首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The action of caffeine and Mg2+ on the efficacy of Ca2+ transport by terminal cisterns and longitudinal tubules of rabbit skeletal muscle sarcoplasmic reticulum (SR) was studied and compared. Addition of 5 to 10 mM caffeine to the incubation medium or a decrease in Mg2+ concentration from 4 to 0.1 mM led to a 3-fold diminution of the Ca/ATP ratio for the terminal cistern fraction. In longitudinal tubules, that effect was far less pronounced. The effects of caffeine and decreases in Mg2+ concentration were blocked by ruthenium red, tetracaine and dimethylsulfoxide. It is assumed that the decrease in Mg2+ concentration is accompanied by activation of the caffeine site of the SR, induced by the intravesicular caffeine-like factor.  相似文献   

2.
The effects of caffeine and procaine on the Ca2+-gated cation channel in sarcoplasmic reticulum (SR) vesicles were studied by measuring choline influx. The choline influx in SR vesicles was measured by following the change in light scattering intensity using a stopped flow apparatus. From the kinetic analysis of the rate of choline influx, the following results were obtained. (1) The rate of choline influx was enhanced when Ca2+ bound to the Ca2+-receptor site of the Ca2+-gated cation channel. (2) Caffeine enhanced the choline influx by increasing only the affinity of Ca2+ for the receptor site of the channel and thus regulated the equilibrium between open and closed states of the channel. The affinity increased about 14-fold upon caffeine binding. The dissociation constant of caffeine was 10 mM. (3) In contrast, procaine itself blocked the choline influx mediated by the Ca2+-gated cation channel. The blockade followed a single-site titration curve with a Ca2+-dependent dissociation constant of 0.44 mM at 2 x 10(-6) M Ca2+. The Ca2+-dependence was explained by assuming that procaine would bind to the inhibitory site only when the channel was open. (4) Procaine also inhibited the choline influx enhanced by caffeine. The blockade could be explained on the basis of the above kinetic model.  相似文献   

3.
Major questions in excitation--contraction coupling of fast skeletal muscle concern the mechanism of signal transmission between sarcolemma and sarcoplasmic reticulum (SR), the mechanism of SR Ca release, and operation of the SR active transport system during excitation. Intracellular Ca movement can be studied in skinned muscle fibers with more direct control, analysis of 45Ca flux, and simultaneous isometric force measurements. Ca release can be stimulated by bath Ca2+ itself, ionic "depolarization," Mg2+ reduction, or caffeine. The effectiveness of bath Ca2+ has suggested a possible role for Ca2+ in physiological release, but this response is difficult to analyze and evaluate. Related evidence emerged from analysis of other responses: with all agents studied, stimulation of 45Ca efflux is highly Ca2+-dependent. The presence of a Ca chelator prevents detectable stimulation by ionic "depolarization" or Mg2+ reduction and inhibits the potent caffeine stimulus; inhibition is graded with chelator concentration and caffeine concentration, and is synergistic with inhibition by increased Mg2+. The results indicate that a Ca2+-dependent pathway mediates most or all of stimulated 45Ca efflux in skinned fibers, and has properties compatible with a function in physiological Ca release.  相似文献   

4.
Effects of pretreatment with caffeine on Ca2+ release induced by caffeine, thymol, quercetin, or p-chloromercuriphenylsulfonic acid (pCMPS) from the heavy fraction of sarcoplasmic reticulum (SR) were studied and compared with those effects on caffeine contracture and tetanus tension in single fibers of frog skeletal muscle. Caffeine (1-5 mM) did induce transient Ca2+ release from SR vesicles, but subsequent further addition of caffeine (10 mM, final concentration) induced little Ca2+ release. Ca2+ release induced by thymol, quercetin, or pCMPS was also inhibited by pretreatment with caffeine. In single muscle fibers, pretreatment with caffeine (1-5 mM) partially reduced the contracture induced by 10 mM caffeine. However, tetanus tension was almost maximally induced by electrical stimulus in caffeine-treated fibers. These results indicate that SR, which becomes less sensitive to caffeine, thymol, quercetin, or pCMPS by pretreatment with caffeine, can still respond to a physiological signal transmitted from transverse tubules.  相似文献   

