首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Waterlogging is one of the major stresses limiting crop production worldwide. The understanding of the mechanisms of plant adaptations to waterlogging stress helps improve plant tolerance to stress. In this study, physiological responses and morpho-anatomical adaptations of seven different barley genotypes were investigated under waterlogging stress. The results showed that the waterlogging-tolerant varieties (TX9425, Yerong, TF58) showed less reduction in plant height, SPAD (soil–plant analyses development analyses) value, tillers, shoot and root biomasses than did the waterlogging-sensitive varieties (Franklin, Naso Nijo, TF57). Under waterlogging stress condition, the tolerant genotypes also showed a much larger number of adventitious roots than did the sensitive genotypes. More intercellular spaces and better integrated chloroplast membrane structures were observed in the leaves of the waterlogging-tolerant cultivars, which is likely due to increased ethylene content, decreased ABA content and less accumulation of O2.?. The ability to form new adventitious roots and intercellular spaces in shoots can also be used as selection criteria in breeding barley for waterlogging tolerance.  相似文献   

2.
A revised evolutionary history of hepatitis B virus (HBV)   总被引:8,自引:0,他引:8  
Previous studies of the evolutionary history of hepatitis B virus (HBV) have been compromised by intergenotype recombination and complex patterns of nucleotide substitution, perhaps caused by differential selection pressures. We examined the phylogenetic distribution of recombination events among human HBV genotypes and found that genotypes A plus D, and genotypes B plus C, had distinct patterns of recombination suggesting differing epidemiological relationships among them. By analyzing the nonoverlapping regions of the viral genome we found strong bootstrap support for some intergenotypic groupings, with evidence of a division between human genotypes A–E from the viruses sampled from apes and human genotype F. However, the earliest events in the divergence of HBV remain uncertain. These uncertainties could not be explained by differential selection pressures, as the ratio of nonsynonymous-to-synonymous substitutions (d N/d S) did not vary extensively among lineages and there is no strong evidence for positive selection across the whole tree. Finally, we provide a new estimate of the mean substitution rate in HBV, 4.2 × 10−5, which suggests that divergence of HBV in humans and apes has occurred only in the last 6000 years.  相似文献   

3.
Development of dedicated bioenergy crop production systems will require accurate yield estimates, which will be important for determining many of the associated environmental and economic impacts of their production. Shrub willow (Salix spp) is being promoted in areas of the USA and Canada due to its adaption to cool climates and wide genetic diversity available for breeding improvement. Willow breeding in North America is in an early stage, and selection of elite genotypes for commercialization will require testing across broad geographic regions to gain an understanding of how shrub willow interacts with the environment. We analyzed a dataset of first‐rotation shrub willow yields of 16 genotypes across 10 trial environments in the USA and Canada for genotype‐by‐environment interactions using the additive main effects and multiplicative interactions (AMMI) model. Mean genotype yields ranged from 5.22 to 8.58 oven‐dry Mg ha?1 yr?1. Analysis of the main effect of genotype showed that one round of breeding improved yields by as much as 20% over check cultivars and that triploid hybrids, most notably Salix viminalis × S. miyabeana, exhibited superior yields. We also found important variability in genotypic response to environments, which suggests specific adaptability could be exploited among 16 genotypes for yield gains. Strong positive correlations were found between environment main effects and AMMI parameters and growing environment temperatures. These findings demonstrate yield improvements are possible in one generation and will be important for developing cultivar recommendations and for future breeding efforts.  相似文献   

