首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecological restoration provides a means to increase biodiversity in ecosystems degraded by natural and human‐induced changes. In some systems, disturbances such as grazing can be key factors in the successful restoration of biodiversity and ecological function, but few studies have addressed this experimentally, especially over long time periods and at landscape scales. In this study, we excluded livestock grazing from plots within a grassland landscape containing vernal pools in the Central Valley of California for 10 years and compared vernal pool hydrology and plant community composition with areas grazed under an historic regime. In all 10 years, the relative cover of native plant species remained between 5 and 20% higher in the grazed versus ungrazed plots. This effect was particularly prominent on the pool edges, though evidence of invasion into the pool basins was evident later in the study. Native species richness was lower in the ungrazed plots with 10–20% fewer native species found in ungrazed versus grazed plots in all years except the first year of treatment. Ungrazed pools held water for a shorter period of time than pools grazed under an historic regime. By the ninth year of the study, ungrazed pools took up to 2 weeks longer to fill and dried down 1–2 weeks sooner at the end of the rainy season compared to grazed pools. The results of this study confirm that livestock grazing plays a key role in maintaining biodiversity and ecosystem function in vernal pools.  相似文献   

2.
3.
4.
Banksia woodlands are renowned for their flammability and prescribed fire is increasingly employed to reduce the risk of wildfire and to protect life and property, particularly where these woodlands occur on the urban interface. Prescribed fire is also employed as a tool for protecting biodiversity assets but can have adverse impacts on native plant communities. We investigated changes in species richness and cover in native and introduced flora following autumn prescribed fire in a 700‐hectare Banksia/Tuart (Eucalyptus gomphocephala) woodland that had not burnt for more than 30 years. Effectiveness of management techniques at reducing weed cover and the impacts of grazing by Western Grey Kangaroo (Macropus fuliginosus) postfire were also investigated. Thirty plots were established across a designated burn boundary immediately before a prescribed fire in May 2011, and species richness and cover were measured 3 years after the fire, in spring of 2013. Fencing treatments were established immediately following the fire, and weed management treatments were applied annually in winter over the subsequent 3 years. Our results indicate that autumn prescribed fire can facilitate increases in weed cover, but management techniques can limit the establishment of targeted weeds postfire. Postfire grazing was found to have significant adverse impacts on native species cover and vegetation structure, but it also limited establishment of some serious weeds including Pigface (Carpobrotus edulis). Manipulating herbivores in time and space following prescribed fire could be an important and cost‐effective way of maintaining biodiversity values.  相似文献   

5.
Two multi‐year field experiments investigated the effects of integrating revegetation with invasive plant management methods to rehabilitate coastal dune and woodland vegetation invaded by Bitou bush (Chrysanthemoides monilifera (L.) Norl. ssp. rotundata (DC.) Norl.) in New South Wales, Australia. The revegetation technique used was to sow directly seeds of three native species common to coastal habitats. Management treatments involved combinations of prescribed fire, manual removal of Bitou bush and an application of herbicide. Addition of native seeds significantly increased density of native species in both habitats. The benefits of manually removing Bitou bush were observed only where densities of native species were at their lowest. Fire increased densities of some native species in the woodland, but decreased those of others in the dune. Densities of Acacia longifolia ssp. sophorae (Labill.) Court (woodland) and of Banksia integrifolia L.f. (woodland and dune) were significantly reduced within 4 months of herbicide application, alone or in combination with other treatments. The majority of these effects, however, did not persist. Manual removal in both habitats and addition of seed in the woodland were most effective in reducing Bitou bush densities when applied post‐fire. Herbicide treatment on its own or in combination with other treatments did not significantly reduce Bitou bush densities by the end of the experiments. We conclude that restoration of coastal ecosystems invaded by a major invasive plant species requires a whole‐of‐system approach involving revegetation in combination with known management methods to assist recovery of native species in the longer term.  相似文献   

