首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ionotropic N-methyl-d-aspartate (NMDA) receptor is of importance in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer comprising two NR1 and two NR2 or NR3 subunits. We have carried out evolutionary trace (ET) analysis of forty ionotropic glutamate receptor (IGRs) sequences to identify and characterize the residues forming the binding socket. We have also modeled the ligand binding core (S1S2) of NMDA receptor subunits using the recently available crystal structure of NR1 subunit ligand binding core which shares ~40% homology with other NMDA receptor subunits. A short molecular dynamics simulation of the glycine-bound form of wild-type and double-mutated (D481N; K483Q) NR1 subunit structure shows considerable RMSD at the hinge region of S1S2 segment, where pore forming transmembrane helices are located in the native receptor. It is suggested that the disruption of domain closure could affect ion-channel activation and thereby lead to perturbations in normal animal behavior. In conclusion, we identified the amino acids that form the ligand-binding pocket in many ionotropic glutamate receptors and studied their hydrogen bonded and nonbonded interaction patterns. Finally, the disruption in the S1S2 domain conformation (of NR1 subunit- crystal structure) has been studied with a short molecular dynamics simulation and correlated with some experimental observations.Figure The figure shows the binding mechanism of glutamate with NR2B subunit of the NMDA receptor. Glutamate is shown in cpk, hydrogen bonds in dotted lines and amino acids in blue. The amino acids shown here are within a 4-Å radius of the ligand (glutamate)  相似文献   

2.
PSD-95/Disc-large/ZO-1 (PDZ) domain-containing proteins play a central role in synaptic organization by their involvement in neurotransmitter receptor clustering and signaling complex assembly. The protein interacting with protein kinase C (PICK1), a synaptic PDZ domain protein that also contains a coiled-coil and acidic domain, binds to several synaptic components including the metabotropic glutamate receptor mGluR7a. Coexpression of PICK1 and mGluR7a in heterologous cells induces coclustering of these two proteins. To examine the role of the different structural motifs of PICK1 in synaptic aggregation of PICK1 and mGluR7a coclustering, several PICK1 mutants were generated to analyze their distribution in transfected hippocampal cultured neurons and to test their ability to induce coclusters with mGluR7a when coexpressed in fibroblast cells. The PDZ and coiled-coil domains are both required, whereas the acidic region plays an inhibitory role in these processes. Our data suggest that synaptic aggregation and receptor coclustering depend on PICK1 binding to a target membrane receptor, e.g. mGluR7a, by a PDZ-mediated interaction and on PICK1 oligomerization through the coiled-coil domain. This study defined three structural signals within PICK1 regulating its synaptic localization and receptor coclustering activity, which could represent molecular substrates involved in synaptic development and plasticity.  相似文献   

3.
A point mutation of the GluRdelta2 (A654T) glutamate receptor subunit converts it into a functional channel, and a spontaneous mutation at this site is thought to be responsible for the neurodegeneration of neurons in the Lurcher mouse. This mutation is located in a hydrophobic region of the M3 domain of this subunit, and this alanine is conserved throughout many of the glutamate receptors. We show here that site-directed mutagenesis of the homologous alanine (A636T; GluR1-L(c)) in the GluR1 AMPA receptor subunit alters its channel properties. The apparent potencies of both kainate and glutamate were increased 85- and 2000-fold, respectively. Furthermore, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)was converted from a competitive antagonist into a potent agonist. Our results demonstrate that a single amino acid within or near the putative second transmembrane region of the GluR1 subunit is critical for the binding/gating properties of this AMPA receptor.  相似文献   

4.
X-ray crystallography was used to solve the atomic structure of the ligand binding domain of the metabotropic glutamate receptor type1 homo-dimer, making it possible to show the conformational change of this domain upon glutamate binding. Studies of dimeric metabotropic receptors thereafter have focused on the respective roles and interaction of the two subunits, on the activation mechanisms following the structural rearrangements of the ligand-binding domain, and on the functional significance of polyvalent cations, the binding of which was identified in the crystal. The direct interaction between the GABA(B) receptor and the metabotropic glutamate receptor (mGluR1) has also attracted attention. Recently, attention has focused on incorporating these structural features into a functional view of the receptors.  相似文献   

