首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Biological Control》2010,52(3):370-376
Fusarium head blight (FHB) caused by Gibberella zeae (anamorph = Fusarium graminearum) is a devastating disease that causes extensive yield and quality losses to wheat in humid and semi-humid regions of the world. Biological control has been demonstrated to be effective under laboratory conditions but a few biocontrol products have been effective under field conditions. The improvement in the physiological quality of biocontrol agents may improve survival under field conditions, and therefore, enhance biocontrol activity. Bacillus subtilis RC 218 and Brevibacillus sp. RC 263 were isolated from wheat anthers and showed significant effect on control of FHB under greenhouse assays. This study showed the effect of water availability measured as water activity (aW) using a growth medium modified with NaCl, glycerol and glucose on: (i) osmotic stress tolerance, (ii) viability in modified liquid medium, (iii) quantitative intracellular accumulation of betaine and ectoine and (iv) the biocontrol efficacy of the physiologically improved agents. Viability of B. subtilis RC 218 in NaCl modified media was similar to the control. Brevibacillus sp. RC 263 showed a limited adaptation to growth in osmotic stress. Betaine was detected in high levels in modified cells but ectoine accumulation was similar to the control cells. Biocontrol activity was studied in greenhouse assays on wheat inoculated at anthesis period with F. graminearum RC 276. Treatments with modified bacteria reduced disease severity from 60% for the control to below 20%. The physiological improvement of biocontrol agents could be an effective strategy to enhance stress tolerance and biocontrol activity under fluctuating environmental conditions.  相似文献   

2.
由禾谷镰刀菌(Fusarium graminearum, Fg)引起的赤霉病是限制小麦生产的主要病害之一。生物防治是一种高效且可持续的防治方法。【目的】从小麦种子内筛选具有抑制禾谷镰刀菌的菌株并对其生防潜力进行评估,为小麦赤霉病生防制剂的开发与利用提供菌种资源及理论支撑。【方法】采用平板对峙、孢子萌发法和无菌上清液抑菌试验筛选小麦种子内对禾谷镰刀菌具有拮抗活性的内生菌株;利用扫描电镜(scanning electron microscope, SEM)和共聚焦扫描电镜(confocal laser scanning microscope, CLSM)观察并分析无菌上清液对Fg的分生孢子形态、膜完整性以及胞内活性氧的影响;通过盆栽试验验证内生菌对小麦赤霉病的生防效果;应用二代Illumina HiSeq测序平台进行全基因组测序。【结果】从小麦种子中分离出一株高效抑制Fg生长的内生菌株JB7,其衰亡期无菌上清液对Fg孢子萌发抑制率高达85.23%。菌株JB7的无菌上清液使Fg孢子表面凹陷,破坏其细胞膜,造成核酸和蛋白质的渗漏,诱导Fg菌丝活性氧的累积,引起Fg菌丝可溶性蛋白和丙二醛含量的显著升高。该菌株具有分泌蛋白酶、纤维素酶、葡聚糖酶和产铁载体的能力。盆栽试验表明菌株JB7能显著降低小麦赤霉病的病情指数(P<0.05)。经全基因组学鉴定为甲基营养型芽孢杆菌(Bacillus methylotrophicus) JB7,该菌株基因组中含有12个抑菌功能的次级代谢产物合成基因簇。【结论】菌株JB7能抑制禾谷镰刀菌的生长,对小麦赤霉病有较强的防效,可作为生物防治小麦赤霉病的候选菌株。  相似文献   