4.
Among grain legumes, faba bean is becoming increasingly popular in European agriculture due to recent economic and environmental interests. Faba bean can be a highly productive crop, but it is sensitive to drought stress and yields can vary considerably from season to season. Understanding the physiological basis of drought tolerance would indicate traits that can be used as indirect selection criteria for the development of cultivars adapted to drought conditions. To assess genotypic variation in physiological traits associated with drought tolerance in faba bean and to determine relationships among these attributes, two pot experiments were established in a growth chamber using genetic materials that had previously been screened for drought response in the field. Nine inbred lines of diverse genetic backgrounds were tested under adequate water supply and limited water conditions. The genotypes showed substantial variation in shoot dry matter, water use, stomatal conductance, leaf temperature, transpiration efficiency, carbon isotope discrimination (Δ13C), relative water content (RWC) and osmotic potential, determined at pre-flowering vegetative stage. Moisture deficits decreased water usage and consequently shoot dry matter production. RWC, osmotic potential, stomatal conductance and Δ13C were lower, whereas leaf temperature and transpiration efficiency were higher in stressed plants, probably due to restricted transpirational cooling induced by stomatal closure. Furthermore, differences in stomatal conductance, leaf temperature, Δ13C and transpiration efficiency characterized genotypes that were physiologically more adapted to water deficit conditions. Correlation analysis also showed relatively strong relationships among these variables under well watered conditions. The drought tolerant genotypes, ILB-938/2 and Melodie showed lower stomatal conductance associated with warmer leaves, whereas higher stomatal conductance and cooler leaves were observed in sensitive lines (332/2/91/015/1 and Aurora/1). The lower value of Δ13C coupled with higher transpiration efficiency in ILB-938/2, relative to sensitive lines (Aurora/1 and Condor/3), is indeed a desirable characteristic for water-limited environments. Finally, the results showed that stomatal conductance, leaf temperature and Δ13C are promising physiological indicators for drought tolerance in faba bean. These variables could be measured in pot-grown plants at adequate water supply and may serve as indirect selection criteria to pre-screen genotypes.  相似文献   

5.
Knowledge of relationships between physiological parameters and growth performance of seedlings and respective genotypic differences would permit selection of salt tolerance at early growth stages. The goals of this study were to investigate the relationships between physiological parameters and growth performance and quantify the respective genotypic differences using multivariate analysis.. Plants of thirty-one genotypes were grown in sand tanks in a greenhouse and irrigated with Yoshida nutrient solution. Two salinity treatments were imposed at 0.9 dSm–1 (control) and 6.4 dSm–1 with sodium chloride and calcium chloride (~ 6: 1 molar ratio). Seedlings were sampled 34 days after planting (7th to 8th leaf stage). The characters of Na+, K+, Ca2+, K-Na selectivity (SK,Na) and Na-Ca selectivity (SNa,Ca) were measured as physiological parameters. The characters of tiller number, leaf area, plant height and shoot dry weight were measured as growth performance. Under salinity stress, SK,Na increased whereas SNa,Ca decreased compared to the controls. Canonical correlation analysis indicates a strong relationship between physiological parameters and growth performance. Tiller number is a desirable parameter among the growth parameters analyzed to predict seedling growth under salinity stress. Genotypes grouped into four clusters based on ion contents and ion selectivity using Wards minimum-variance cluster analysis. SK,Na and shoot Na+ content contributed the most to the cluster formation. Similarly, genotypes grouped into four clusters based on growth performance. Ge notypes were classified into three categories based on ion cluster rankings: Category 1 with high SK,Na and low shoot Na+ content; Category 2 with intermediate SK,Na and shoot Na+ content; Category 3 with low SK,Na and high shoot Na+ content. The classification of the genotypes into Categories 1 and 3 based on their high or low SK,Na was generally consistent with their growth performance under salt stress. In contrast, ion selectivity was a less dominant mechanism controlling salt tolerance in Category 2 with intermediate SK,Na. It was concluded that ion selectivity was a relatively dominant mechanism controlling salt tolerance among rice genotypes although multiple mechanisms may be involved under moderate salt stress. The results also provide the first example of the effectiveness of cluster analysis for physiological responses to salinity stress.  相似文献   