5.
Armstrong N  Gouaux E 《Neuron》2000,28(1):165-181
Crystal structures of the GluR2 ligand binding core (S1S2) have been determined in the apo state and in the presence of the antagonist DNQX, the partial agonist kainate, and the full agonists AMPA and glutamate. The domains of the S1S2 ligand binding core are expanded in the apo state and contract upon ligand binding with the extent of domain separation decreasing in the order of apo > DNQX > kainate > glutamate approximately equal to AMPA. These results suggest that agonist-induced domain closure gates the transmembrane channel and the extent of receptor activation depends upon the degree of domain closure. AMPA and glutamate also promote a 180 degrees flip of a trans peptide bond in the ligand binding site. The crystal packing of the ligand binding cores suggests modes for subunit-subunit contact in the intact receptor and mechanisms by which allosteric effectors modulate receptor activity.  相似文献   

6.
Metabotropic glutamate receptor subtype 7 (mGluR7) is coupled to the inhibitory cyclic AMP cascade and is selectively activated by a glutamate analogue, L-2-amino-4-phosphonobutyrate. Among L-2-amino-4-phosphonobutyrate-sensitive mGluR subtypes, mGluR7 is highly concentrated at the presynaptic terminals and is thought to play an important role in modulation of glutamatergic synaptic transmission by presynaptic inhibition of glutamate release. To gain further insight into the intracellular signaling mechanisms of mGluR7, with the aid of glutathione S-transferase fusion affinity chromatography, we attempted to identify proteins that interact with the intracellular carboxyl terminus of mGluR7. Here, we report that calmodulin (CaM) directly binds to the carboxyl terminus of mGluR7 in a Ca(2+)-dependent manner. The CaM-binding domain is located immediately following the 7th transmembrane segment. We also show that the CaM-binding domain of mGluR7 is phosphorylated by protein kinase C (PKC). This phosphorylation is inhibited by the binding of Ca(2+)/CaM to the receptor. Conversely, the Ca(2+)/CaM binding is prevented by PKC phosphorylation. Collectively, these results suggest that mGluR7 serves to cross-link the cyclic AMP, Ca(2+), and PKC phosphorylation signal transduction cascades.  相似文献   

7.
The fifth taste quality, umami, arises from binding of glutamate to the umami receptor T1R1/T1R3. The umami taste is enhanced several-fold upon addition of free nucleotides such as guanosine-5'-monophosphate (GMP) to glutamate-containing food. GMP may operate via binding to the ligand-binding domain of the T1R1 part of the umami receptor at an allosteric site. Using molecular dynamics simulations, we show that GMP can stabilize the closed (active) state of T1R1 by binding to the outer vestibule of the so-called Venus flytrap domain of the receptor. The transition between the closed and open conformations was accessed in the simulations. Using principal component analysis, we show that the dynamics of the Venus flytrap domain along the hinge-bending motion that activates signaling is dampened significantly upon binding of glutamate, and further slows down upon binding of GMP at an allosteric site, thus suggesting a molecular mechanism of cooperativity between GMP and glutamate.  相似文献   

8.
The stereochemistry of the interactions between quinoxaline antagonists and the ligand-binding domain of the glutamate receptor 4 (GluR4) have been investigated by probing their vibrational modes using Fourier transform infrared spectroscopy. In solution, the electron-withdrawing nitro groups of both compounds establish a resonance equilibrium that appears to stabilize the keto form of one of the cyclic amide carbonyl bonds. Changes in the 6,7-dinitro-2,3-dihydroxyquinoxaline vibrational spectra on binding to the glutamate receptor, interpreted within the framework of a published crystal structure, illuminate the stereochemistry of the interaction and suggest that the binding site imposes a more polarized electronic bonding configuration on this antagonist. Similar spectral changes are observed for 6-cyano-7-dinitro-2,3-dihydroxyquinoxaline, confirming that its interactions with the binding site are highly similar to those of 6,7-dinitro-2,3-dihydroxyquinoxaline and leading to a model of the 6-cyano-7-dinitro-2,3-dihydroxyquinoxaline-S1S2 complex, for which no crystal structure is available. Conformational changes within the GluR ligand binding domain were also monitored. Compared with the previously reported spectral changes seen on binding of the agonist glutamate, only a relatively small change is detected on antagonist binding. This correlation between the functional effects of different classes of ligand and the magnitude of the spectroscopic changes they induce suggests that the spectral data reflect physiologically relevant conformational processes.  相似文献   

