首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
海南尖峰岭热带山地雨林林冠层树种功能多样性特征   总被引:4,自引:0,他引:4  
以海南尖峰岭热带山地雨林3块1 hm2样地为研究对象,利用11个林冠功能性状结合样地地形及林冠乔木树种样地清查数据,分别基于单维性状和多维性状比较物种多度加权对群落功能离散度指数——平均成对距离(MPD)和平均最近类群距离(MNTD)的影响;同时分析林冠层功能丰富度(FRic)与物种丰富度之间的关系,最后利用零模型探讨不同生境类型下标准化效应MPD和MNTD(经过物种多度加权且剔除群落物种丰富度差异影响)的变化,进而评价林冠层群落水平功能多样性格局及其对局域生境异质性的响应.结果表明: 功能性状维度和物种多度对MPD的影响强烈,不同维度功能性状多度加权前后MPD相关性较弱(R=0.359~0.628);但对MNTD的影响相对较弱,不同维度功能性状多度加权前后MNTD相关性较强(R=0.746~0.820);未经物种多度加权的MPD和MNTD均普遍高估了林冠层的功能离散度.林冠层功能丰富度与物种丰富度基本呈指数相关关系(F=128.20;R2=0.632;AIC=97.72;P<0.001),且功能丰富度很有可能存在一定的物种丰富度阈值.基于不同维度功能性状的林冠层功能多样性格局及其生境响应存在一定的差异性.在生物竞争激烈的低沟生境中,林冠层功能多样性倾向于比预期零模型随机产生的功能多样性高,林冠树种功能性状表现出离散分布;而在其他生境类型中,林冠层功能多样性倾向于接近或低于随机产生的功能多样性,林冠树种功能性状随机或聚集分布.  相似文献   

2.
黄林娟  于燕妹  安小菲  余林兰  薛跃规 《生态学报》2022,42(24):10264-10275
以天坑内部-边缘-外部森林植物群落为研究对象,通过调查植物的群落结构、叶功能性状,探究天坑内外森林植物群落叶功能性状、物种多样性和功能多样性变化特征及其内在关联,为深入了解负地形森林生态系统的功能和恢复退化喀斯特地区的植被提供一定参考。研究结果如下:(1)比叶面积(SLA: 198.75 cm2/g))、叶面积(LA: 42.70 cm2)、叶磷含量(LPC: 1.70 g/kg)和叶钾含量(LKC: 10.27 g/kg)在天坑内部最高,叶组织密度(LTD: 0.32 g/cm3)和叶干物质含量(LDMC: 0.41 g/g)在天坑外部最高,天坑内外森林均易受到磷限制,表明随天坑内部-边缘-外部生境变化,植物对环境的适应机制和生存策略发生了部分调整,物种的防御策略增强,生长投入策略减弱。(2)Shannon-Wiener指数(2.82)、Simpson指数(0.92)和Pielou’s均匀度指数(0.87)均以天坑外部最高,功能丰富度(1.05)、功能离散度(1.88)和Rao’s二次熵(4.52)以天坑内部最高,表明随天坑内部-边缘-外部生境的变化,植物功能性状的差异减少,物种分布及其功能性状分布总体上更为均匀、物种数量增多。(3)物种多样性指数之间、功能多样性指数之间存在较强的相关性,表明物种多样性指数之间、功能多样性指数之间存在不同的制约关系。(4)叶功能性状与物种多样性、功能多样性的相关性强,物种多样性和功能多样性之间相关性较弱,表明叶性状对生态学过程的变化较为敏感,叶功能性状与物种多样性之间存在较强的耦合关系。  相似文献   

