共查询到20条相似文献,搜索用时 0 毫秒
1.
Maturing spermatozoa acquire full fertilization competence by undergoing major changes in membrane fluidity and protein composition and localization. In epididymal spermatozoa, several proteins are associated with cholesterol- and sphingolipid-enriched detergent-resistant membrane (DRM) domains. These proteins dissociate from DRM in capacitated sperm cells, suggesting that DRM may play a role in the redistribution of integral and peripheral proteins in response to cholesterol removal. Since seminal plasma regulates sperm cell membrane fluidity, we hypothesized that seminal plasma factors could be involved in DRM disruption and redistribution of DRM-associated proteins. Our results indicate that: 1) the sperm-associated proteins, P25b and adenylate kinase 1, are linked to DRM of epididymal spermatozoa, but were exclusively associated with detergent-soluble material in ejaculated spermatozoa; 2) seminal plasma treatment of cauda epididymal spermatozoa significantly lowered the content of cholesterol and the ganglioside, GM1, in DRM; and 3), seminal plasma dissociates P25b from DRM in epididymal spermatozoa. We found that the seminal plasma protein, Niemann-Pick C2 protein, is involved in cholesterol and GM1 depletion within DRM, then leading to membrane redistribution of P25b that occurs in a very rapid and capacitation-independent manner. Together, these data suggest that DRM of ejaculated spermatozoa are reorganized by specific seminal plasma proteins, which induce lipid efflux as well as dissociation of DRM-anchored proteins. This process could be physiologically relevant in vivo to allow sperm survival and attachment within the female reproductive tract and to potentiate recognition, binding, and penetration of the oocyte. 相似文献
2.
Three unrelated sphingomyelin analogs spontaneously cluster into plasma membrane micrometric domains
Micrometric lipid compartmentation at the plasma membrane is disputed. Using live confocal imaging, we found that three unrelated fluorescent sphingomyelin (SM) analogs spontaneously clustered at the outer leaflet into micrometric domains, contrasting with homogeneous labelling by DiIC18 and TMA-DPH. In erythrocytes, these domains were round, randomly distributed, and reversibly coalesced under hypotonicity. BODIPY-SM and -glucosylceramide showed distinct temperature-dependence, in the same ranking as Tm for corresponding natural lipids, indicating phase behaviour. Scanning electron microscopy excluded micrometric surface structural features. In CHO cells, similar surface micrometric patches were produced by either direct BODIPY-SM insertion or intracellular processing from BODIPY-ceramide, ruling out aggregation artefacts. BODIPY-SM surface micrometric patches were refractory to endocytosis block or actin depolymerization and clustered upon cholesterol deprivation, indicating self-clustering at the plasma membrane. BODIPY-SM excimers further suggested clustering in ordered domains. Segregation of BODIPY-SM and -lactosylceramide micrometric domains showed coexistence of distinct phases. Consistent with micrometric domain boundaries, fluorescence recovery after photobleaching (FRAP) revealed restriction of BODIPY-SM lateral diffusion over long-range, but not short-range, contrasting with comparable high mobile fraction of BODIPY-lactosylceramide in both ranges. Controlled perturbations of endogenous SM pool similarly affected BODIPY-SM domain size by confocal imaging and its mobile fraction by FRAP. The latter evidence supports the hypothesis that, as shown for BODIPY-SM, endogenous SM spontaneously clusters at the plasmalemma outer leaflet of living cells into ordered micrometric domains, defined in shape by liquid-phase coexistence and in size by membrane tension and cholesterol. This proposal remains speculative and calls for further investigations. 相似文献
3.
Different sites of plasma membrane attachment may underlie functional differences between isoforms of Ras. Here we show that palmitoylation and farnesylation targets H-ras to lipid rafts and caveolae, but that the interaction of H-ras with these membrane subdomains is dynamic. GTP-loading redistributes H-ras from rafts into bulk plasma membrane by a mechanism that requires the adjacent hypervariable region of H-ras. Release of H-ras-GTP from rafts is necessary for efficient activation of Raf. By contrast, K-ras is located outside rafts irrespective of bound nucleotide. Our studies identify a novel protein determinant that is required for H-ras function, and show that the GTP/GDP state of H-ras determines its lateral segregation on the plasma membrane. 相似文献
4.