3.
Fusarium head blight (FHB) is a destructive disease of wheat in Canada and Clonostachys rosea strain ACM941 has been identified as a promising biological control agent for managing FHB. In the present research the concentration and cultivar effects on the efficacy of CLO-1, a formulated product of C. rosea strain ACM941, in controlling FHB and deoxynivalenol (DON) contamination in wheat was studied. Of the eight concentrations ranging from 104 to 108 cfu mL−1 evaluated, significant effects were generally observed for concentrations at or above 106 cfu mL−1 in the greenhouse and field trials in 2009 and 2010. In the greenhouse, CLO-1 reduced the area under the disease progress curve (AUDPC) by 65–83%, Fusarium damaged kernels (FDK) by 68–92%, and DON by 51–95%. Under field conditions, CLO-1 reduced FHB index by 30–46%, FDK by 31–39%, and DON by 22–33%. These effects were numerically lower but not significantly different from those of the registered fungicide Folicur® (tebuconazole) used in these trials. When applied onto wheat cultivars differing in resistance to FHB in field trials in 2009 and 2010, CLO-1 was most effective on the moderately resistant cultivar AC Nass (representing the highest level of resistance commercially available) and least effective on the highly susceptible cultivar AC Foremost. Results of this study suggest that CLO-1 is a promising biocontrol product that may be used in combination with cultivar resistance for managing FHB in wheat.  相似文献   

4.
Fusarium head blight (FHB), caused by Fusarium graminearum (= Gibberella zeae), is a destructive disease of wheat for which biological controls are needed. Lysobacter enzymogenes strain C3, a bacterial antagonist of fungal pathogens via lytic enzymes and induced resistance, was evaluated in this study for control of FHB. In greenhouse experiments, chitin broth cultures of C3 reduced FHB severity to <10% infected spikelets as compared to >80% severity in the controls in some experiments. C3 broth cultures heated to inactivate cells and lytic enzymes, but retaining the elicitor factor for induced resistance, also were effective in reducing FHB severity, suggesting induced resistance is one mechanism of action. C3 broth cultures also were effective when applied in highly diluted form and when applied 1 week prior to pathogen inoculation. When applied to 8 cultivars of hard red spring wheat in the greenhouse, C3 treatments reduced FHB in 5 cultivars but not in the others. These findings also are consistent with induced resistance. Protection offered by C3 treatments, however, was not systemic and required that C3 be applied uniformly to all susceptible florets. Field tests were conducted in South Dakota and Nebraska to evaluate the efficacy of C3 chitin broth cultures in spring and winter wheat, respectively. In experiments involving two hard red spring wheat cultivars, treatment with C3 reduced FHB severity in ‘Russ’ but not in ‘Ingot’. In three other field experiments comparing C3, the fungicide tebuconazole, and the combination of C3 and tebuconazole, treatments with the bacterial culture alone and the fungicide alone were inconsistent across experiments, each treatment being ineffective in controlling FHB in one experiment. The biocontrol agent–fungicide combination was more consistently effective, reducing FHB incidence or severity in all three experiments. Thus, the potential for using L. enzymogenes C3 as a biological control agent for FHB was demonstrated along with a number of factors that might affect control efficacy in the field.  相似文献   

5.
枯萎病是顽固性土传病害,称为瓜菜中的“癌症”,已成为制约我国瓜菜产业可持续健康发展的瓶颈问题。本文简要介绍瓜菜枯萎病危害,并从细胞壁降解酶、毒素、信号传导和致病基因等方面综述瓜菜枯萎病灾变机制,然后从根际微生物组自身与病原菌、土壤层面和植物层面等重点阐述了根际微生物组防治和抵御瓜菜枯萎病的机理,最后对枯萎病发生和抑制关键因子挖掘、核心微生物组构建及根际微生物组分子机制等进行了展望,期望生防微生物防治病害发生进入一个崭新且高效的阶段,为加快提升作物抗逆性机理研究提供一定思路。  相似文献   