6.
The carbon isotope discrimination (δ^13C) of leaves has been shown to be correlated with the transpiration efficiency of leaves in a wide range of species. This has led to δ^13C being used in breeding programs to select for improved transpiration efficiency. The correlation between δ^13C and transpiration efficiency was determined under well-watered conditions during the vegetative phase in six genotypes of lentil (Lens culinaris Medikus), six genotypes of chickpea (Cicerarietinum L.) and 10 cultivars of narrow-leafed lupin (Lupinus angustifolius L.). Biomass (dry matter) accumulation and water use (transpiration) varied among the genotypes in all three species and transpiration efficiency was 40% to 75% higher in the most efficient compared with the least efficient genotypes. However, δ^13C and transpiration efficiency were not significantly correlated in any of the species. This suggests that the δ^13C technique cannot be used in selection for transpiration efficiency in the three grain legumes (pulses) studied.  相似文献   

7.
Eighteen genotypes of soybean were grown in five locations in Nigeria. The heritability estimates for seed yield were generally low, ranging from 22.6% to 45.3%. Joint regression analysis indicated the presence of genotype x environment, although a large proportion was non-linear. The genotypes responded differently to environments, highlighting the possibility of breeding for specific environments. The correlation of regression coefficients with mean yield indicated that high yielding genotypes were responsive to changing environments. The simultaneous selection parameters Pi, S3 and rank-sums gave somewhat similar results but Pi produced higher yielding genotypes than others. The correlation between Pi and rank-sum indicated that either of the techniques could be employed during selection.  相似文献   

8.
Maternal environmental effects reflect the contribution of the maternal environment to the offspring phenotype. Maternal effects are prevalent in plants and animals and may undergo adaptive evolution and affect patterns of natural selection within and across generations. Here, we raise two generations of a rapeseed (Brassica rapa) population derived from a cross between a rapid-cycling and an oilseed genotype in competitive and noncompetitive settings. Maternal environment had little effect on average offspring phenotypes. Maternal genotypes, however, differed in the sensitivity of almost all offspring phenotypes to the maternal environment, demonstrating genetic variation in maternal effects for traits expressed throughout ontogeny. Maternal environment did not significantly affect progeny seed production, and maternal genotypes were not variable for this trait, indicating no evidence for direct maternal effects on offspring fitness. Maternal environment influenced natural selection in the progeny generation; disruptive selection acted on seed mass among seeds matured in the noncompetitive maternal environment versus no significant selection on this trait for seeds matured in the competitive maternal environment. Although maternal effects did not directly increase fitness, they did affect evolutionary potential and selection in the progeny generation. These results suggest that diverse phenotypes of both wild and cultivated B. rapa genotypes will depend on the maternal environment in which the seeds are matured.  相似文献   

9.
Natural environments are rarely static; rather selection can fluctuate on timescales ranging from hours to centuries. However, it is unclear how adaptation to fluctuating environments differs from adaptation to constant environments at the genetic level. For bacteria, one key axis of environmental variation is selection for planktonic or biofilm modes of growth. We conducted an evolution experiment with Burkholderia cenocepacia, comparing the evolutionary dynamics of populations evolving under constant selection for either biofilm formation or planktonic growth with populations in which selection fluctuated between the two environments on a weekly basis. Populations evolved in the fluctuating environment shared many of the same genetic targets of selection as those evolved in constant biofilm selection, but were genetically distinct from the constant planktonic populations. In the fluctuating environment, mutations in the biofilm‐regulating genes wspA and rpfR rose to high frequency in all replicate populations. A mutation in wspA first rose rapidly and nearly fixed during the initial biofilm phase but was subsequently displaced by a collection of rpfR mutants upon the shift to the planktonic phase. The wspA and rpfR genotypes coexisted via negative frequency‐dependent selection around an equilibrium frequency that shifted between the environments. The maintenance of coexisting genotypes in the fluctuating environment was unexpected. Under temporally fluctuating environments, coexistence of two genotypes is only predicted under a narrow range of conditions, but the frequency‐dependent interactions we observed provide a mechanism that can increase the likelihood of coexistence in fluctuating environments.  相似文献   