3.
4.
《Flora》2014,209(3-4):191-200
We investigated the seasonal gas exchange patterns of three different functional types of tropical afromontane trees, namely Podocarpus falcatus (Thunb.) Mirb. (evergreen gymnosperm), Prunus africana (Hook. f.) Kalkm. (broad-leaf evergreen), and Croton macrostachyus Hochst. ex Del. (broad-leaf deciduous) which grow side-by-side in the Munessa forest, southern Central Ethiopia. The hypothesis is that the trees can make different use of the environmental conditions which change seasonally and also from year to year. These changes can be understood as fluctuating niches, the utilization of which allows coexistence through balanced carbon gain. In this study, light and moisture were considered the two main fluctuating niches. Porometry was used to measure the daily and seasonal responses of the leaves to environmental variables under dry and wet season conditions in the course of the climatically differing years 2009 and 2010. Correlations of the patterns of these responses were analyzed by regression analysis. From daily integrated rates of irradiation, photosynthesis and transpiration, light and water use efficiencies of photosynthetic carbon gain and their mutual interdependences were determined. Except an extended dry season in 2009 when C. macrostachyus had shed its foliage, all three species continued photosynthetic net CO2 uptake concomitant with transpiration at all seasons, although at varying rates. Ecophysiological performance of P. falcatus leaves is mainly light-driven and responds relatively little to a change in moisture conditions. Its carbon and water relations are striving for stability rather than flexibility. As of a typically subdominant species of the forest, P. africana leaves can efficiently use low light intensities but suffer from photoinhibition at full light. Their performance, showing more dynamic response to the environment than P. falcatus, P. africana appears driven more by moisture than by light. Compared to the two evergreens C. macrostachyus exhibited the highest flexibility in its leaves’ physiological responses to environmental conditions, in particular to the light climate which is additionally potentiated by the fast turnover of its foliage. This species optimizes its carbon gain during the wet season and during the early dry period when cloud cover is minimal. Our findings thus reveal that elasticity of the response to fluctuating environmental conditions is an additional aspect in the assessment of the utilization of temporally fluctuating niches by adult tree individuals.  相似文献   

5.
6.
理解植物功能性状和功能实体在森林群落的分布,有助于探讨物种丧失对森林生态系统功能、冗余和恢复力的影响。为了解脆弱的岩溶石山森林在应对生物多样性丧失的生态系统反馈,对桂林岩溶石山两块1hm2的常绿落叶阔叶混交林的木本植物数据进行了分析。包括基于功能性状计算功能多样性、构建功能实体计算功能冗余以及采用Pearson相关分析和Mantel检验评估物种多样性指标在生态系统的维持机制。结果显示:(1)青冈+大叶榉树群落的功能多样性指标均低于鱼骨木+青冈+圆叶乌桕群落,且两个群落间功能均匀度不相关(P > 0.05),功能丰富度、功能离散度和Rao''s二次熵呈现极显著相关性(P < 0.001),功能分散度呈现显著相关性(P < 0.05)。(2)两个群落的物种丰富度与功能冗余指标表现出相似的线性关系,即物种丰富度与功能实体等级、功能冗余、功能超冗余呈正相关,与功能脆弱性呈负相关关系。(3)不同植物功能性状间、不同功能多样性指标间和不同功能冗余指标间的相关性较强,功能多样性指标和功能冗余指标间无显著相关性,但功能性状与功能多样性指标、功能性状与功能冗余指标均存在不同程度的相关性。而在功能实体与物种多样性指标的相关性方面,呈现出同物种丰富度与物种多样性指标相似的显著度。另外,物种多度与物种丰富度、功能分散度、功能离散度、Rao''s二次熵及功能脆弱性均显著相关。总之,在岩溶石山常绿落叶阔叶混交林中,高功能多样性的群落存在高功能冗余的现象,但功能多样性和功能冗余是相互独立的因素;物种丰富度高的群落所提供的保险效应无法抵消其生态系统的脆弱性。因此,不能仅通过保护物种丰富度来维持生态系统的特有功能,还应充分考虑多度对生态系统功能的贡献,以更有效地实现对岩溶石山森林生态系统的保护。  相似文献   