6.
Fusarium head blight (FHB) of wheat, caused by Fusarium graminearum and other Fusarium species, is a major disease problem for wheat production worldwide. To combat this problem, large-scale breeding efforts have been established. Although progress has been made through standard breeding approaches, the level of resistance attained is insufficient to withstand epidemic conditions. Genetic engineering provides an alternative approach to enhance the level of resistance. Many defense response genes are induced in wheat during F. graminearum infection and may play a role in reducing FHB. The objectives of this study were (1) to develop transgenic wheat overexpressing the defense response genes α-1-purothionin, thaumatin-like protein 1 (tlp-1), and β-1,3-glucanase; and (2) to test the resultant transgenic wheat lines against F. graminearum infection under greenhouse and field conditions. Using the wheat cultivar Bobwhite, we developed one, two, and four lines carrying the α-1-purothionin, tlp-1, and β-1,3-glucanase transgenes, respectively, that had statistically significant reductions in FHB severity in greenhouse evaluations. We tested these seven transgenic lines under field conditions for percent FHB disease severity, deoxynivalenol (DON) mycotoxin accumulation, and percent visually scabby kernels (VSK). Six of the seven lines differed from the nontransgenic parental Bobwhite line for at least one of the disease traits. A β-1,3-glucanase transgenic line had enhanced resistance, showing lower FHB severity, DON concentration, and percent VSK compared to Bobwhite. Taken together, the results showed that overexpression of defense response genes in wheat could enhance the FHB resistance in both greenhouse and field conditions.  相似文献   

7.
Bacterial wilt (Ralstonia solanacearum) of tomato, Lycopersicon esculentum, causes a considerable amount of damage to tomato in Southern China. Biological control is one of the more promising approaches to reduce the disease incidence and yield losses caused by this disease. Based on antagonistic activity against R. solanacearum and three soil-borne fungal pathogens as well as biocontrol efficacy in the greenhouse, two bacterial strains Xa6 (Acinetobacter sp.) and Xy3 (Enterobacter sp.) were selected out of fourteen candidates as potential biocontrol agents. In order to find a suitable antagonist inoculation method, we compared the methods of root-dipping with soil-drenching in the aspects including rhizocompetence, biocontrol efficacy, and effect of promoting plant growth under greenhouse conditions. The drenching treatment resulted in a higher biocontrol efficacy and plant-yield increase, and this method was also easier to operate in the field on a large scale. Field trials were conducted for further evaluation of these two antagonistic strains. In both greenhouse and field experiments, the strain Xy3 had a better control effect against bacterial wilt than Xa6 did, while Xa6 caused higher biomass or yield increases. As recorded on the 75th day after treatment in two field experiments, biocontrol efficacy of Xy3 was about 65% in both field trials, and the yield increases caused by Xa6 were 32.4 and 40.7%, respectively, in the two trials. This is the first report of an Acinetobacter sp. strain used as a BCA against Ralstonia wilt of tomato.  相似文献   

8.
Fusarium head blight (FHB) is one of the most important fungal wheat diseases worldwide. Understanding the genetics of FHB resistance is key to facilitate the introgression of different FHB resistance genes into adapted wheat. The objective of this project was to study the FHB resistance QTL on chromosome 6B, quantify the phenotypic variation, and qualitatively map the resistance gene as a Mendelian factor. The FHB resistant parent BW278 (AC Domain*2/Sumai 3) was used as the source of the resistance allele. A large recombinant inbred line (RIL) mapping population was developed from the cross BW278/AC Foremost. The population segregated for three known FHB resistance QTL located on chromosomes 3BSc, 5A, and 6B. Molecular markers on chromosome 6B (WMC104, WMC397, GWM219), 5A (GWM154, GWM304, WMC415), and 3BS (WMC78, GWM566, WMC527) were amplified on approximately 1,440 F2:7 RILs. The marker information was used to select 89 RILs that were fixed homozygous susceptible for the 3BSc and 5A FHB QTLs and were recombinant in the 6B interval. Disease response was evaluated on 89 RILs and parental checks in the greenhouse and field nurseries. Dual floret injection (DFI) was used in greenhouse trials to evaluate disease severity (DS). Macroconidial spray inoculations were used in field nurseries conducted at two locations in southern Manitoba (Carman and Glenlea) over two years 2003 and 2004, to evaluate disease incidence, disease severity, visual rating index, and Fusarium-damaged kernels. The phenotypic distribution for all five-disease infection measurements was bimodal, with lines resembling either the resistant or susceptible checks and parents. All of the four field traits for FHB resistance mapped qualitatively to a coincident position on chromosome 6BS, flanked by GWM133 and GWM644, and is named Fhb2. The greenhouse-DS trait mapped 2 cM distal to Fhb2. Qualitative mapping of Fhb2 in wheat provides tightly linked markers that can reduce linkage drag associated with marker assisted selection of Fhb2 and aid the pyramiding of different resistance loci for wheat improvement.  相似文献   