10.
The results of analysis of the genome formation in interspecific hybrids of Triticum aestivum with T. timopheevii are reviewed. The spectra of substitutions and rearrangements are shown to depend on the genotypes of the parental forms and on the direction of selection. The frequencies of substitutions of individual T. timopheevii chromosomes significantly vary and reflect the level of their divergence relative to the common wheat chromosomes. Some aspects of classification of the At- and G-genome chromosomes are discussed.  相似文献   

11.
Egg‐to‐adult viability is studied in the progeny of the flies of different genotypes according to S and F alleles of Amy locus of Drsophila subobscura . This component of fitness is observed in the single and mixed cultures with various frequencies of three genotypes (S/S, F/F and S/F) under conditions of low (LD) and high densities (HD) on three types of media with different carbohydrate composition. In such multifactorial experimental conditions, density‐ and frequency‐dependent selection on certain Amy genotypes was observed. Genotype frequencies and carbohydrate composition have significant effect on the viability of Amy genotypes. The significant intergenotypic differences exist, mostly at HD conditions. The heterozygous genotype S/F has generally lower viability which decreases with its increased frequencies, on all media at LD or HD. The results suggest a high level of complexity and interaction between these two types of balanced selection.  相似文献   

12.
13.
Rapeseed (Brassica napus L.) is important for edible oil production in semi-arid areas. Abiotic stresses are threatening rapeseed production in such areas. This study was conducted to find tolerant genotypes of rapeseed and to determine which traits of crop establishment is related to abiotic stress tolerance. Hydrotime model parameters were determined in a laboratory germination test, and seedling emergence and growth were evaluated in pot experiments under control, drought, salinity, deep sowing, low and high temperatures for 19 rapeseed genotypes. Results indicated that the predicted germination time courses at the various water potentials generally fitted well with the observed germination data. The estimated values of θ H, ψb(50), and σψb differed significantly across genotypes. Seedling emergence and growth differed significantly under each environmental condition. PCA showed that genotypes of Hayola 401 and line 285 were the most tolerant to abiotic stresses during crop establishment and seedling growth. The first PC explained 40% of variations, and a correlation was observed between PC1 and ψb(50). Correlations among hydrotime model parameters and early seed vigour variables indicated that ψb(50) negatively correlated with seedling emergence percentage and rate (day?1) under all abiotic stresses. It shows that genotypes with more negative values of ψb(50) have more seedling emergence percentage and a larger seedling emergence rate (days?1) under a wide range of environmental conditions. Thus, it can be concluded that, to identify tolerant genotypes of rapesee to abiotic stresses, ψb(50) is a good trait and that breeders can focus on reducing ψb(50) to increase tolerance of abiotic stresses.  相似文献   

14.
15.
DeWalt SJ  Denslow JS  Hamrick JL 《Oecologia》2004,138(4):521-531
We tested the hypothesis that the tropical shrub Clidemia hirta appears more shade tolerant and is more abundant in its introduced than native range because of genetic differences in resource acquisition, allocation, and phenotypic plasticity between native and introduced genotypes. We examined growth, biomass allocation, and photosynthetic parameters of C. hirta grown in a greenhouse from seed collected from four populations in part of its native range (Costa Rica) and four populations in part of its introduced range (Hawaiian Islands). Six-month-old seedlings were placed in high (10.3–13.9 mol m–2 day–1) or low (1.4–4.5 mol m–2 day–1) light treatments and grown for an additional 6 months. Our study provided little evidence that Hawaiian genotypes of C. hirta differed genetically from Costa Rican genotypes in ways that would contribute to differences in habitat distribution or abundance. Some of the genetic differences that were apparent, such as greater allocation to stems and leaf area relative to whole plant biomass in Costa Rican genotypes and greater allocation to roots in Hawaiian genotypes, were contrary to predictions that genotypes from the introduced range would allocate more biomass to growth and less to storage than those from the native range. Hawaiian and Costa Rican genotypes displayed no significant differences in relative growth rates, maximal photosynthetic rates, or specific leaf areas in either light treatment. In the high light environment, however, Hawaiian genotypes allocated more biomass to reproductive parts than Costa Rican genotypes. Phenotypic plasticity for only 1 of 12 morphological and photosynthetic variables was greater for Hawaiian than Costa Rican genotypes. We conclude that genetic shifts in resource use, resource allocation, or plasticity do not contribute to differences in habitat distribution and abundance between the native and introduced ranges of C. hirta. Electronic Supplementary Material Supplementary material is available in the online version of this article at . Clidemia hirta individuals grown in a common garden in high light for 10 months from Hawaiian (left) or Costa Rica (right) seed sources  相似文献   