7.
Examining how both climate and species distribution patterns correlate with leaf morphology can give insights into the ecological and evolutionary patterns that drive adaptive selection of leaf form and function. Drip-tips are a common feature of leaves in rain forest tree species; they are thought to be an adaptation that aids leaf drying and maximizes photosynthesis in areas with high-rainfall climates. We tested whether this macroecological pattern holds true across the precipitation gradients in a non-rain forest region—the woodland savannas of Brazil known as the Cerrado—and compared our results with previous studies from Amazonia. Drip-tips were, as expected, less common overall in the drier Cerrado than in Amazonia. In addition, within the Cerrado, drip-tips were more prevalent in areas with higher rainfall as well as in Cerrado sites that were closer to Amazonia. Moreover, species that occurred across both the Cerrado and Amazonia had drip-tips more often than species that were found only in the Cerrado. These findings support the hypothesis that drip-tips are adaptive and that either the cost of retaining drip-tips is low or that in drier regions they have other benefits.  相似文献   

8.
This paper presents a new synthesis of the role of native and non‐native species in diverse pathways and processes that influence forest regeneration on anthropogenic grassland in the moist tropics. Because of altered species composition, abiotic conditions and landscape habitat mosaics, together with human interventions, these successional pathways differ from those seen in pre‐clearing forests. However, representation of different functional life forms of plant (tree, vine, grass, herb and fern) and animal (frugivorous seed disperser, granivorous seed predator, seedling herbivore and carnivore) shows consistent global variation among areas of pasture, intact forest, and post‐grassland regrowth. Biotic webs of interaction involve complex indirect influences and feedbacks, which can account for wide observed variation in regeneration trajectories over time. Important processes include: limitation of tree establishment by dense grasses; recruitment and growth of pioneer pasture trees (shading grasses and facilitating bird‐assisted seed dispersal); and smothering of trees by vines. In these interactions, species’ functional roles are more important than their biogeographic origins. Case studies in eastern Australia show native rain forest plant species diversity in all life forms increasing over time when pioneer trees are non‐native (e.g., Cinnamomum camphora, Solanum mauritianum), concurrent with decreased grass and fern cover and increased abundance of trees and vine tangles. The global literature shows both native and non‐native species facilitating and inhibiting regeneration. However conservation goals are often targeted at removing non‐native species. Achieving large‐scale tropical forest restoration will require increased recognition of their multiple roles, and compromises about allocating resources to their removal.  相似文献   

9.
Understanding the vulnerability of tree species to anthropogenic threats is important for the efficient planning of restoration and conservation efforts. We quantified and compared the effects of future climate change and four current threats (fire, habitat conversion, overgrazing and overexploitation) on the 50 most common tree species of the tropical dry forests of northwestern Peru and southern Ecuador. We used an ensemble modelling approach to predict species distribution ranges, employed freely accessible spatial datasets to map threat exposures, and developed a trait‐based scoring approach to estimate species‐specific sensitivities, using differentiated trait weights in accordance with their expected importance in determining species sensitivities to specific threats. Species‐specific vulnerability maps were constructed from the product of the exposure maps and the sensitivity estimates. We found that all 50 species face considerable threats, with an average of 46% of species’ distribution ranges displaying high or very high vulnerability to at least one of the five threats. Our results suggest that current levels of habitat conversion, overexploitation and overgrazing pose larger threats to most of the studied species than climate change. We present a spatially explicit planning strategy for species‐specific restoration and conservation actions, proposing management interventions to focus on (a) in situ conservation of tree populations and seed collection for tree planting activities in areas with low vulnerability to climate change and current threats; (b) ex situ conservation or translocation of populations in areas with high climate change vulnerability; and (c) active planting or assisted regeneration in areas under high current threat vulnerability but low climate change vulnerability, provided that interventions are in place to lower threat pressure. We provide an online, user‐friendly tool to visualize both the vulnerability maps and the maps indicating priority restoration and conservation actions.  相似文献   