9.
The extracellular part of ionotropic glutamate receptor (iGluR) subunits can be divided into a conserved two-lobed ligand-binding domain ("S1S2") and an N-terminal approximately 400-residue segment of unknown function ("X domain") which shows high sequence variation among subunits. To investigate the structure and properties of the N-terminal domain, we have now produced affinity-tagged recombinant fragments which represent the X domain of the GluRD subunit of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-selective glutamate receptors either alone or covalently linked to the ligand-binding domain ("XS1S2"). These fragments were expressed in insect cells as secreted soluble proteins and were recognized by a conformation-specific anti-GluRD monoclonal antibody. A hydrodynamic analysis of the purified fragments revealed them to be dimers, in contrast to the S1S2 ligand-binding domain which is monomeric. The X domain did not bind radiolabeled AMPA or glutamate nor did its presence affect the ligand binding properties of the S1S2 domain. Our findings demonstrate that the N-terminal domain of AMPA receptor can be expressed as a soluble polypeptide and suggest that subunit interactions in iGluR may involve the extracellular domains.  相似文献   

10.
Glutamate receptors are the predominant mediators of excitatory synaptic signals in the central nervous system and are important in learning and memory as well as in diverse neuropathologies including epilepsy and ischemia. Their primary function is to receive the chemical signal glutamate (1), which binds to an extracellular domain in the receptor, and convert it into an electrical signal through the formation of cation-permeable transmembrane channels. Recently described end-state apo and ligated structures of the ligand-binding domain of a rat glutamate receptor provide a first view of specific molecular interactions between the ligand and the receptor that are central to the allosteric regulation of function in this protein. Yet there is little information on the mechanism and the structures of intermediates (if any) formed during the ligand-binding process. Here we have used time-resolved vibrational spectroscopy to show that the process involves a sequence of interleaved ligand and protein changes that starts with the docking of glutamate at the alpha-carboxylate moiety and ends with the establishment of the interactions between the gamma-carboxylate of glutamate and the protein.  相似文献   

11.
Altered glutamatergic neurotransmission appears to be central to the pathophysiology of Parkinson's disease; consequently, considerable effort has been made to elucidate neuroprotective mechanisms against such toxicity. In the present study, the possible neuroprotective effect of glutamate receptor antagonists against MPP+ neurotoxicity on dopaminergic terminals of rat striatum was investigated. Different doses of glutamate receptor antagonists were coinfused with 1.5 microg of MPP+ into the striatum; kynurenic acid, a nonselective antagonist of glutamate receptors (30 and 60 nmol), partially protected dopaminergic terminal degeneration in terms of rescue of dopamine levels and tyrosine hydroxylase immunohistochemistry. Dizocilpine, a channel blocker of the NMDA receptor (1, 4, and 8 nmol), and 7-chlorokynurenic acid, a selective antagonist at the glycine site of the NMDA receptor (1 and 10 nmol), failed to protect dopaminergic terminals from MPP+ toxicity. However, 6-cyano-7-nitroquinoxaline-2,3-dione (0.5 and 1 nmol) and 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (1 nmol), two AMPA-kainate receptor antagonists, protected against MPP toxicity. Our findings suggest that the toxic effects of MPP+ on dopaminergic terminals are not mediated through a direct interaction with the NMDA subtype of glutamate receptor, but with the AMPA-kainate subtype.  相似文献   

12.
13.
The calcium-sensing receptor (CaR) belongs to family C of the G-protein-coupled receptor superfamily. To date 14 activating mutations in CaR showing increased sensitivity to Ca(2+) have been identified in humans with autosomal dominant hypocalcemia. Four of these activating mutations are found in the Ala(116)-Pro(136) region of CaR, indicating that this part of the receptor is particularly sensitive to mutation-induced activation. This region was subjected to random saturation mutagenesis, and 219 mutant receptor clones were isolated and screened pharmacologically in a high throughput screening assay. Selected mutants were characterized further in an inositol phosphate assay. The vast majority of the mutants tested displayed an increased affinity for Ca(2+). Furthermore, 21 of the mutants showed increased basal activity in the absence of agonist. This constitutive activity was not diminished when the mutations were transferred to a chimeric receptor Ca/1a consisting of the amino-terminal domain of the CaR and the 7 transmembrane and intracellular domains of the metabotropic glutamate receptor mGluR1a. CPCCOEt, a noncompetitive antagonist acting at the 7 transmembrane domain of mGluR1a, suppressed the elevated basal response of the constitutively activated Ca/1a mutants demonstrating inverse agonist activity of CPCCOEt. Taken together, our results demonstrate that the Ala(116)-Pro(136) region is of key importance for the maintenance of the inactive conformation of CaR.  相似文献   