9.
由尖孢镰刀菌古巴专化型热带四号小种(Fusarium oxysporum f. sp. cubense tropical race4, FocTR4)引起的香蕉枯萎病(banana Fusarium wilt, BFW)是全世界范围内难以防治的真菌病害,给香蕉产业造成巨大的经济损失。本研究旨在筛选高效拮抗FocTR4的木霉生防菌株,并对其发酵代谢产物进行分离、提纯和鉴定,为香蕉枯萎病的高效生物防治提供重要生防菌株和活性化合物资源。从作物根际土壤中分离出木霉菌株,通过平板对峙培养、发酵液对病原菌孢子萌发及菌丝生长抑制,测试筛选出高效抑制FocTR4的生防木霉菌株;通过构建系统发育树明确生防菌株的分类地位;通过柱色谱法分离纯化菌株发酵液中活性成分,通过核磁共振波谱法(nuclear magnetic resonance spectroscopy, NMR)解析活性成分的结构;通过香蕉苗感病盆栽实验检测生防木霉菌株对香蕉枯萎病的防治效果。结果表明,本研究筛选到了1株拮抗FocTR4的菌株JSHA-CD-1003,平板对峙抑制率为60.6%;发酵液在24 h内能完全抑制FocTR4孢子萌发,7 d内对FocTR4菌丝生长的抑制率为52.6%;基于内转录间隔区(internal transcribed spacer, ITS)和tef1-α基因串联序列构建系统发育树,该菌株鉴定为短密木霉(Trichoderma brevicompactum),通过柱色谱法分离提纯和NMR鉴定单一活性化合物为木霉素(trichodermin),最小抑菌浓度(minimum inhibitory concentration, MIC)为25 μg/mL;盆栽生防实验表明,菌株JSHA-CD-1003发酵液对香蕉枯萎病的叶片黄化防治率为47.4%,球茎褐化防治率为52.0%。因此,JSHA-CD-1003通过产生木霉素有效抑制FocTR4孢子萌发和菌丝生长,对FocTR4引起的香蕉枯萎病具有良好的生物防治效果,是一株具有生防潜力的菌株。  相似文献   

10.
Plant products along with biocontrol agents were tested against Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense (Foc). Of the 22 plant species tested, the leaf extract of Datura metel (10%) showed complete inhibition of the mycelial growth of Foc. Two botanical fungicides, Wanis 20 EC and Damet 50 EC along with selected PGPR strains with known biocontrol activity, Pseudomonas fluorescens 1, Pf1 and Bacillus subtilis, TRC 54 were tested individually and in combination for the management of Fusarium wilt under greenhouse and field conditions. Combined application of botanical formulation and biocontrol agents (Wanis 20 EC + Pf1 + TRC 54) reduced the wilt incidence significantly under greenhouse (64%) and field conditions (75%). Reduction in disease incidence was positively correlated with the induction of defense-related enzymes peroxidase (PO) and polyphenol oxidase (PPO). Three antifungal compounds (two glycosides and one ester) in D. metel were separated and identified using TLC, RP-HPLC (Reverse Phase-High Pressure Liquid Chromatography) and mass spectrometry. In this study it is clear that combined application of botanical formulations and biocontrol agents can be very effective in the management of Fusarium wilt of banana.  相似文献   

11.
12.
Summary In 3 consecutive years, a set of 17 winter wheat genotypes, representing a wide range of Fusarium head blight resistance, was inoculated with four strains of Fusarium culmorum. Fusarium head blight ratings were analyzed. The interaction between genotypes, strains, and years was described using a Finlay-Wilkinson model and an Additive Main effects and Multiplicative Interaction effects (AMMI) model. The interaction consisted primarily of a divergence of genotypical responses with increasing disease pressure, modified by genotype specific reactions in certain years. The divergence was mainly caused by one very pathogenic strain. The Fusarium head blight resistance in this study can be described as horizontal resistance in terms of Vanderplank, with the exception of three genotypes selected from one particular cross that showed a strain-year combination dependent resistance which was ineffective in 1 year.  相似文献   