10.
森林作为陆地生态系统的主体,其林冠承载了地球上大约40%的现存物种,叶际微生物作为冠层生物多样性的重要组成部分, 在维持植物健康、提高宿主抵御能力和参与全球生物地球化学循环等生态功能中发挥着重要作用,然而相对于根际微生物,目前关于冠层叶际微生物群落组成的研究还比较缺乏。本研究以吉林省长白山自然保护区内阔叶红松林为主要研究对象,使用高通量测序技术分析6种优势树种(红松、紫椴、蒙古栎、色木槭、水曲柳、春榆)的叶际真菌群落特征,并测定宿主的14种叶片功能性状,对比研究了不同优势树种叶际真菌群落组成与功能群异同,探讨真菌群落组成与叶片功能性状的关联性。结果表明:叶际真菌的优势门和纲分别为子囊菌门、担子菌门,座囊菌纲和外囊菌纲;不同树种林冠叶际真菌组成存在明显差异。LEfSe分析表明,除春榆和色木槭外,其余树种都有显著的差异指示种,如红松的圆孢多臂菌属和蒙古栎的柱隔孢属;对比FUNGuild数据库发现,叶际真菌主要功能群为病理寄生型;冗余分析和envfit分析结果表明,与植物养分获取和抵御病虫害相关的性状是影响林冠叶际真菌群落结构的主要因子。  相似文献   

11.
树皮是木本植物茎干最外层结构,具有保护茎干、养分储存与运输等重要作用。因此,树皮厚度是一项非常重要的功能性状,其变异不仅影响树皮的各种生态功能,还能影响群落构建与物种共存。然而,以往对树皮厚度的研究集中于火灾易发生态系统,对火灾不易发生的亚热带常绿阔叶林的研究仍较缺乏。测量了古田山国家级自然保护区亚热带常绿阔叶林内树种的树皮厚度,并检验了总树皮厚度、内树皮厚度与外树皮厚度在各分类群间以及功能群间的差异。结果发现:1)39个树种807个个体的总树皮厚度、内树皮厚度与外树皮厚度均值分别为1.90 mm、1.38 mm和0.54 mm。漆树科(Anacardiaceae)、杨梅科(Myricaceae)以及亚热带常绿阔叶林代表类群壳斗科(Fagaceae)、山茶科(Theaceae)的树皮厚度较大。短柄枹(Quercus serrata)、木荷(Schima superba)、小叶青冈(Cyclobalanopsis myrsinifolia)等树种的树皮厚度较大。2)种间、科间的各树皮厚度差异均显著。不同功能类群间,乔木类群的各树皮厚度均较灌木类群大,常绿类群的各树皮厚度均较落叶类群大(内树皮厚度除外)。本次研究结果表明,相对于火灾易发生态系统中的树皮厚度,古田山亚热带常绿阔叶林群落内的树皮厚度相对较薄,表明这些森林树种对当地湿润气候的适应性。同时,树皮厚度在各种分类水平与功能群水平间的显著变异,反映了群落内不同生态策略的共存。  相似文献   

12.
The species–energy hypothesis predicts that more productive areas support higher species richness. Conversely, when resources are reduced, species richness is reduced. Empirical tests of whether extinctions are predominantly caused by environmental constraints or competitive exclusion are lacking. We experimentally reduced dead wood to c. 15% of the initial amount after a major windstorm and examined changes in assembly mechanisms by combining trait‐based and evolutionary species dissimilarities of eight taxonomic groups, differing in their dependence on dead wood (saproxylic/non‐saproxylic). Species richness and assembly mechanisms of non‐saproxylic taxa remained largely unaffected by removal of dead wood. By contrast, extinctions of saproxylic species were caused by reversing the predominant assembly mechanisms (e.g. increasing importance of competitive exclusion for communities assembled through environmental filtering or vice versa). We found no evidence for an intensification of the predominant assembly mechanism (e.g. competitive exclusion becoming stronger in a competitively structured community).  相似文献   

13.
Tropical forest loss and fragmentation can change bee community dynamics and potentially interrupt plant–pollinator relationships. While bee community responses to forest fragmentation have been investigated in a number of tropical regions, no studies have focused on this topic in Australia. In this study, we examine taxonomic and functional diversity of bees visiting flowers of three tree species across small and large rainforest fragments in Australian tropical landscapes. We found lower taxonomic diversity of bees visiting flowers of trees in small rainforest fragments compared with large forest fragments and show that bee species in small fragments were subsets of species in larger fragments. Bees visiting trees in small fragments also had higher mean body sizes than those in larger fragments, suggesting that small‐sized bees may be less likely to persist in small fragments. Lastly, we found reductions in the abundance of eusocial stingless bees visiting flowers in small fragments compared to large fragments. These results suggest that pollinator visits to native trees living in small tropical forest remnants may be reduced, which may in turn impact on a range of processes, potentially including forest regeneration and diversity maintenance in small forest remnants in Australian tropical countryside landscapes.  相似文献   