5.
Akihiro Kusumi Takahiro K. Fujiwara Taka A. Tsunoyama Rinshi S. Kasai An‐An Liu Koichiro M. Hirosawa Masanao Kinoshita Nobuaki Matsumori Naoko Komura Hiromune Ando Kenichi G. N. Suzuki 《Traffic (Copenhagen, Denmark)》2020,21(1):106-137
Many plasma membrane (PM) functions depend on the cholesterol concentration in the PM in strikingly nonlinear, cooperative ways: fully functional in the presence of physiological cholesterol levels (35~45 mol%), and nonfunctional below 25 mol% cholesterol; namely, still in the presence of high concentrations of cholesterol. This suggests the involvement of cholesterol‐based complexes/domains formed cooperatively. In this review, by examining the results obtained by using fluorescent lipid analogs and avoiding the trap of circular logic, often found in the raft literature, we point out the fundamental similarities of liquid‐ordered (Lo)‐phase domains in giant unilamellar vesicles, Lo‐phase‐like domains formed at lower temperatures in giant PM vesicles, and detergent‐resistant membranes: these domains are formed by cooperative interactions of cholesterol, saturated acyl chains, and unsaturated acyl chains, in the presence of >25 mol% cholesterol. The literature contains evidence, indicating that the domains formed by the same basic cooperative molecular interactions exist and play essential roles in signal transduction in the PM. Therefore, as a working definition, we propose that raft domains in the PM are liquid‐like molecular complexes/domains formed by cooperative interactions of cholesterol with saturated acyl chains as well as unsaturated acyl chains, due to saturated acyl chains' weak multiple accommodating interactions with cholesterol and cholesterol's low miscibility with unsaturated acyl chains and TM proteins. Molecules move within raft domains and exchange with those in the bulk PM. We provide a logically established collection of fluorescent lipid probes that preferentially partition into raft and non‐raft domains, as defined here, in the PM. 相似文献
6.
Apolloni A Prior IA Lindsay M Parton RG Hancock JF 《Molecular and cellular biology》2000,20(7):2475-2487
Ras proteins must be localized to the inner surface of the plasma membrane to be biologically active. The motifs that effect Ras plasma membrane targeting consist of a C-terminal CAAX motif plus a second signal comprising palmitoylation of adjacent cysteine residues or the presence of a polybasic domain. In this study, we examined how Ras proteins access the cell surface after processing of the CAAX motif is completed in the endoplasmic reticulum (ER). We show that palmitoylated CAAX proteins, in addition to being localized at the plasma membrane, are found throughout the exocytic pathway and accumulate in the Golgi region when cells are incubated at 15 degrees C. In contrast, polybasic CAAX proteins are found only at the cell surface and not in the exocytic pathway. CAAX proteins which lack a second signal for plasma membrane targeting accumulate in the ER and Golgi. Brefeldin A (BFA) significantly inhibits the plasma membrane accumulation of newly synthesized, palmitoylated CAAX proteins without inhibiting their palmitoylation. BFA has no effect on the trafficking of polybasic CAAX proteins. We conclude that H-ras and K-ras traffic to the cell surface through different routes and that the polybasic domain is a sorting signal diverting K-Ras out of the classical exocytic pathway proximal to the Golgi. Farnesylated Ras proteins that lack a polybasic domain reach the Golgi but require palmitoylation in order to traffic further to the cell surface. These data also indicate that a Ras palmitoyltransferase is present in an early compartment of the exocytic pathway. 相似文献
7.
8.