14.
Inside cells, membrane proteins are localized at particular surface domains to perform their precise functions. Various kinds of PDZ domain proteins have been shown to play important roles in the intracellular trafficking and anchoring of membrane proteins. In this study, we show that delta2 glutamate receptor is interacting with S-SCAM/MAGI-2, a PDZ domain protein localized in the perinuclear region and postsynaptic sites of cerebellar Purkinje cells. The binding is regulated by PKC (protein kinase-C) mediated phosphorylation of the receptor with a unique repetitive structure in S-SCAM/MAGI-2. Co-expression of both proteins resulted in drastic changes of the receptor localization in COS7 cells. These results show a novel regulatory mechanism for the binding of PDZ domain proteins and suggest that the interaction between delta2 receptor and S-SCAM/MAGI-2 may be important for intracellular trafficking of the receptor.  相似文献   

15.
Ionotropic glutamate receptors mediate most excitatory neurotransmission in the central nervous system by opening ion channels upon the binding of glutamate. Despite the essential roles of glutamate in the control of reproduction and anterior pituitary hormone secretion, there is a limited understanding of how glutamate receptors control ovulation. Here we reveal the function of the ionotropic glutamate receptor AMPA-1 (GRIA1) in ovulation. Based on a genome-wide association study in Bos taurus, we found that ovulation rate is influenced by a variation in the N-terminal leucine/isoleucine/valine-binding protein (LIVBP) domain of GRIA1, in which serine is replaced by asparagine. GRIA1(Asn) has a weaker affinity to glutamate than GRIA1(Ser), both in Xenopus oocytes and in the membrane fraction of bovine brain. This single amino acid substitution leads to the decreased release of gonadotropin-releasing hormone (GnRH) in immortalized hypothalamic GT1-7 cells. Cows with GRIA1(Asn) have a slower luteinizing hormone (LH) surge than cows with GRIA1(Ser). In addition, cows with GRIA1(Asn) possess fewer immature ovarian follicles before superovulation and have a lower response to hormone treatment than cows with GRIA1(Ser). Our work identified that GRIA1 is a critical mediator of ovulation and that GRIA1 might be a useful target for reproductive therapy.  相似文献   

16.
In vivo, agonist binding to the open conformation of the ligand-binding domain initiates the process of gating in ionotropic glutamate receptors. Arguably, an alternative manner to gate the receptors exists, which requires a point mutation in the most-conserved sequence motif in the second transmembrane domain. Originally, this mutation occurred spontaneously in the orphan glutamate receptor subunit delta2, causing the ataxic phenotype of lurcher mice.(1) In the absence of a ligand that could initiate gating at this orphan subunit, the introduction of the lurcher mutation led to spontaneous currents through delta2-lurcher channels.(1) Introduction of the corresponding mutation into the AMPA receptor GluR1 induced a number of aberrant gating properties.(2-5) Among those, glutamate potency was highly increased, and competitive antagonists suddenly behaved as partial agonists.(2,5) We reported that the introduction of delta2 amino acids in the domain preceding the first transmembrane domain in GluR1 resulted in a mutant receptor that displayed all characteristics of lurcher-typical gating. We proposed that lurcher-like mutations work to enhance gating by destabilizing the closed state of the receptor. As a result, no or minimal conformational changes in the ligand-binding domain are sufficient for gating, explaining, respectively, why spontaneous currents occur and competitive antagonists act as partial agonists in lurcher-like channels. Strikingly, a similar conversion of antagonists upon coexpression of glutamate receptors with TARPs has recently been reported.(6,7) We take this as indication that the actual mechanism of action might be very similar, and that both lurcher-like mutations and TARPs work as 'gating enhancers'.  相似文献   

17.
High resolution structural studies of models of glutamate receptors (GluRs) have been limited to monomeric models of the ligand-binding site. To obtain oligomeric models of glutamate receptors that can reveal more complete structural information, we examined the assembly and ligand binding properties of two truncated versions of the GluR1 subunit. The first version, GluR1-WS, consisted of only the N-terminal extracellular segment (Ala(1)-Glu(520)) bridged by a synthetic linker to the second extracellular domain (Asn(615)-Gly(790)). The second version, GluR1-M1, consisted of the first N-terminal extracellular domain (Ala(1)-Glu(520)) bridged by a synthetic linker to a second segment containing the second extracellular domain, the third transmembrane domain, and the intracellular C-terminal domain (Asn(615)-Leu(889)). When expressed in Xenopus oocytes, GluR-WS was secreted and water-soluble; GluR1-M1 was displayed on the surface of oocytes. GluR1-WS exhibited a velocity sedimentation profile that was consistent with assembly of homooligomers and bound the glutamate receptor agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid with high affinity. These findings show that the extracellular domains of GluR1 that are sufficient for ligand binding apparently are sufficient for subunit assembly and might be a suitable target for structural studies of a water-soluble GluR1 oligomer.  相似文献   

