the NER complex. Circular dichroism (CD) and gel shift assays were used to investigate XPA-DNA binding and to assess changes in secondary structure induced as a consequence of the interaction of XPA with model MMC-crosslinked and unmodified DNAs. These studies revealed that while XPA demonstrates only a modest increase in affinity for adducted DNA, it adopts a different conformation when bound to MMC-damaged DNA than when bound to undamaged DNA. This change in conformation may be more important in recruiting other proteins into a competent NER complex at damaged sites than preferential binding per se. Arsenic had little effect on XPA binding even at toxic concentrations, whereas cadmium reduced XPA binding to DNA to 10-15% that of Zn-XPA, and zinc addition could only partially restore activity. In addition, there was little or no change in conformation when Cd-XPA bound MMC-crosslinked DNA even though it demonstrated preferential binding, which may contribute to the mechanism by which cadmium can act as a co-mutagen and co-carcinogen.  相似文献   

15.
Brassinosteroids (Brs) have drawn wide attention due to their protective role against toxicity of heavy metals in plants. To better understand the role of Br in arsenic (As) and cadmium (Cd) uptake by rice plants, a hydroponic experiment was conducted to investigate the combined effect of 24-epibrassinolide (Br24) or 28-homobrassinolide (Br28) and iron plaque (IP) on As and Cd uptake and accumulation in rice seedlings. Six-week-old seedlings were sprayed with 0.2 or 0.02 μM Br24 or Br28 and grown in nutrient solution for 3 d, and then 20 or 60 mg Fe2+ dm-3 (Fe20 and Fe60) was used to induce root IP formation for 3 d. These seedlings with or without Br and with or without IP were exposed to solution containing 0.5 mg dm-3 AsIII or Cd for 9 d. The results showed that rice growth decreased when Br24 were applied, but it increased when combination of Br24 and IP was applied. Fe concentrations in dithionite-citratebicarbonate (DCB) extracts were increased after 0.2 or 0.02 μM Br24 application in the absence of IP, but decreased by Br24 in the presence of IP. In the absence of IP, As and Cd content in leaves was significantly reduced by 0.02 μM Br24 and 0.2 μM Br28, respectively. The As content in leaves was also reduced by the combination of 0.02 and 0.2 μM Br28 and IP, and the Cd content in leaves was reduced by the combined effect of 0.2 μM Br24 and IP. These results indicate that Br24 and Br28 could impede As and Cd accumulation, and the interactions between Br and IP may have a potential in restricting the transport of As and Cd into rice shoots.  相似文献   

16.
  • The Cadmium (Cd)‐polluted soils are is an increasing concern worldwide. Phytoextraction of Cd pollutants by high biomass plants, such as sweet sorghum, is considered an environmentally‐friendly, cost‐effective and sustainable strategy for remediating this problem. Nitrogen (N) is a macronutrient essential for plant growth, development and stress resistance. Nevertheless, how nitrate, as an important form of N, affects Cd uptake, translocation and accumulation in sweet sorghum is still unclear.
  • In the present study, a series of nitrate levels (N1, 0.5 mm ; N2, 2 mm ; N3, 4 mm ; N4, 8 mm and N5, 16 mm ) with or without added 5 μm CdCl2 treatment in sweet sorghum was investigated hydroponically.
  • The results indicate that Cd accumulation in the aboveground parts of sweet sorghum was enhanced by optimum nitrate supply, resulting from both increased dry weight and Cd concentration. Although root‐to‐shoot Cd translocation was not enhanced by increased nitrate, some Cd was transferred from cell walls to vacuoles in leaves. Intriguingly, expression levels of Cd uptake and transport genes, SbNramp1, SbNramp5 and SbHMA3, were not closely related to increased Cd as affected by nitrate supply. The expression of SbNRT1.1B in relation to nitrate transport showed an inverted ‘U’ shape with increasing nitrate levels under Cd stress, which was in agreement with trends in Cd concentration changes in aboveground tissues.
  • Based on the aforementioned results, nitrate might regulate Cd uptake and accumulation through expression of SbNRT1.1B rather than SbNramp1, SbNramp5 or SbHMA3, the well‐documented genes related to Cd uptake and transport in sweet sorghum.
  相似文献   