5.
Recent studies have highlighted the role of the sarcoplasmic reticulum (SR) in controlling excitability, Ca2+ signalling and contractility in smooth muscle. Caffeine, an agonist of ryanodine receptors (RyRs) on the SR has been previously shown to effect Ca2+ signalling but its effects on excitability and contractility are not so clear. We have studied the effects of low concentration of caffeine (1 mM) on Ca2+ signalling, action potential and contractility of guinea pig ureteric smooth muscle. Caffeine produced reversible inhibition of the action potentials, Ca2+ transients and phasic contractions evoked by electrical stimulation. It had no effect on the inward Ca2+ current or Ca2+ transient but increased the amplitude and the frequency of spontaneous transient outward currents (STOCs) in voltage clamped ureteric myocytes, suggesting Ca2+-activated K+ channels (BK) are affected by it. In isolated cells and cells in situ caffeine produced an increase in the frequency and the amplitude of Ca2+ sparks as well the number of spark discharging sites per cell. Inhibition of Ca2+ sparks by ryanodine (50 microM) or SR Ca2+-ATPase (SERCA) cyclopiazonic acid (CPA, 20 microM) or BKCa channels by iberiotoxin (200 nM) or TEA (1 mM), fully reversed the inhibitory effect of caffeine on Ca2+ transients and force evoked by electrical field stimulation (EFS). These data suggest that the inhibitory effect of caffeine on the action potential, Ca2+ transients and force in ureteric smooth muscle is caused by activation of Ca2+ sparks/STOCs coupling mechanism.  相似文献   

6.
The caffeine-sensitive Ca2+ release pathway in skeletal muscle was identified and characterized by studying the release of 45Ca2+ from heavy sarcoplasmic reticulum (SR) vesicles and by incorporating the vesicles or the purified Ca2+ release channel protein complex into planar lipid bilayers. First-order rate constants for 45Ca2+ efflux of 1 s-1 were obtained in the presence of 1-10 microM free Ca2+ or 2 X 10(-9) M free Ca2+ plus 20 mM caffeine. Caffeine- and Ca2+-induced 45Ca2+ release were potentiated by ATP and Mg.ATP, and were both inhibited by Mg2+. Dimethylxanthines were similarly (3,9-dimethylxanthine) or more (1,7-, 1,3-, and 3,7-dimethylxanthine) effective than caffeine in increasing the 45Ca2+ efflux rate. 1,9-Dimethylxanthine and 1,3-dimethyluracil (which lacks the imidazole ring) did not appreciably stimulate 45Ca2+ efflux. Recordings of calcium ion currents through single channels showed that the Ca2+- and ATP-gated SR Ca2+ release channel is activated by addition of caffeine to the cis (cytoplasmic) and not the trans (lumenal) side of the channel in the bilayer. The single channel measurements further revealed that caffeine activated Ca2+ release by increasing the number and duration of open channel events without a change of unit conductance (107 pS in 50 mM Ca2+ trans). These results suggest that caffeine exerts its Ca2+ releasing effects in muscle by activating the high-conductance, ligand-gated Ca2+ release channel of sarcoplasmic reticulum.  相似文献   

7.
Previous results from this laboratory suggest that the 53 kDa glycoprotein (GP-53) of rabbit skeletal muscle sarcoplasmic reticulum membrane (SR) may influence coupling between Ca2+ transport and ATP hydrolysis by the Ca(2+)-ATPase. Here we report evidence that GP-53 may influence the cooperative behavior of the Ca(2+)-ATPase. The ATPase activity of the Ca(2+)-ATPase displays negative cooperative dependence (Hill coefficient n less than 1) on [MgATP] and has positive cooperative dependence (n greater than 1) on [Ca2+]free. We have determined the degree of cooperativity for native SR vesicles, SR preincubated with antiserum against GP-53 or preimmune serum, and SR partially extracted with KCl-cholate. Our results show that SR preincubated with preimmune serum or SR treated with cholate in 50 mM KCl (yielding membranes rich in GP-53) demonstrate a cooperative dependence of Ca(2+)-ATPase activity on both [ATP] and [Ca2+] similar to that of untreated SR. SR preincubated with anti-GP-53 antiserum (which causes an uncoupling of Ca2+ transport from ATP hydrolysis) or SR extracted with cholate in 1 M KCl (yielding membranes depleted of GP-53) displays decreased positive cooperative dependence on [Ca2+] and decreased negative cooperative dependence on [ATP]. The results are consistent with the interpretation that GP-53 may influence the cooperative behavior of the Ca(2+)-ATPase.  相似文献   