James K. Petell Yoram Bujanover Jeannine Gocayne Sergio Amarri Darrell Doyle 《Experimental cell research》1987,173(2):473-485
Several recent studies have demonstrated the ability of techniques based on immunoadsorption to selectively isolate specialized subregions of membranes, termed domains, which are derived from a larger more complex parent membrane like the plasma membrane. The immunoadsorbent is directed against a specific antigen that resides exclusively or predominantly in the membrane domain to be isolated. Thus, a monospecific antibody to the domain-specific antigen is required. In the present study we developed a method employing a modified immunoblotting strategy which could utilize polyspecific antibodies to isolate membrane vesicles derived from a specific membrane domain of the hepatocyte plasma membrane. We also used specific cell surface labeling of the hepatocyte plasma membrane by lactoperoxidase-catalyzed iodination at 4 degrees C and preparation of different sized vesicles by sonication to facilitate isolation of the specific domain. For this study, polyspecific antisera were raised in goats against a membrane fraction, denoted N2u, which is enriched in bile canalicular proteins. This antiserum recognizes, among other antigens, a 110,000 Mr polypeptide previously shown to be localized in the bile canaliculus (J. Cook et al. (1983) J. Cell. Biol. 97, 1823-1833). A monospecific antiserum was raised in rabbits against the rat hepatocyte asialoglycoprotein receptor, a sinusoidal domain-specific set of glycoproteins whose major form has a Mr of 43,000. These antisera were each coupled indirectly to different pieces of nitrocellulose by the immunoblotting protocol and were used to isolate membrane vesicles from a crude extract of liver plasma membrane prepared by sonication. The ratio of iodinated asialoglycoprotein receptor to the 110,000 Mr polypeptide in vesicles isolated by the affinity nitrocellulose immunoadsorbent method indicate a 10- to 15-fold enrichment of sinusoidal-derived vesicles relative to bile canalicular-derived membrane vesicles. These results show that the affinity nitrocellulose immunoadsorbent method can be used to isolate domain-specific vesicles. Further, the affinity immunoadsorbent method described here for the isolation of domains of the plasma membrane is an integrative one allowing isolation of vesicles present in relatively small concentration in crude cell extracts and it requires minimal ultracentrifugation time. 相似文献
9.
Highly purified plasma membranes of calf thymocytes were fractionated by means of affinity chromatography on concanavalin A-Sepharose into two subfractions; one (fraction 1) eluted freely from the affinity column, the second (fraction 2) adhered specifically to concanavalin A-Sepharose. Previous analysis showed that both subfractions were right-side-out (Resch, K., Schneider, S. and Szamel, M. (1981) Anal. Biochem. 117, 282-292). The ratio of cholesterol to phospholipid was nearly identical in plasma membrane and both subfractions. When isolated plasma membranes were labelled with tritiated NaBH4, both subfractions exhibited identical specific radioactivities. After enzymatic radioiodination of thymocytes, the relative distribution of labelled proteins and externally exposed phospholipids was very similar in isolated plasma membranes and in both membrane subfractions, indicating the plasma membrane nature of the subfractions separated by affinity chromatography on concanavalin A-Sepharose. This finding was further substantiated by the nearly identical specific activities of some membrane-bound enzymes, Mg2+-ATPase, alkaline phosphatase and gamma-glutamyl transpeptidase. The specific activities of (Na+ + K+)-ATPase and of lysolecithin acyltransferase were several-fold enriched in fraction 2 compared to fraction 1, especially after rechromatography of fraction 1 on concanavalin A-Sepharose. Unseparated membrane vesicles contained two types of binding site for concanavalin A. In contrast, isolated subfractions showed a linear Scatchard plot; fraction 2 exhibited fewer binding sites for concanavalin A: the association constant was, however, 3.5-times higher than that measured in fraction 1. When plasma membranes isolated from concanavalin A-stimulated lymphocytes were separated by affinity chromatography, the yield of the two subfractions was similar to that of membranes from unstimulated lymphocytes. Upon stimulation with concanavalin A, Mg2+-ATPase, gamma-glutamyl transpeptidase and alkaline phosphatase were suppressed in their activities in both membrane subfractions. In contrast, the specific activities of (Na+ + K+)-ATPase and lysolecithin acyltransferase were enhanced preferentially in the adherent fraction (fraction 2). The data suggest the existence of domains in the plasma membrane of lymphocytes which are formed by a spatial and functional coupling of receptors with high affinity for concanavalin A, and certain membrane-bound enzymes, implicated in the initiation of lymphocyte activation. 相似文献
10.