17.
18.
Mercury (Hg), arsenic (As), cadmium (Cd), and lead (Pb) are the major toxic metals released by coal mining activities in the surrounding environment. These metals get accumulated in the soils. The plants grown on the contaminated soil uptake these toxic metals in their roots and aerial parts. This study monitored the bioaccumulation of Hg and other three toxic metals in coal mine soil. The pot study of Hg accumulation in Brassica juncea showed that the extent of Hg uptake by roots and shoots of the plants grown on was high in the mature plant and Hg content in root was higher than the shoot. In the soil of unreclaimed overburden (OB) dump, the toxic metal content was higher than that of reclaimed OB dump which posed high ecological risk in the soil of unreclaimed OB dump. Bioaccumulation coefficient (BAC) value showed that Hg was not accumulated in the leaves of Dalbergia sissoo L., Gmelina arborea, Peltaphorum inerme L., Cassia seamea L, and Acacia mangium L grown on coal mine soil.  相似文献   

19.
This study was undertaken to investigate the genotoxic interactions between the common environmental pollutants: arsenic (As), cadmium (Cd) and benzo(a)pyrene (BaP), which are known to be human carcinogens. C57BL/6J/Han mice were pre-treated with 100mg cadmium chloride (Cd(2+))/L or 50mg sodium arsenite (As(3+))/L in drinking water for 7 days and then given a single dose of 200mg BaP/kg bw by intra-peritoneal injection. A third group of mice did not receive the pre-treatment and was given BaP alone. Mice were sacrificed before or at 12, 24, 48 or 72h after BaP administration. Chromosome damage in bone-marrow cells was assessed by use of the micronucleus test. The study revealed that BaP induced a statistically significant increase in micronucleus (MN) frequency at 48h after administration. In animals exposed to Cd in drinking water no enhancement of genotoxicity was observed compared with the control group that was given tap water only. In Cd/BaP co-exposed animals, the MN frequency at respective time points did not differ from that for the animals exposed solely to BaP. A statistically higher MN frequency was found in bone marrow of animals exposed to As compared with controls that received tap water (0.92+/-0.29% versus 0.38+/-0.13%, respectively). This effect was even more pronounced after combined exposure to As and BaP. In the co-exposed animals, significantly elevated levels of MN were detected in samples examined at 12, 24 and 48h after BaP administration, compared with animals receiving BaP alone (1.14+/-0.31%, 1.26+/-0.3% and 2.02+/-0.45% versus 0.44+/-0.13%, 0.44+/-0.11% and 1.04+/-0.44%, respectively). These findings imply strong interactions between As and BaP, but not between Cd and BaP, in inducing DNA damage in polychromatic erythrocytes in mouse bone-marrow.  相似文献   

20.
Abstract

Using biodegradable chelators to assist in phytoextraction may be an effective approach to enhance the heavy-metal remediation efficiencies of plants. A pot experiment was conducted to investigate the effects of ethylenediamine disuccinic acid (EDDS), citric acid (CA), and oxalic acid (OA) on the growth of the arsenic (As) hyperaccumulator Pteris vittata L., its arsenic (As), cadmium (Cd), and lead (Pb) uptake and accumulation, and soil microbial responses in multi-metal(loid)-contaminated soil. The addition of 2.5-mmol kg?1 OA (OA-2.5) produced 26.7 and 14.9% more rhizoid and shoot biomass, respectively compared with the control, while EDDS and CA treatments significantly inhibited plant growth. The As accumulation in plants after the OA-2.5 treatment increased by 44.2% and the Cd and Pb accumulation in plants after a 1-mmol kg?1 EDDS treatment increased by 24.5 and 19.6%, respectively. Soil urease enzyme activities in OA-2.5 treatment were significantly greater than those in the control and other chelator treatments (p?<?0.05). A PCR–denatured gradient gel electrophoresis analysis revealed that with the addition of EDDS, CA and OA enhanced soil microbial diversity. It was concluded that the addition of OA-2.5 was suitable for facilitating phytoremediation of soil As and did not have negative effects on the microbial community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号