13.
【背景】禾谷镰刀菌(Fusarium graminearum)是一种危害小麦生产的重要病原真菌。【目的】筛选对禾谷镰刀菌具有拮抗活性的链霉菌菌株,为该病原的生物防治提供理论基础。【方法】采用稀释涂布法分离链霉菌,利用平板对峙法筛选高活性拮抗菌株;通过形态学、生理生化特征和16S rRNA基因序列分析确定其分类地位;采用生长速率法分析其发酵条件及无菌发酵液的稳定性;并测定该菌株的防病效果和抑菌谱。【结果】筛选到一株对禾谷镰刀菌具有较强抑制作用的链霉菌菌株21-6,抑菌率为75.2%±2.1%。根据形态学、生理生化特征及16S rRNA基因序列分析,将其鉴定为Streptomyces stelliscabiei。菌株21-6在pH为中性条件下的PDB培养基中培养5 d能够产生更好的抑菌效果。无菌发酵液能够抑制禾谷镰刀菌的菌丝生长和孢子萌发过程。无菌发酵液不受高温、胃蛋白酶、胰蛋白酶及蛋白酶K的影响,耐酸但对碱性条件敏感。发酵液对禾谷镰刀菌侵染小麦胚芽鞘具有抑制效果。菌株21-6具有聚酮合酶pks-pks-基因。此外,该菌株对5种植物病原真菌均具有抑制效果。【结论】链霉菌菌株21-6对禾谷镰刀菌具有较好的生防潜力。  相似文献   

14.
Fusarium head blight (FHB) is a devastating disease of cultivated wheat worldwide. Partial resistance to FHB has been identified in common wheat (Triticum aestivum L.). However, sources of effective FHB resistance have not been found in durum wheat (T. turgidum L. var. durum). A major FHB resistance quantitative trait loci (QTL), Qfhs.ndsu-3AS, was identified on chromosome 3A of T. dicoccoides, a wild relative of durum wheat. Here, we saturated the genomic region containing the QTL using EST-derived target region amplified polymorphism (TRAP), sequence tagged site (STS), and simple sequence repeat (SSR) markers. A total of 45 new molecular marker loci were detected on chromosome 3A and the resulting linkage map consisted of 55 markers spanning a genetic distance of 277.2 cM. Qfhs.ndsu-3AS was positioned within a chromosomal interval of 11.5 cM and is flanked by the TRAP marker loci, Xfcp401 and Xfcp397.2. The average map distance between the marker loci within this QTL region was reduced from 4.9 cM in the previous study to 3.5 cM in the present study. Comparative mapping indicated that Qfhs.ndsu-3AS is not homoeologous to Qfhs.ndsu-3BS, a major FHB QTL derived from the common wheat cultivar Sumai 3. These results facilitate our efforts toward map-based cloning of Qfhs.ndsu-3AS and utilization of this QTL in durum wheat breeding via marker-assisted selection.  相似文献   

15.
Wheat cultivars (Stoa, MN87150, SuMai-3, YMI-6, Wheaton) and barley cultivars (Robust, Excel, Chevron, M69) were inoculated in the field with isolates ofFusarium graminearum andF. culmorum. The diseased (Fusarium head blight) kernels were analyzed for deoxynivalenol (DON), 15-acetyldeoxynivalenol (15-ADON) and nivalenol (NIV).F. culmorum produced all three trichothecenes on all cultivars tested whereasF. graminearum only produced DON and 15-ADON. There was no well defined correlation between DON production in the host and resistance although the data tended to favor SuMai-3 as having definitive resistance to bothF. graminearum andF. culmorum.Minnesota Agricultural Experiment Station, Paper No. 20 279.  相似文献   