6.
Aim Most of the Atlantic Forest in Brazil occurs in fragments of various sizes. Previous studies indicate that forest fragmentation affects fruit‐feeding butterflies. Conservation strategies that seek to preserve organisms that are distributed in high‐fragmented biomes need to understand the spatial distribution of these organisms across the landscape. In view of the importance of understanding the fauna of these forest remnants, the objective of the present work is to investigate the extent to which the diversity of this group varies across spatial scales ranging from within‐forest patches to between landscapes. Location South America, south‐eastern Brazil, São Paulo State. Methods We used bait traps to sample fruit feeding butterflies at 50 points in 10 fragments in two different landscapes during a period of 12 months. Total species richness and Shannon index were partitioned additively in diversity at trap level, and beta diversity was calculated among traps, among forest patches, and between landscapes. We used permutation tests to compare these values to the expected ones under the null hypothesis that beta diversity is only a random sampling effect. Results There was significant beta diversity at the smallest scale examined; however, the significance at higher scales depends on the diversity measurement used. Beta diversity with Shannon index was smaller than expected by chance among fragments, whereas species richness was not. Among landscapes, only beta diversity in richness was higher than expected by chance. Main conclusions The results observed occur because there is great variability in species composition among forest patches in the same landscape, changing this diversity even though the communities are formed from the same pool of species. At the largest scale evaluated (between landscapes), these pattern changes and differences in beta diversity in richness were detectable. This difference is probably caused by the presence of rare species. Thus, a conservation strategy that seeks to preserve as many species as possible per unit of area in high‐fragmented biomes should give priority to protecting fragments in different landscapes, rather than more fragments in the same landscape.  相似文献   

7.
1. Composition, growth and turnover of trees in two species-rich tropical gallery forests were examined to evaluate what community reorganization may be needed to transform recently created tropical forest fragments into stable refugia for regional forest biotas.
2. Rates of tree growth and turnover over a 5-year interval were comparable to those recorded in continuous forests and in both communities there had been some tree species turnover in the measured stem size classes during the 5-year interval.
3. The more abundant tree species in both communities formed three functional groups along gradients between streams and forest edges: edge-concentrators, core-concentrators and generalists.
4. Soil fertility showed no consistent increase close to streams and neither tree growth nor recruitment rates were increased in this zone. In contrast, forest edge zones exhibited increased rates of tree growth and recruitment indicating that growth processes in these forests are light-limited rather than soil-limited, and that forest edge zones are generally favourable habitats for tree populations.
5. Both communities showed signs of past fire incursions, and the tendency of a subset of tree species to concentrate in the more growth-limited core habitats is attributed to their fire sensitivity.
6. Rapid development of an edge zone of fire-insensitive tree species is considered to be essential to the survival of forest community fragments in the fire-prone landscapes of the tropics, and the edges of gallery forests are recommended as potential sources of species with which to fashion these protective ecotones.
7. Preservation of a diverse forest biota in the fire-protected interiors of fragments will require natural or artificially enhanced immigration rates that are sufficient to offset local extinctions.  相似文献   

8.
Most large carnivore species are in global decline. Conflicts with people, particularly over depredation on small and large livestock, is one of the major causes of this decline. Along tropical deforestation frontiers, large felids often shift from natural to livestock prey because of their increased proximity to human agriculture, thus increasing the likelihood of conflicts with humans. On the basis of data from 236 cattle ranches, we describe levels of depredation by jaguars Panthera onca and pumas Puma concolor on bovine herd stocks and examine the effects of both landscape structure and cattle management on the spatial patterns and levels of predation in a highly fragmented forest landscape of southern Brazilian Amazonia. Generalized linear models showed that landscape variables, including proportion of forest area remaining and distance to the nearest riparian forest corridor, were key positive and negative determinants of predation events, respectively. We detected clear peaks of depredation during the peak calving period at the end of the dry season. Bovine herd size and proportion of forest area had positive effects on predation rates in 60 cattle ranches investigated in more detail. On the other hand, distance from the nearest riparian forest corridor was negatively correlated with the number of cattle predated. The mean proportion of cattle lost to large felids in 24 months for the region varied according to the herd class size (<500: 0.82%; 500–1500: 1.24%; >1500: 0.26%) but was never greater than 1.24%. The highest annual monetary costs were detected in large cattle ranches (>1500 head of cattle), reaching US$ 885.40. Patterns of depredation can be explained by a combination of landscape and livestock management variables such as proportion of forest area, distance to the nearest riparian corridor, annual calving peak and bovine herd size.  相似文献   