8.
H Kutchai  K P Campbell 《Biochemistry》1989,28(11):4830-4839
The effects of an antiserum against the 53-kDa glycoprotein (GP-53) of the sarcoplasmic reticulum (SR) and of monoclonal antibodies against GP-53 on Ca2+ transport and ATP hydrolysis by SR of rabbit skeletal muscle have been investigated. Preincubation of SR with an antiserum against GP-53 resulted in decreased ATP-driven Ca2+ transport by the SR but had no effect on Ca2+-stimulated ATP hydrolysis. Preincubation of SR with preimmune serum had no significant effect on either Ca2+ transport or Ca2+-ATPase activity. The effect of anti-GP-53 serum was time and concentration dependent. Preincubation of SR with two monoclonal antibodies against GP-53 had no effect on Ca2+ transport or on Ca2+-stimulated ATP hydrolysis. However, preincubation of SR with either monoclonal antibody against GP-53 together with a monoclonal antibody against the Ca2+-ATPase (at levels which had little effect alone) resulted in markedly decreased rates of Ca2+ uptake and ATP hydrolysis. Preincubation of SR with anti-GP-53-serum or with monoclonal antibodies, under the same conditions that inhibited Ca2+ uptake, did not increase the passive permeability of the SR membrane to Ca2+, did not decrease the permeability of the SR to oxalate, and did not cause significant proteolysis of the Ca2+-ATPase. Our results are consistent with the interpretation that GP-53 may modulate the function of the Ca2+-ATPase of the SR membrane.  相似文献   

9.
The clinical use of doxorubicin, an antineoplasmic agent, is limited by its extensive cardiotoxicity which is mediated by the mobilization of intracellular Ca2+ from SR. In order to elucidate the mechanism of Ca2+ release, we analyzed the binding sites of doxorubicin on rabbit cardiac SR (sarcoplasmic reticulum). One of the binding sites was identified as cardiac-type ryanodine receptor (RyR2) which was purified by immunoprecipitation from solubilized cardiac SR in the presence of DTT. Ligand blot analysis revealed the direct binding of doxorubicin to RyR2. The binding of doxorubicin to RyR2 was specific and displaced by caffeine. Both doxorubicin and caffeine enhanced [3H]-ryanodine binding to RyR2 in a Ca2+ dependent manner. These results suggest that there is a doxorubicin binding site on RyR2.  相似文献   

10.
M Fill  E Stefani    T E Nelson 《Biophysical journal》1991,59(5):1085-1090
Single sarcoplasmic reticulum (SR) Ca2+ release channels were reconstituted from normal and malignant hyperthermic (MH) human skeletal muscle biopsies (2-5 g samples). Conduction, gating properties, and myoplasmic Ca2+ dependence of human SR Ca2+ release channels were similar to those in other species (rabbit, pig). The MH diagnostic procedure distinguishes three phenotypes (normal, MH-equivocal, and MH-susceptible) on the basis of muscle contracture sensitivity to caffeine and/or halothane. Single channel studies reveal that human MH muscles (both MH phenotypes) contain SR Ca2+ release channels with abnormally greater caffeine sensitivity. Muscles from MH-equivocal and MH-susceptible patients appear to contain channels with the same abnormality. Further, our data (n = 115, 21 channels, 11 patients) reveals that human MH muscles (both phenotypes) may contain two populations of SR Ca2+ release channels, possibly corresponding to normal and abnormal isoforms. Thus, whole cell phenotypic variation (MH-equivocal vs. MH-susceptible) arises in muscles containing channels with similar caffeine sensitivity suggesting that human MH does not arise from a single defect. These results have important ramifications concerning (a) correlation of functional and genetic MH studies, (b) identification of other, yet to be determined, factors which may influence MH expression, and (c) characterization of normal SR Ca2+ release channel function by exploring genetic channel defects.  相似文献   