16.
香蕉枯萎病田间分布型及病原菌在植株上的分布   总被引:4,自引:0,他引:4  
为探讨香蕉枯萎病大田病株及其体内尖孢镰刀菌(Fusarium oxyporum f.sp.cubense)的分布情况,首先对大田病株的发病情况进行调查,通过分布频次检验、聚集指标测定、Taylor幂法则、Iwao m*-m模型等对田间病株的空间分布型进行研究,在此基础上,检验聚集均数λ,分析其聚集原因。同时,在香蕉植株不同部位取样,检测病原菌在植株体内的分布情况。结果表明:香蕉枯萎病大田病株的理论分布符合聚集类型,各项聚集度指标均满足C1、I0、m*/m1、CA0、K0。大田病株的空间图式也趋于聚集分布,聚集程度随着种群密度升高而升高,病株间互相吸引,以病株群为单元在蕉地分布均匀,其相对聚集度随种群密度变化的速率为(11.0962+0.1752)m,密度越高,相对聚集度随密度变化速率越大。这种聚集分布是环境作用导致。建立最适理论抽样数模型后,根据一定置信水平下的允许误差值可估测相应发病情况时所配套的最适理论抽样数,且随着病情加重,配套抽样数随之减少。在进行序贯抽样时,假如累计病情等级高于判据上限即可视为防治蕉地,若累计病情等级低于判据下限可视为安全蕉地,如果累计病情等级在判据上限和下限之间,需增加抽样量,但可以理论抽样模型中的最大抽样量终止抽样。最适宜的抽样方法为棋盘式取样法和单、双对角线取样法。此外,枯萎病菌在香蕉植株体内的分布因样地发病程度和植株部位不同而有显著差异,植株球茎的平均含菌量显著高于其它部位。  相似文献   

17.
B.Q. Li  Z.W. Zhou  S.P. Tian   《Biological Control》2008,46(2):187-193
Effects of endo- and exogenous trehalose on viability of two antagonistic yeasts, Cryptococcus laurentii (Kuffer.) Skinner and Rhodotorula glutinis (Fresen.) Harrison, were investigated after being treated with rapid-freezing, slow-freezing and freeze-drying, respectively. The accumulation of intracellular trehalose in the two yeasts was induced by culturing the yeast cells in trehalose-containing medium, which significantly enhanced viabilities of both yeasts in the slow-freezing test. Trehalose, as an exogenous protectant, at the concentration of 5% or 10% could markedly increase survivals of the two yeasts when subjected to freeze-drying. When combined with exogenous trehalose as a protective substance, the yeasts containing high intracellular trehalose level showed higher viabilities as compared to those containing low levels under both freezing and freeze-drying stresses. The highest survival of C. laurentii and R. glutinis were 90% and 97% after freeze-drying, respectively, compared to 63% and 28% for the yeasts with lower intracellular trehalose levels. These results may be due to the fact that a combined effect occurred between endo- and exogenous trehalose of yeast cells. The combined effect on C. laurentii and R. glutinis also resulted in the highest level of biocontrol efficacy against blue mold in apple fruit caused by Penicillium expansum Link, and reduced the disease indexes to 45 and 56, respectively, compared to 94 and 81 in the untreated control. Meanwhile, the combination of endo- and exogenous trehalose significantly increased population of both yeasts in apple wounds, especially at the first 48 h after inoculation, which might explain the reason of the improvement in biocontrol effects of the two yeasts.  相似文献   