16.
Female reproductive performance can be strongly affected by male care, so that breeding time, a trait expressed only by females, can be seen as one trait determined by both male and female genotypes. Animal model analyses of a 46‐year study of red‐billed gulls (Larus novaehollandiae scopulinus) revealed that laying date was not heritable in females (h2 = 0.001 ± 0.030), but significantly so in males (h2 = 0.134 ± 0.029). Heritability of breeding time in males probably reflects genetic variability in some other trait such as courtship feeding ability. In line with predictions of evolutionary models incorporating indirect genetic effects, the strong and consistent directional selection for advanced breeding time has not resulted in detectable selection response in males. Our results demonstrate that a female trait is largely determined by genetic characteristics of its mate, and hence, any evolutionary change in red‐billed gull breeding time depends critically on genetic variation in males.  相似文献   

17.
Linseed is a multipurpose crop and the crop needs further improvement to increase production and yield due to its high value and demand. This study aimed to assess the extent and pattern of genetic variability of forty linseed genotypes based on diverse agro–morphological and yield attributes. The field experiment was conducted following a Randomized Complete Block Design with three replications. Linseed germplasm showed a wide range of phenotypic expression, genetic variability and heritability for 30 studied traits. A low to high phenotypic coeffi- cient of variation (PCV) and genotypic coefficient of variation (GCV) were observed. The lowest genotypic (σ2 g) and phenotypic variances (σ2 p) were found in capsule diameter (CD), length of calyx (LC), capsule length (CL), seed length (SL), and seed breadth (SB). High broad-sense heritability (h2b) with high genetic advance as a percentage of mean (GAM) were observed in days to germination started (DGS), days to 80% emergence (DE), plant height at 28 and 40 DAS, number of flowers (NFPP), filled capsules (NFCPP) and yield per plant (YPP) indicating additive gene action exists for these characters. Hierarchical cluster analysis separated 40 genotypes into five clusters, where Clusters I to V assembled with 13, 4, 4, 5 and 14 genotypes, respectively. Considering yield and yield attributes, Cluster-IV (G3, G4, G6, G10 and G31) genotypes showed promising while, Cluster-II (G2, G16, G35, G36) and Cluster-III (G1, G33, G39 and G40) genotypes were dominant on plant morphological traits. Based on principal component analysis (PCA), few characters such as YPP, NFPP, NFCPP, days to first flowering and capsule formation, early emergence, days to branch initiation and plant heights at different growth stages revealed important and effective traits for consideration in the selection of linseed breeding programs.  相似文献   