18.
Acher FC  Bertrand HO 《Biopolymers》2005,80(2-3):357-366
A motif foramino acid recognition by proteins or domains of the periplasmic binding protein-like I superfamily has been identified. An initial pattern of 5 residues was based on a multiple sequence alignment of selected proteins of that fold family and on common structural features observed in the crystal structure of some members of the family [leucine isoleucine valine binding protein (LIVBP), leucine binding protein (LBP), and metabotropic glutamate receptor type 1 (mGlu1R) amino terminal domain)]. This pattern was used against the PIR-NREF sequence database and further refined to retrieve all sequences of proteins that belong to the family and eliminate those that do not belong to it. A motif of 8 residues was finally selected to build up the general signature. A total of 232 sequences were retrieved. They were found to belong to only three families of proteins: bacterial periplasmic binding proteins (PBP, 71 sequences), family 3 (or C) of G-protein coupled receptor (GPCR) (146 sequences), and plant putative ionotropic glutamate receptors (iGluR, 15 sequences). PBPs are known to adopt a bilobate structure also named Venus flytrap domain, or LIVBP domain in the present case. Family 3/C GPCRs are also known to hold such a domain. However, for plant iGluRs, it was previously detected by classical similarity searches but not specifically described. Thus plant iGluRs carry two Venus flytrap domains, one that binds glutamate and an additional one that would be a modulatory LIVBP domain. In some cases, the modulator binding to that domain would be an amino acid.  相似文献   

19.
Abstract: In previous studies, we demonstrated that the neuropeptide, N -acetylaspartylglutamate (NAAG), meets the traditional criteria for a neurotransmitter and selectively activates metabotropic glutamate receptor mGluR2 or mGluR3 in cultured cerebellar granule cells and glia. Sequence homology and pharmacological data suggest that these two receptors are highly related structurally and functionally. To define more rigorously the receptor specificity of NAAG, cloned rat cDNAs for mGluR1–6 were transiently or stably transfected into Chinese hamster ovary cells and human embryonic kidney cells and assayed for their second messenger responses to the two endogenous neurotransmitters, glutamate and NAAG, as well as to metabotropic receptor agonists, trans -1-aminocyclopentane-1,3-dicarboxylate ( trans -ACPD) and l -2-amino-4-phosphonobutyrate ( l -AP4). Despite the high degree of relatedness of mGluR2 and mGluR3, NAAG selectively activated the mGluR3 receptor. NAAG activated neither mGluR2 nor mGluR1, mGluR4, mGluR5, or mGluR6. The mGluR agonist, trans -ACPD, activated each of the transfected receptors, whereas l -AP4 activated mGluR4 and mGluR6, consistent with the published selectivity of these agonists. Hybrid cDNA constructs of the extracellular domains of mGluR2 and mGluR3 were independently fused with the transmembrane and cytoplasmic domain of mGluR1a. This latter receptor domain is coupled to phosphoinositol turnover, and its activation increases intracellular calcium. The cells transfected with these chimeric receptors responded to activation by glutamate and trans -ACPD with increases in intracellular calcium. NAAG activated the chimeric receptor that contained the extracellular domain of mGluR3 and did not activate the mGluR2 chimera.  相似文献   

20.
Presynaptic clustering of mGluR7a requires the PICK1 PDZ domain binding site   总被引:10,自引:0,他引:10  
Aggregation of neurotransmitter receptors at pre- and postsynaptic structures is crucial for efficient neuronal communication. In contrast to the wealth of information about postsynaptic specializations, little is known about the molecular organization of presynaptic membrane proteins. We show here that the metabotropic glutamate receptor mGluR7a, which localizes specifically to presynaptic active zones, interacts in vitro and in vivo with PICK1. Coexpression in heterologous systems induces coclustering dependent upon the extreme C terminus of mGluR7a and the PDZ domain of PICK1. mGluR7a and PICK1 localize to excitatory synapses in hippocampal neurons. Furthermore, whereas transfected mGluR7a clusters at presynaptic sites, mGluR7adelta3 lacking the PICK1 binding site targets to axons but does not cluster. These results suggest that PICK1 is a component of the presynaptic machinery involved in mGluR7a aggregation and in modulation of glutamate neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号