9.
10.
Exotic plants have been found to use allelochemicals, positive plant–soil feedbacks, and high concentrations of soil nutrients to exercise a competitive advantage over native plants. Under laboratory conditions, activated carbon (AC) has shown the potential to reduce these advantages by sequestering organic compounds. It is not known, however, if AC can effectively sequester organics or reduce exotic plant growth under field conditions. On soils dominated by exotic plants, we found that AC additions (1% AC by mass in the top 10 cm of soil) reduced concentrations of extractable organic C and N and induced consistent changes in plant community composition. The cover of two dominant exotics, Bromus tectorum and Centaurea diffusa, decreased on AC plots compared to that on control plots (14–8% and 4–0.1%, respectively), and the cover of native perennial grasses increased on AC plots compared to that on control plots (1.4–3% cover). Despite promising responses to AC by these species, some exotic species responded positively to AC and some native species responded negatively to AC. Consequently, AC addition did not result in native plant communities similar to uninvaded sites, but AC did demonstrate potential as a soil‐based exotic plant control tool, especially for B. tectorum and C. diffusa.  相似文献   

11.
An important factor that hinders the management of non‐native species is a general lack of information regarding the biogeography of non‐natives, and, in particular, their rates of turnover. Here, we address this research gap by analysing differences in temporal beta‐diversity (using both pairwise and multiple‐time dissimilarity metrics) between native and non‐native species, using a novel time‐series dataset of arthropods sampled in native forest fragments in the Azores. We use a null model approach to determine whether temporal beta‐diversity was due to deterministic processes or stochastic colonisation and extinction events, and linear modelling selection to assess the factors driving variation in temporal beta‐diversity between plots. In accordance with our predictions, we found that the temporal beta‐diversity was much greater for non‐native species than for native species, and the null model analyses indicated that the turnover of non‐native species was due to stochastic events. No predictor variables were found to explain the turnover of native or non‐native species. We attribute the greater turnover of non‐native species to source‐sink processes and the close proximity of anthropogenic habitats to the fragmented native forest plots sampled in our study. Thus, our findings point to ways in which the study of turnover can be adapted for future applications in habitat island systems. The implications of this for biodiversity conservation and management are significant. The high rate of stochastic turnover of non‐native species indicates that attempts to simply reduce the populations of non‐native species in situ within native habitats may not be successful. A more efficient management strategy would be to interrupt source‐sink dynamics by improving the harsh boundaries between native and adjacent anthropogenic habitats.  相似文献   

12.
13.
Moderate grazing intensity is considered the basic requirement to enhance ecosystem function in grasslands. Yet, deterioration by overgrazing is common in many biomes, including Campos grasslands in South America. Understanding how grazing management can lead to recovery of ecosystem function is essential to design and implement effective strategies for sustainable use of this resource. In a long‐term field experiment carried out in Southern Brazil, we studied the effects of temporal grazing exclusions (spring or fall) at moderate and severe livestock grazing intensities (maintained by adjusting contrasting forage allowances) on the species richness, botanical composition, forage mass, sward height, and photosynthetic active radiation intercepted. The experiment was arranged in a completely randomized design with three replications of grazing exclusions, applied simultaneously at moderate and severe grazing intensities. Moderate grazing intensity showed a bimodal structure of shorter and taller canopies, and high species richness. Severe grazing created a shorter and homogeneous sward structure characterized by less standing biomass and species loss. In response to grazing exclusions, sward height, standing biomass, and light interception recovered almost to the levels of moderate grazing. Further, within 2 years grass species richness increased and botanical composition changed toward grasses with erect habit prevailing in moderate grazing intensity. Our study confirms that (1) moderate grazing intensities allow the coexistence of high number of species and (2) spring grazing exclusions of long‐term overgrazed grasslands can lead to a quick start to recover the grass species richness, primary productivity, and species composition like that prevailing in well‐managed grasslands.  相似文献   