11.
Ubiquitin-related proteins regulate interaction of vimentin intermediate filaments with the plasma membrane. 总被引:5,自引:0,他引:5
Integrin-associated protein (IAP, CD47) is a plasma membrane receptor for thrombospondins and signal regulatory proteins (SIRPs) that has an essential role in host defense through its association with integrins. The IAP gene encodes alternatively spliced carboxyterminal cytoplasmic tails that have no previously described function. IAP cytoplasmic tails can bind two related proteins that mediate interaction between IAP and vimentin-containing intermediate filaments, named proteins linking IAP with cytoskeleton (PLICs). Integrins interact with PLICs indirectly, through IAP. Transfection of PLICs induces redistribution of vimentin and cell spreading in IAP-expressing cells. This novel connection between plasma membrane and cytoskeleton is likely to be significant in many adhesion-dependent cell functions. 相似文献
12.
Ben N.G. Giepmans 《生物化学与生物物理学报:生物膜》2009,1788(4):820-831
Epithelial cells form a barrier against the environment, but are also required for the regulated exchange of molecules between an organism and its surroundings. Epithelial cells are characterised by a remarkable polarization of their plasma membrane, evidenced by the appearance of structurally, compositionally, and functionally distinct surface domains. Here we consider the (in)dependence of epithelial cell polarisation and the function of smaller plasma membrane domains (e.g. adherens junctions, gap junctions, tight junctions, apical lipid rafts, caveolae, and clathrin-coated pits) in the development and maintenance of cell surface polarity. Recent evidence of cross-talk and/or overlap between the different cell-cell junction components and alternate functions of junction components, including gene expression regulation, are discussed in the context of cell surface polarity. 相似文献
13.
Selectivity of ATP-activated GTP-dependent Ca2+-permeable channels in rat macrophage plasma membrane
A. P. Naumov E. V. Kaznacheyeva Y. A. Kuryshev G. N. Mozhayeva 《The Journal of membrane biology》1995,148(1):91-98
Outside-out configuration of the patch clamp technique was used to test whether an intracellular application of G protein activator (GTPS) affects ATP-activated Ca2+-permeable channels in rat macrophages without any agonist in the bath solution. With 145 mm K+ (pCa 8.0) in the pipette solution, activity of channels permeable to a variety of divalent cations and Na+ was observed and general channel characteristics were found to be identical to those of ATP-activated ones. Absence of extracellular ATP makes it possible to avoid the influence of ATP receptor desensitization and to study the channel selectivity using a number of divalent cations (105 mm) and Na+ (145 mm) as the charge carriers. Permeability sequence estimated by extrapolated reversal potential measurements was: Ca2+ Ba2+ Mn2+ Sr2+ Na+ K+ = 68 30 26 10 3.5 1. Slope conductances (in pS) for permeant ions rank as follows: Ca2+ Sr2+ Na+ Mn2+ Ba2+ = 19 18 14 12 10. Unitary Ca2+ currents display a tendency to saturate with the Ca2+ concentration increase with apparent dissociation constant (K
d
) of 10 mm. No block of Na+ permeation by extracellular Ca2+ in millimolar range was found. The data obtained suggest that (i) activation of some G protein is sufficient to gate the channels without the ATP receptor being occupied, (ii) the ATP receptor activation results in the gating of a special channel with the properties that differ markedly from those of the receptoroperated or voltage-gated Ca2+-permeable channels on the other cell types.DeceasedThe authors are grateful to K. Kiselyov and A. Mamin for technical assistance. The work was supported by the Russian Basic Research Foundation, Grant N 93-04-21722 and was made possible in part by Grant N R4A000 from the International Science Foundation. 相似文献
14.