14.
15.
Abstract

To investigate the differences in understorey composition and diversity between old-growth and managed forests, we analyzed an old-growth and a managed beech stand in the same area displaying similar abiotic features. We considered variations in understorey species composition and richness. The sampled understorey species were characterized in terms of functional traits, Ellenberg's indicator values and taxonomic distinctness; next, we calculated four different pairwise plot-to-plot dissimilarity matrices based on species composition, functional traits, Ellenberg's indices and taxonomic distances. We applied a permutational multivariate extension of ANOVA to test whether the forest stands significantly differ in the considered features. Indicator values of all plant species in managed and old-growth stands were evaluated.

The old-growth forest had a higher species richness; permutational analysis of variance showed significant differences between the two stands in plant species composition, functional traits, Ellenberg indices and taxonomic distances. Indicator species analysis highlighted 14 indicator species for the unmanaged stand, while only 3 indicators were found for the managed one.

The results suggest that forest management determines ecological differences that strongly affect plant species composition.

The knowledge of natural stands dynamics could allow development of new approaches and practices in forest management focusing on biodiversity conservation.  相似文献   

16.
17.
Aim To (1) describe termite functional diversity patterns across five tropical regions using local species richness sampling of standardized areas of habitat; (2) assess the relative importance of environmental factors operating at different spatial and temporal scales in influencing variation in species representation within feeding groups and functional taxonomic groups across the tropics; (3) achieve a synthesis to explain the observed patterns of convergence and divergence in termite functional diversity that draws on termite ecological and biogeographical evidence to‐date, as well as the latest evidence for the evolutionary and distributional history of tropical rain forests. Location Pantropical. Methods A pantropical termite species richness data set was obtained through sampling of eighty‐seven standardized local termite diversity transects from twenty‐nine locations across five tropical regions. Local‐scale, intermediate‐scale and large‐scale environmental data were collected for each transect. Standardized termite assemblage and environmental data were analysed at the levels of whole assemblages and feeding groups (using components of variance analysis) and at the level of functional taxonomic groups (using correspondence analysis and canonical correspondence analysis). Results Overall species richness of local assemblages showed a greater component of variation attributable to local habitat disturbance level than to region. However, an analysis accounting for species richness across termite feeding groups indicated a much larger component of variation attributable to region. Mean local assemblage body size also showed the greater overall significance of region compared with habitat type in influencing variation. Ordination of functional taxonomic group data revealed a primary gradient of variation corresponding to rank order of species richness within sites and to mean local species richness within regions. The latter was in the order: Africa > south America > south‐east Asia > Madagascar > Australia. This primary gradient of species richness decrease can be explained by a decrease in species richness of less dispersive functional taxonomic groups feeding on more humified food substrates such as soil. Hence, the transects from more depauperate sites/regions were dominated by more dispersive functional taxonomic groups feeding on less humified food substrates such as dead wood. Direct gradient analysis indicated that ‘region’ and other large‐scale factors were the most important in explaining patterns of local termite functional diversity followed by intermediate‐scale geographical and site variables and, finally, local‐scale ecological variables. Synthesis and main conclusions Within regions, centres of termite functional diversity lie in lowland equatorial closed canopy tropical forests. Soil feeding termite evolution further down food substrate humification gradients is therefore more likely to have depended on the long‐term presence of this habitat. Known ecological and energetic constraints upon contemporary soil feeders lend support for this hypothesis. We propose further that the anomalous distribution of termite soil feeder species richness is partly explained by their generally very poor dispersal abilities across oceans. Evolution, radiation and dispersal of soil feeder diversity appears to have been largely restricted to what are now the African and south American regions. The inter‐regional differences in contemporary local patterns of termite species richness revealed by the global data set point to the possibility of large differences in consequent ecosystem processes in apparently similar habitats on different continents.  相似文献   