14.
15.
16.
'As Earth's testimonies tell': wilderness conservation in a changing world   总被引:4,自引:0,他引:4  
Too often, wilderness conservation ignores a temporal perspective greater than the past 50 years, yet a long‐term perspective (centuries to millennia) reveals the dynamic nature of many ecosystems. Analysis of fossil pollen, charcoal and stable isotopes, combined with historical analyses and archaeology can reveal how ongoing interactions between climatic change, human activities and other disturbances have shaped today's landscapes over thousands of years. This interdisciplinary approach can inform wilderness conservation and also contribute to interpreting current trends and predicting how ecosystems might respond to future climate change. In this paper, we review literature that reveals how increasing collaboration among palaeoecologists, archaeologists, historians, anthropologists and ecologists is improving understanding of ecological complexity. Drawing on case studies from forested and non‐forested ecosystems in Europe, the Americas, Africa and Australia, we discuss how this integrated approach can inform wilderness conservation and ecosystem management.  相似文献   

17.
ABSTRACT Habitat conservation strategies of the North American Waterfowl Management Plan (NAWMP) are guided by current understanding of factors that limit growth of waterfowl populations. The 1998 implementation plan of the Upper Mississippi River and Great Lakes Region Joint Venture (UMR and GLRJV) assumed that availability of foraging resources during autumn in wetlands actively managed for waterfowl was the primary limiting factor for duck populations during the nonbreeding season. We used multistage sampling during autumn and spring 2001–2004 to estimate energetic carrying capacity (ECC) of actively and passively managed wetlands in Ohio, USA, and examine this assumption. Energetic carrying capacity during autumn was similar between actively and passively managed wetlands each year. Averaged across years, energetic carrying capacity was 3,446 and 2,047 duck energy-days (DED)/ha for actively and passively managed wetlands, respectively. These estimates exceeded the UMR and GLRJV assumption that 1,236 DED/ha were provided by managed wetland habitats. Energetic carrying capacity declined each year by >80% between autumn and spring migration. Consequently, ECC of actively and passively managed wetlands was low during spring ( = 66–242 DED/ha). These results suggested that duck foraging resources in actively and passively managed wetland habitats are abundant during autumn, but overwinter declines may create food-limiting environments during spring.  相似文献   

18.
Summary A common approach to nature conservation is to identify and protect natural ‘assets’ such as ecosystems and threatened species. While such actions are essential, protection of assets will not be effective unless the ecological processes that sustain them are maintained. Here, we consider the role of ecological processes and the complementary perspective for conservation arising from an emphasis on process. Many kinds of ecological processes sustain biodiversity: including climatic processes, primary productivity, hydrological processes, formation of biophysical habitats, interactions between species, movements of organisms and natural disturbance regimes. Anthropogenic threats to conservation exert their influence by modifying or disrupting these processes. Such threats extend across tenures, they frequently occur offsite, they commonly induce non‐linear responses, changes may be irreversible and the full consequences may not be experienced for lengthy periods. While many managers acknowledge these considerations in principle, there is much scope for greater recognition of ecological processes in nature conservation and greater emphasis on long time‐frames and large spatial scales in conservation planning. Practical measures that promote ecological processes include: monitoring to determine the trajectory and rate of processes; incorporating surrogates for processes in conservation and restoration projects; specific interventions to manipulate and restore processes; and planning for the ecological future before options are foreclosed. The long‐term conservation of biodiversity and the well‐being of human society depend upon both the protection of natural assets and maintaining the integrity of the ecological processes that sustain them.  相似文献   

19.
20.
The conversion of native habitats to pasture and other working lands, unbuilt lands modified by humans for production, is one of the greatest threats to biodiversity. While some human-dominated landscapes on continents support relatively high native biodiversity, this capacity is little studied in oceanic island systems characterized by high endemism and vulnerability to invasion. Using Hawaii as a case study, we assessed the conservation value of working landscapes on an oceanic island by surveying native and non-native plant diversity in mature native forest and in the three dominant land covers/uses to which it has been converted: native, Acacia koa timber plantations, wooded pasture, and open pasture. As expected, native plant diversity (richness and abundance) was significantly higher and non-native abundance significantly lower in mature native forests than any other site type. A. koa plantations and wooded pasture supported four and three times greater, respectively, species richness of native understory plants than open pasture. Also, A. koa plantations and wooded pasture supported similar species communities with about 75% species in common. Conservation and restoration of mature native forest in Hawaii is essential for the protection of native, rare species and limiting the spread of non-native species. A. koa plantations and wooded pasture, however, may help harmonize production and conservation by supporting livelihoods, more biodiversity than open pasture, and some connectivity between native forest remnants important for sustaining landscape-level conservation value into the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号