The C2 domain is a common protein module which mediates calcium-dependent phospholipid binding. Several assays have previously been developed to measure membrane association. However, these assays either have technical drawbacks or are laborious to carry out. We now present a simple solution-based turbidity method for rapidly assaying membrane association of single lipid-binding domains in real time. We used the first C2 domain of synaptotagmin1 (C2A) as a model lipid-binding moiety. Our use of the common dimeric glutathione-S-transferase (GST) fusion tag allowed two C2A domains to be brought into close proximity. Consequently, calcium-triggered phospholipid binding by this artificially dimerized C2A resulted in liposomal aggregation, easily assayed by following absorbance of the solution at 350 nm. The assay is simple and sensitive and can be scaled up conveniently for use in a multiwell plate format, allowing high-throughput screening. In our screens, we identified nickel as a novel activator of synaptotagmin1 C2A domain membrane association. Finally, we show that the turbidity method can be applied to the study of other GST-tagged lipid-binding proteins such as epsin, protein kinase C-β, and synaptobrevin. 相似文献
15.
Knodler LA Ibarra JA Pérez-Rueda E Yip CK Steele-Mortimer O 《Cellular microbiology》2011,13(10):1497-1517
Coiled-coil domains in eukaryotic and prokaryotic proteins contribute to diverse structural and regulatory functions. Here we have used in silico analysis to predict which proteins in the proteome of the enteric pathogen, Salmonella enterica serovar Typhimurium, harbour coiled-coil domains. We found that coiled-coil domains are especially prevalent in virulence-associated proteins, including type III effectors. Using SopB as a model coiled-coil domain type III effector, we have investigated the role of this motif in various aspects of effector function including chaperone binding, secretion and translocation, protein stability, localization and biological activity. Compared with wild-type SopB, SopB coiled-coil mutants were unstable, both inside bacteria and after translocation into host cells. In addition, the putative coiled-coil domain was required for the efficient membrane association of SopB in host cells. Since many other Salmonella effectors were predicted to contain coiled-coil domains, we also investigated the role of this motif in their intracellular targeting in mammalian cells. Mutation of the predicted coiled-coil domains in PipB2, SseJ and SopD2 also eliminated their membrane localization in mammalian cells. These findings suggest that coiled-coil domains represent a common membrane-targeting determinant for Salmonella type III effectors. 相似文献
16.
Plasma membrane rafts are routinely isolated as detergent-resistant membranes (DRMs) floating in detergent-free density gradients. Here we show that both the presence and exclusion of TX-100 during the density gradient fractionation have profound effects on the location of FcgammaRII and TCR in DRM fractions. The presence of TX-100 during fractionation promoted solubilization of non-cross-linked FcgammaRII when the receptor was insufficiently dissolved upon cell lysis. In the detergent-supplemented gradients, TX-100 micelles floated, further enhancing dissociation of FcgammaRII and TCR from DRMs and promoting a shift of the receptors toward higher-density fractions. Hence, fractionation of cell lysates over the detergent-containing gradients enables isolation of DRMs devoid of weakly associated proteins, like nonactivated FcgammaRII and TCR. On the other hand, in a detergent-free gradient, non-cross-linked FcgammaRII, fully soluble in 0.2% TX-100, was recovered in DRM fractions. Moreover, employment of the TX-100-free gradient for refractionation of intermediate-density fractions, derived from detergent-supplemented gradients and containing FcgammaRII and TCR, resulted in flotation of the receptors to buoyant fractions. An analysis of the TX-100 concentration revealed that after fractionation of 0.2% TX-100 cell lysates in the absence of detergent, the level of TX-100 in DRM fractions was reduced to 0.01%, below the critical micelle concentration. Therefore, fractionation of detergent cell lysates over detergent-free gradients can mimic conditions for a membrane reconstitution, evoking association of a distinct subset of membrane proteins, including FcgammaRII and TCR, with DRMs. 相似文献
17.