18.
Willow (Salix spp.) short‐rotation coppice is commercially grown to produce lignocellulosic biomass to meet renewable bioenergy demands. Most commercial willow coppices are grown in stands of a single genotype, but biomass productivity may be greater in mixed communities, and the productivity in mixed communities may depend on the specific genotypes involved. We assessed the biomass production of four different Salix genotypes (“Björn,” “Jorr,” “Loden,” “Tora”) grown without additional nutrient fertilization during one cutting cycle at three locations in Europe (Uppsala in Sweden, Rostock and Freiburg in Germany) in plots of pure and mixed communities. We evaluated (i) the effect of genotype diversity on shoot biomass productivity, including the evidence for complementarity and selection effects; (ii) the influence of individual genotypes on mixed community productivity; and (iii) the productivity of individual genotypes in response to pure vs. mixed culture. Mean shoot biomass production after the first cutting cycle decreased in the order Rostock (8.7 Mg ha?1) > Freiburg (6.9 Mg ha?1) > Uppsala (5.7 Mg ha?1), with values similar to those for other nonfertilized willow stands after the first growth cycle. Consistently across all three locations, increasing genotype diversity did not significantly affect shoot biomass production. Using Bayesian statistics, the addition of the genotypes “Jorr” and “Loden” was predicted to enhance shoot biomass production, while “Tora” and “Björn” are more likely to reduce shoot biomass production in mixed communities. In addition, we found evidence for a negative selection effect due to the genotype “Tora” performing better in mixed than in pure communities in two of the sites (Freiburg, Uppsala). In conclusion, our results imply that increasing genetic richness has no negative effect on productivity and that there is a potential to design site‐specific genotype mixtures of short‐rotation coppice promoting both high genetic diversity and high biomass production.  相似文献   

19.
Linseed is one of the most important oil seed crop in the central highlands of Ethiopia for which yield enhancement is the major breeding purposes and genotypic variability is important for selection in any breeding programs. However, shortage of improved varieties’ that provides optimum seed yield is one of the major constraints of the crop. Therefore, this study was carried out to assess the genetic variability and association among quantitative traits of 36 linseed genotypes. The experiment was conducted in 2018 main cropping season by using simple lattice design. The analysis of variances reveled highly significant difference among the genotype for most of traits considered in present study. High phenotypic and genotypic coefficient of variation was recorded for tiller per plant, harvest index, oil yield (kg ha−1), and seed yield (ton ha-1) number of capsules per plant. High heritability along with genetic advance was observed for seed yield (tones ha-1), oil yield (kg ha-1) harvest index which indicates selection of these traits at early generation would be effective. Oil yield (kg ha−1) harvest index and number of capsules plant −1 showed highly significant positive with seed yield (ton ha−1). Cluster analysis revealed that 36 linseed genotypes were grouped into two clusters and four genotypes remain ungrouped. The maximum inter clusters distance was observed between clusters II and the local check. The data set was reduced into four significant principal components (PCs) that comprise (80%) of the variance. The first PC accounted for 34% of the variances that implies greater proportion of variable information explained by PC1. The traits, which contributed more to PC1, were seed yield per plant, primary branches per plant, secondary branches per plant and plant height showed positive association and had positive direct effect on seed yield. This indicates that any improvement of oil yield and harvest index would result in substantial increase on seed.  相似文献   

20.
以我国北方12个冬小麦(Triticum aestivum)品种(系)和美国德克萨斯州3个冬小麦品种(系)为供试材料, 在甘肃陇东黄土高原旱作和拔节期有限补灌条件下, 比较研究了不同基因型冬小麦之间产量、水分利用效率(WUE)和灌浆期旗叶稳定碳同位素比值(δ13C)的差异, 以及δ13C值与产量和WUE的关系。旨在通过分析δ13C值与产量和WUE的关系, 明确δ13C值在评价植物WUE方面的可靠性, 为抗旱节水品种的筛选提供理论依据。结果表明: 不论旱作还是有限补灌, 不同基因型冬小麦之间产量、WUE、旗叶δ13C值存在显著差异, 随着灌浆过程的进行, 旗叶δ13C值呈缓慢增大的趋势, 而且旗叶δ13C值旱作高于有限补灌。不论旱作还是补灌条件, 旗叶δ13C值在4个测定时期的平均值与籽粒产量、WUE呈显著正相关关系(R2= 0.527 3-0.691 3)。小麦拔节期补灌100 mm水分后, 不同基因型小麦表现出明显的水分超补偿效应。说明冬小麦灌浆期旗叶δ13C值在旱作条件下和在补灌条件下均可较好地评价WUE, 可将冬小麦灌浆期旗叶δ13C值作为筛选高效用水品种的参考指标之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号