18.
A plant growth-promoting isolate of a fluorescent Pseudomonas sp. EM85 and two bacilli isolates MR-11(2) and MRF, isolated from maize rhizosphere, were found strongly antagonistic to Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina, causal agents of foot rots and wilting, collar rots/stalk rots and root rots and wilting, and charcoal rots of maize, respectively. Pseudomonas sp. EM85 produced antifungal antibiotics (Afa+), siderophore (Sid+), HCN (HCN+) and fluorescent pigments (Flu+) besides exhibiting plant growth promoting traits like nitrogen fixation, phosphate solubilization, and production of organic acids and IAA. While MR-11(2) produced siderophore (Sid+), antibiotics (Afa+) and antifungal volatiles (Afv+), MRF exhibited the production of antifungal antibiotics (Afa+) and siderophores (Sid+). Bacillus spp. MRF was also found to produce organic acids and IAA, solubilized tri-calcium phosphate and fixed nitrogen from the atmosphere. All three isolates suppressed the diseases caused by Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina in vitro. A Tn5:: lac Z induced isogenic mutant of the fluorescent Pseudomonas EM85, M23, along with the two bacilli were evaluated for in situ disease suppression of maize. Results indicated that combined application of the two bacilli significantly (P = 0.05) reduced the Macrophomina-induced charcoal rots of maize by 56.04%. Treatments with the MRF isolate of Bacillus spp. and Tn5:: lac Z mutant (M23) of fluorescent Pseudomonas sp. EM85 significantly reduced collar rots, root and foot rots, and wilting of maize caused by Fusarium moniliforme and F. graminearum (P = 0.05) compared to all other treatments. All these isolates were found very efficient in colonizing the rhizotic zones of maize after inoculation. Evaluation of the population dynamics of the fluorescent Pseudomonas sp. EM85 using the Tn5:: lac Z marker and of the Bacillus spp. MRF and MR-11(2) using an antibiotic resistance marker revealed that all the three isolates could proliferate successfully in the rhizosphere, rhizoplane and endorhizosphere of maize, both at 30 and 60 days after seeding. Four antifungal compounds from fluorescent Pseudomonas sp. EM85, one from Bacillus sp. MR-11(2) and three from Bacillus sp. MRF were isolated, purified and tested in vitro and in thin layer chromatography bioassays. All these compounds inhibited R. solani, M. phaseolina, F. moniliforme, F. graminearum and F. solani strongly. Results indicated that antifungal antibiotics and/or fluorescent pigment of fluorescent Pseudomonas sp. EM85, and antifungal antibiotics of the bacilli along with the successful colonization of all the isolates might be involved in the biological suppression of the maize root diseases.  相似文献   

19.
Pascual  Susana  Melgarejo  Paloma  Magan  Naresh 《Mycopathologia》1999,146(2):83-89
Epicoccum nigrum conidia were produced by solid fermentation on wheat grains (cv. Rendeveaux and Brigadier) at different water activities (aw). Conidial production was highest at high aw(0.996) than at reduced aw (0.98). However, conidial production at reduced aw was improved when the aw of the substrate was adjusted with a mixture of glycerol and water. Maximum levels ofconidiation were 7–11 × 106 conidia g−1 grain. The aw of the solid substrate affected the pattern of accumulation of compatible solutes in the conidia. Mannitol was the main polyol in all conidialtypes. However, the amounts of mannitol were higher in conidia produced at high aw. At reduced aw the conidia of E. nigrum accumulated moreglycerol, which is more efficient in the osmorregulation proccess than mannitol. Arabitol accumulated in low amounts, specifically in conidia produced at the lower aw, on cv. Rendeveaux but not on cv. Brigadier. Trehalose was detected in higher amounts in cv. Rendeveaux than in cv. Brigadier, andthe amounts were higher in conidia produced at high aw. A significant amount of endogenous solutes was detected in the washing liquid used for the separation of the conidia. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
The present study tested the ability of Bacillus amyloliquefaciens and Microbacterium oleovorans to reduce Fusarium verticillioides populations and fumonisin accumulation in the maize agroecosystem. The impact of releasing these biocontrol agents on rhizospheric bacterial and fungal groups was also evaluated through isolation and identification of culturable microorganisms. When applied as seed coatings at a concentration of 107 CFU ml−1 both agents were effective in reducing F. verticillioides counts and fumonisin B1 and B2 content from maize grains. Rhizospheric counts of the pathogen were also decreased by use of B. amyloliquefaciens at 107 CFU ml−1. Richness and diversity indexes calculated for bacteria and fungi inhabiting the rhizosphere of maize remained unchanged following the addition of both biocontrol agents to seeds. Our research is being continued to further characterize the bacterial and fungal isolates with additional field assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号