Polarized plasma membrane domains in cultured endothelial cells 总被引:1,自引:0,他引:1
To determine whether distinct plasma membrane domains exist in endothelial cells, we infected monolayer cultures of macro- and microvascular endothelial cells with enveloped RNA viruses known to bud selectively from either the apical or basal surface in polarized epithelial cells. We found that vesicular stomatitis (VSV) and Sendai virus emerge asymmetrically from cultured endothelial cells. This provides direct evidence for the existence of polarized plasma membrane domains in vascular endothelial cells. 相似文献
18.
Although specific proteins have been identified that regulate the membrane association and facilitate intracellular transport of prenylated Rho- and Rab-family proteins, it is not known whether cellular proteins fulfill similar roles for other prenylated species, such as Ras-family proteins. We used a previously described method to evaluate how several cellular proteins, previously identified as potential binding partners (but not effectors) of K-ras4B, influence the dynamics of K-ras association with the plasma membrane. Overexpression of either PDEδ or PRA1 enhances, whereas knockdown of either protein reduces, the rate of dissociation of K-ras from the plasma membrane. Inhibition of calmodulin likewise reduces the rate of K-ras dissociation from the plasma membrane, in this case in a manner specific for the activated form of K-ras. By contrast, galectin-3 specifically reduces the rate of plasma membrane dissociation of activated K-ras, an effect that is blocked by the K-ras antagonist farnesylthiosalicylic acid (salirasib). Multiple cellular proteins thus control the dynamics of membrane association and intercompartmental movement of K-ras to an important degree even under basal cellular conditions. 相似文献
19.
Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane 总被引:43,自引:15,他引:28 下载免费PDF全文
《The Journal of cell biology》1994,125(2):381-391
We characterized the yeast actin cytoskeleton at the ultrastructural level using immunoelectron microscopy. Anti-actin antibodies primarily labeled dense, patchlike cortical structures and cytoplasmic cables. This localization recapitulates results obtained with immunofluorescence light microscopy, but at much higher resolution. Immuno-EM double-labeling experiments were conducted with antibodies to actin together with antibodies to the actin binding proteins Abp1p and cofilin. As expected from immunofluorescence experiments, Abp1p, cofilin, and actin colocalized in immuno-EM to the dense patchlike structures but not to the cables. In this way, we can unambiguously identify the patches as the cortical actin cytoskeleton. The cortical actin patches were observed to be associated with the cell surface via an invagination of plasma membrane. This novel cortical cytoskeleton- plasma membrane interface appears to consist of a fingerlike invagination of plasma membrane around which actin filaments and actin binding proteins are organized. We propose a possible role for this unique cortical structure in wall growth and osmotic regulation. 相似文献
20.
《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2017,1862(2):156-166
Neurospora crassa, a filamentous fungus, in the unicellular conidial stage has ideal features to study sphingolipid (SL)-enriched domains, which are implicated in fundamental cellular processes ranging from antifungal resistance to apoptosis. Several changes in lipid metabolism and in the membrane composition of N. crassa occur during spore germination. However, the biophysical impact of those changes is unknown. Thus, a biophysical study of N. crassa plasma membrane, particularly SL-enriched domains, and their dynamics along conidial germination is prompted.Two N. crassa strains, wild-type (WT) and slime, which is devoid of cell wall, were studied. Conidial growth of N. crassa WT from a dormancy state to an exponential phase was accompanied by membrane reorganization, namely an increase of membrane fluidity, occurring faster in a supplemented medium than in Vogel's minimal medium. Gel-like domains, likely enriched in SLs, were found in both N. crassa strains, but were particularly compact, rigid and abundant in the case of slime cells, even more than in budding yeast Saccharomyces cerevisiae. In N. crassa, our results suggest that the melting of SL-enriched domains occurs near growth temperature (30 °C) for WT, but at higher temperatures for slime. Regarding biophysical properties strongly affected by ergosterol, the plasma membrane of slime conidia lays in between those of N. crassa WT and S. cerevisiae cells. The differences in biophysical properties found in this work, and the relationships established between membrane lipid composition and dynamics, give new insights about the plasma membrane organization and structure of N. crassa strains during conidial growth. 相似文献