18.
Aims Spatial distribution patterns of species reflect not only the ecological processes but also the habitat features that are related to species distribution. In karst topography, species distribution patterns provide more specific information about their environments. The objectives of this study are as follows: (i) to analyse and explain the spatial distribution patterns of conspecific trees in an old-growth subtropical karst forest; (ii) to investigate pattern changes at different spatial scales; (iii) to test the spatial pattern similarity (or dissimilarity) between trees at different abundances, diameter at breast height classes, canopy layers and different functional groups (shade tolerance and seed dispersal mode); (iv) to examine whether habitat heterogeneity has an important effect on the species spatial distribution.Methods The spatial distributions of woody species with ≥20 individuals in a 1-ha subtropical karst forest plot at Maolan in southwestern China were quantified using the relative neighbourhood density Ω based on the average density of conspecific species in a circular neighbourhood around each species.Important findings Aggregated distribution is the dominant pattern in the karst forest, but the ratio of aggregated species in total species number decreases with an increase in spatial scale. Less abundant species are more aggregated than most abundant species. Aggregation is weaker in larger diameter classes, which is consistent with the prediction of self-thinning. Seed dispersal mode influences spatial patterns, with species dispersed by animals being less aggregated than those dispersed by wind and gravity. Other species functional traits (e.g. shade tolerance) also influence the species spatial distributions. Moreover, differences among species habitat associations, e.g. with rocky outcrops, play a significant role in species spatial distributions. These results indicate that habitat heterogeneity, seed dispersal limitation and self-thinning primarily contribute to the species spatial distributions in this subtropical karst forest.  相似文献   

19.
Functional diversity (FD), species richness and community composition   总被引:15,自引:0,他引:15  
Functional diversity is an important component of biodiversity, yet in comparison to taxonomic diversity, methods of quantifying functional diversity are less well developed. Here, we propose a means for quantifying functional diversity that may be particularly useful for determining how functional diversity is related to ecosystem functioning. This measure of functional diversity “FD” is defined as the total branch length of a functional dendrogram. Various characteristics of FD make it preferable to other measures of functional diversity, such as the number of functional groups in a community. Simulating species' trait values illustrates how the relative importance of richness and composition for FD depends on the effective dimensionality of the trait space in which species separate. Fewer dimensions increase the importance of community composition and functional redundancy. More dimensions increase the importance of species richness and decreases functional redundancy. Clumping of species in trait space increases the relative importance of community composition. Five natural communities show remarkably similar relationships between FD and species richness.  相似文献   

20.
Tree species distribution in lowland tropical forests is strongly associated with rainfall amount and distribution. Not only plant water availability, but also irradiance, soil fertility, and pest pressure covary along rainfall gradients. To assess the role of water availability in shaping species distribution, we carried out a reciprocal transplanting experiment in gaps in a dry and a wet forest site in Ghana, using 2,670 seedlings of 23 tree species belonging to three contrasting rainfall distributions groups (dry species, ubiquitous species, and wet species). We evaluated seasonal patterns in climatic conditions, seedling physiology and performance (survival and growth) over a 2‐year period and related seedling performance to species distribution along Ghana's rainfall gradient. The dry forest site had, compared to the wet forest, higher irradiance, and soil nutrient availability and experienced stronger atmospheric drought (2.0 vs. 0.6 kPa vapor pressure deficit) and reduced soil water potential (?5.0 vs. ?0.6 MPa soil water potential) during the dry season. In both forests, dry species showed significantly higher stomatal conductance and lower leaf water potential, than wet species, and in the dry forest, dry species also realized higher drought survival and growth rate than wet species. Dry species are therefore more drought tolerant, and unlike the wet forest species, they achieve a home advantage. Species drought performance in the dry forest relative to the wet forest significantly predicted species position on the rainfall gradient in Ghana, indicating that the ability to grow and survive better in dry forests and during dry seasons may allow species to occur in low rainfall areas. Drought is therefore an important environmental filter that influences forest composition and dynamics. Currently, many tropical forests experience increase in frequency and intensity of droughts, and our results suggest that this may lead to reduction in tree productivity and shifts in species distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号