11.
The role of mitochondrial Ca2+ transport in regulating intracellular Ca2+ signaling and mitochondrial enzymes involved in energy metabolism is widely recognized in many tissues. However, the ability of skeletal muscle mitochondria to sequester Ca2+ released from the sarcoplasmic reticulum (SR) during the muscle contraction-relaxation cycle is still disputed. To assess the functional cross-talk of Ca2+ between SR and mitochondria, we examined the mutual relationship connecting cytosolic and mitochondrial Ca2+ dynamics in permeabilized skeletal muscle fibers. Cytosolic and mitochondrial Ca2+ transients were recorded with digital photometry and confocal microscopy using fura-2 and mag-rhod-2, respectively. In the presence of 0.5 mM slow Ca2+ buffer (EGTA (ethylene glycolbis(2-aminoethylether)-N,N,N',N'-tetraacetic acid)), application of caffeine induced a synchronized increase in both cytosolic and mitochondrial [Ca2+]. 5 mM fast Ca2+ buffer (BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid)) nearly eliminated caffeine-induced increases in [Ca2+]c but only partially decreased the amplitude of mitochondrial Ca2+ transients. Confocal imaging revealed that in EGTA, almost all mitochondria picked up Ca2+ released from the SR by caffeine, whereas only about 70% of mitochondria did so in BAPTA. Taken together, these results indicated that a subpopulation of mitochondria is in close functional and presumably structural proximity to the SR, giving rise to subcellular microdomains in which Ca2+ has preferential access to the juxtaposed organelles.  相似文献   

12.
The action of ruthenium red (RR) on Ca2+ loading by and Ca2+ release from the sarcoplasmic reticulum (SR) of chemically skinned skeletal muscle fibers of the rabbit was investigated. Ca2+ loading, in the presence of the precipitating anion pyrophosphate, was monitored by a light-scattering method. Ca2+ release was indirectly measured by following tension development evoked by caffeine. Stimulation of the Ca2+ loading rate by 5 microM RR was dependent on free Ca2+, being maximal at pCa 5.56. Isometric force development induced by 5 mM caffeine was reversibly antagonized by RR. IC50 for the rate of tension rise was 0.5 microM; that for the extent of tension was 4 microM. RR slightly shifted the steady state isometric force/pCa curve toward lower pCa values. At 5 microM RR, the pCa required for half-maximal force was 0.2 log units lower than that of the control, and maximal force was depressed by approximately 16%. These results suggest that RR inhibited Ca2+ release from the SR and stimulated Ca2+ loading into the SR by closing Ca2+-gated Ca2+ channels. Previous studies on isolated SR have indicated the selective presence of such channels in junctional terminal cisternae.  相似文献   

13.
Effects of ruthenium red and caffeine (a Ca2+ release blocker and an inducer, respectively) on Ca2+ uptake by sarcoplasmic reticulum (SR) vesicles and formation of the phosphorylated intermediate (EP) of the Ca2+-ATPase were studied using fast-kinetic techniques. Ruthenium red increased the rate and the maximum level of EP formation, while caffeine decreased both. Similarly, ruthenium red accelerated rapid Ca2+ uptake, while caffeine inhibited it. These drugs affected EP formation also with detergent solubilized Ca2+-ATPase. The concentrations required for half maximal effects on these functions (0.2 microM ruthenium red, 1.0 mM caffeine) are about the same as those for altering Ca2+ release. These results indicate that these reagents affect both the Ca2+-pump as well as the Ca2+ release mechanism, suggesting that the Ca2+-pump and Ca2+ release have some mechanisms in common.  相似文献   

14.
We investigated the effect of 2-methyl-1,4-naphtoquinone (Menadione) on sarcoplasmic reticulum (SR) Ca2+ content and electrically stimulated contractions (ESCs) of single isolated myocytes of guinea-pig ventricular myocardium. The contractures initiated by means of microinjections of caffeine into the close vicinity of the cell were used as an indirect index of the SR Ca2+ content. Superfusion of the cells for 45 min with Menadione resulted in gradual disappearance of contractile responses to caffeine, prolongation of time to peak amplitude of ESCs by 48 +/- 15% and complete inhibition of postrest and postextrasystolic potentiation. These results are consistent with those of Floreani and Carpenedo (7) who found that Menadione strongly inhibits the SR Ca2+ ATPase. Despite depletion of the SR Ca2+ the amplitude of ESCs did not change which suggests that contractions were initiated in the cells treated with Menadione by Ca2+ derived from the sources other than the SR.  相似文献   

15.
While studying the effects of membrane phosphorylation on active Ca2+ transport in cardiac sarcoplasmic reticulum (SR) we used NaF (a conventional phosphatase inhibitor) in the Ca2+ transport assay medium to suppress protein dephosphorylation by endogenous phosphatases. Unexpectedly, depending on the experimental conditions employed, NaF was found to cause a strong inhibitory or stimulatory effect on ATP-dependent, oxalate-facilitated Ca2+ uptake (Ca2+ pump) activity of SR. Investigation of this phenomenon using canine cardiac SR revealed the following. Exposure of SR to NaF in the absence of Ca2+ or ATP in the Ca2+ transport assay medium (prior to initiating Ca2+ transport by the addition of Ca2+ or ATP) promoted a striking concentration-dependent inhibitory effect of NaF (50% and 90% inhibition with approx. 4 and 10 mM NaF, respectively) on Ca2+ uptake by SR; the magnitude of inhibition did not differ appreciably with varying oxalate concentrations. In contrast, exposure of SR to NaF in the presence of both Ca2+ and ATP resulted in a concentration-dependent stimulatory effect of NaF (half-maximal stimulation at approx. 2.5 mM NaF with 2.5 mM oxalate in assay) on Ca2+ uptake; the magnitude of stimulation decreased with increasing oxalate concentration (greater than 2-fold at 1 mM oxalate, 10% at 5 mM oxalate). The inhibitory effect prevailed when SR was exposed to NaF in the presence of Ca2+ alone (without ATP) or ATP alone (without Ca2+). Both the inhibitory and stimulatory effects of NaF were specific to fluoride ion, as NaCl (1-10 mM) showed no effect on Ca2+ uptake by SR under identical assay conditions. A persistently less active state of the Ca2+ pump (evidenced by decreased Ca2+ transport rates) resulted upon pretreatment of SR with NaF in the absence of Ca2+ or ATP; presence of Ca2+ and ATP during pretreatment prevented this transition. The inhibitory action of NaF on the Ca2+ pump was accompanied by a two-fold increase in K0.5 for Ca2+ and decrements in Hill coefficient (nH) and Ca(2+)-stimulated ATP hydrolysis, as well as steady-state level of Ca(2+)-induced phosphoenzyme. The stimulatory effect of NaF, on the other hand, was associated with an increase in the ratio of Ca2+ transported/ATP hydrolysed with only minor changes, if any, in the above parameters. These findings imply that the divergent effects of fluoride are dependent on specific conformational states of the Ca(2+)-ATPase which evolve during the catalytic and ion transport cycle.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Using a Ca2+-selective electrode and the chlorotetracycline fluorescence technique, the effects of heparin on Ca2+ transport in the sarcoplasmic reticulum (SR) of skeletal muscles in the absence of oxalate were investigated. It was shown that heparin (0.5-10 micrograms/ml) causes a rapid release of 40-50 nmol Ca2+/mg protein from the terminal cistern SR vesicles bound to 130-150 nmol/mg protein of Ca2+ in the presence of ATP. However, heparin has practically no effect on the longitudinal cistern fraction of SR. The effects of heparin can be prevented by ruthenium red. No influence of heparin is observed in the case of the Ca2+-induced release of Ca2+ from the terminal cisterns. When the Ca2+ release is induced by heparin, no Ca2+-induced release of Ca2+ takes place.  相似文献   

17.
The T-tubules and sarcoplasmic reticulum (SR) serving excitation-contraction (EC) coupling in lobster (Homarus americanus) cardiac muscle are similar to those in mammalian myocardium. Tetanic contraction is elicited by a burst of action potentials from the cardiac ganglion. In this study we evaluated the roles of the sarcolemma and SR in EC coupling of the ostial valve muscle (orbicularis ostii m. or OOM) of lobster heart. The OOM was mounted in a bath with saline on a microscope stage; force was measured by strain gauge. [Ca2+]i was measured using iontophoretically micro-injected fura-2 salt. Peak [Ca+]i, peak tetanic force and time to peak [Ca2+]i increased with that of stimulus train duration (TD), to a maximum at a TD of 500 ms. Force increased with [Ca2+]. Cd2+ reduced force by 90%; ryanodine and caffeine reduced tetanic [Ca2+]i transients by 80% and 70%, and force by 90% and 80%, respectively. Ryanodine, caffeine and cyclopiazonic acid slowed the decline of [Ca2+]i and force during relaxation. Relaxation required [Na+]o. The rate of decline of [Ca2+]i appeared to be a sigmoidal function of the [Ca2+]i and increased for any [Ca2+]i with TD. Inactivity slowed relaxation of force; stimulation accelerated relaxation. These data suggest important contributions of Ca2+ transport both across the sarcolemma and across the SR membrane during EC-coupling of lobster cardiac muscle, while average cytosolic [Ca2+]i regulates the rate of [Ca2+]i elimination during relaxation.  相似文献   

18.
Force development and fura-2 fluorescence were simultaneously measured in the rabbit inferior vena cava. Discharging SR Ca2+ with either caffeine or norepinephrine prior to stimulation of Ca2+ influx induced a delay of 30-70 s between the intracellular Ca2+ signal and development of force. This delay was abolished by the application of caffeine. These data support the superficial buffer barrier hypothesis, which holds that Ca2+ entry from the extracellular space proceeds via a restricted cytoplasmic region between the inner plasmalemmal surface and the peripheral sarcoplasmic reticulum (SR). Ca2+ accumulation by this SR fraction appears to be able to delay Ca2+ entry into the deeper myoplasm where it activates the myofilaments. Caffeine and thapsigargin elevated the steady-state [Ca2+]i, suggesting a contribution by the SR Ca2+ pump to Ca2+ extrusion from the cells. Norepinephrine enhanced myofilament Ca2+ sensitivity, while caffeine decreased it.  相似文献   

19.
The anthraquinones, doxorubicin, mitoxantrone, daunorubicin and rubidazone are shown to be potent stimulators of Ca2+ release from skeletal muscle sarcoplasmic reticulum (SR) vesicles and to trigger transient contractions in chemically skinned psoas muscle fibers. These effects of anthraquinones are the direct consequence of their specific interaction with the [3H] ryanodine receptor complex, which constitutes the Ca2+ release channel from the triadic junction. In the presence of adenine nucleotides and physiological Mg2+ concentrations (approximately 1.0 mM), channel activation by doxorubicin and daunorubicin exhibits a sharp dependence on submicromolar Ca2+ which is accompanied by a selective, dose-dependent increase in the apparent affinity of the ryanodine binding sites for Ca2+, in a manner similar to that previously reported with caffeine. Unlike caffeine, however, anthraquinones increase [3H]ryanodine receptor occupancy to the level observed in the presence of adenine nucleotides. A strong interaction between the anthraquinone and the caffeine binding sites on the Ca2+ release channel is also observed when monitoring Ca2+ fluxes across the SR. Millimolar caffeine both inhibits anthraquinone-stimulated Ca2+ release, and reduces anthraquinone-stimulated [3H]ryanodine receptor occupancy, without changing the effective binding constant of the anthraquinone for its binding site. The degree of cooperativity for daunorubicin activation of Ca2+ release from SR also increases in the presence of caffeine. These results demonstrate that the mechanism by which anthraquinones stimulate Ca2+ release is caused by a direct interaction with the [3H]ryanodine receptor complex, and by sensitization of the Ca2+ activator site for Ca2+.  相似文献   

20.
Using a Ca2+-selective electrode and Quin 2 and chlortetracycline fluorescence spectra, a comparative study of caffeine- and Ca2+-induced release of Ca2+ from the terminal cisterns of rabbit fast skeletal muscle sarcoplasmic reticulum was carried out. It was shown that the caffeine-induced release of Ca2+ depends on Ca2+ and Mg2+ concentration in the medium; Mg2+ inhibit, while Ca2+ stimulate this process. The caffeine-induced transport of Ca2+ is blocked by ruthenium red, tetracaine and dimethylsulfoxide. The Ca2+ release induced by Ca2+ was shown to occur in two ways, i. e., via Mg2+-dependent (inhibited by Mg2+ and caffeine blockers) and Mg2+-independent (insensitive to caffeine inhibitors, including Mg2+) routes. It was assumed that caffeine stimulates the Mg2+-dependent, Ca2+-induced release of Ca2+. The sensitivity of Ca2+ transport to caffeine testifies to the fact that about 80% of the total Ca2+ transport activity of fast skeletal muscle homogenates belongs to terminal cisterns. The total amount of sarcoplasmic reticulum membranes in the muscle makes up to 15-20 mg of protein/g of tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号