首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y. Tanaka  S. Inoue  S. C. Skoryna 《CMAJ》1970,103(5):484-486
The inhibitory action of alginate on intestinal absorption of radioactive strontium was investigated in order to correlate the biological activity with the chemical composition. Alginate from Laminaria hyperborea was partially hydrolyzed with oxalic acid and the degradation products were fractionated into polymannuronic and polyguluronic acid. The activity of these products was assessed biologically in rats and morphologically by electron microscopy. Sodium polymannuronate was found to be less effective than sodium polyguluronate in preventing absorption of radiostrontium. The inhibition of absorption of radio-calcium was low and not affected by hydrolysis or fractionation. When dried from dilute aqueous solutions, the polymannuronate retained the original helical structure of alginate, while the polyguluronate showed a strong tendency to coagulate, forming granules. The variation in the biological activity was attributed to the morphological differences between these alginic acid components and it is suggested that the degree of uncoiling of the polyguluronate chain in water is greater than that of the polymannuronate chain, thus making the carboxylate ions more accessible to strontium.  相似文献   

2.
3.
The M/G ratio, dyad and triad frequencies in the sodium alginate chain, were determined from 13C-nmr spectra. The interactions of sodium alginate in solution with the univalent cations K+ ion and Na+ ion have been investigated by viscometry and membrane osmometry. The dependencies of intrinsic viscosity, Huggins constant, and second virial coefficient on ionic strength were observed, and the maximums in reduced viscosity were obtained in low KCl and NaCl concentrations, respectively. These show that the electroviscous effects play an important role in polyelectrolyte solution, and the effect of the Na+ ion on aqueous solution of sodium alginate is greater than the K+ ion. The experimental observations are interpreted in terms of ion-pair formation with carboxyl groups of mannuronate and isolated guluronate residues and cooperation “egg-box” binding between polyguluronate chain sequence. The difference of interaction between univalent cations and alginate chains in solution is attributed to the ability of their binding with the polyion, which depends on the properties of ions itself. © 1998 John Wiley & Sons, Inc. Biopoly 46: 395–402, 1998  相似文献   

4.
The changes in chain conformation which accompany Ca2+-induced gelation of alginate have been investigated by a combined circular dichroism (c.d.) and optical rotatory dispersion (o.r.d.) approach. C.d. changes in the carboxyl n→π* spectral region, arising predominantly from formation of calcium poly-l-guluronate junctions, were monitored for three alginates of widely differing block composition. The corresponding o.r.d. changes, calculated by Kronig-Kramers trnasform, were subtracted from the observed changes in o.r.d. on gelation, to “unmask” the changes in optical activity of the conformation-sensitive electronic transitions of the polysaccharide backbone. Contributions to the “residual” o.r.d. difference spectra from poly-l-guluronate, poly-d-mannuronate, and heteropolymeric chain-sequences were calculated by solution of simultaneous equations at each wavelength. Results for poly-guluronate sequences are in agreement with previous studies of alginate films by vacuum ultraviolet c.d., and with observed c.d. and o.r.d. changes on addition of calcium ions to homopolyguluronate segments in solution. The much greater changes in backbone optical activity calculated for polymannuronate and heteropolymeric chain-sequences, however, have no counterpart in the behaviour of these sequences in isolation. An explanation is proposed in terms of stretching of interconnecting sequences between calcium polyguluronate junctions in alginate gels, to give a more-extended chain conformation than in free solution.  相似文献   

5.
Alginate has been widely used in a variety of biomedical applications including drug delivery and cell transplantation. However, alginate itself has a very slow degradation rate, and its gels degrade in an uncontrollable manner, releasing high molecular weight strands that may have difficulty being cleared from the body. We hypothesized that the periodate oxidation of alginate, which cleaves the carbon-carbon bond of the cis-diol group in the uronate residue and alters the chain conformation, would result in promoting the hydrolysis of alginate in aqueous solutions. Alginate, oxidized to a low extent (approximately 5%), degraded with a rate depending on the pH and temperature of the solution. This polymer was still capable of being ionically cross-linked with calcium ions to form gels, which degraded within 9 days in PBS solution. Finally, the use of these degradable alginate-derived hydrogels greatly improved cartilage-like tissue formation in vivo, as compared to alginate hydrogels.  相似文献   

6.
A non-ionic water soluble galactomannan made up of d-galactose and d-mannose was isolated from the seed endosperm of Cassia pleurocarpa. Acid catalyzed fragmentation, periodate oxidation, methylation and selective enzymatic hydrolysis revealed that the repeating unit of the heteropolysaccharide had a backbone of beta(1-->4) linked d-mannopyranosyl units to which D-galactopyranosyl units are linked as side chains through alpha(1-->6) linkages. The properties such as viscosity, water/saline retention, gelling behavior, and shelf life of the galactomannan indicated that the material may be exploited in biomedical applications for example drug delivery and tissue engineering fields.  相似文献   

7.
The block composition of alginate from a number of Phaeophyceae from Nova Scotia, Canada, has been determined by circular dichroism analysis. Laminaria longicruris from three different ecological locations shows appreciable morphological variation, which is reflected in differences in alginate composition of the blades. Stipe material shows less variability, but is higher in polyguluronate, consistent with the greater mechanical rigidity of this tissue. Similarly, differences in alginate composition with tissue type and growth location have been observed for L. digitata. Agarum cribrosum shows little tissue-to-tissue variation in alginate composition, material from both blades and mid-ribs being very similar in block structure to commercially available alginate from Macrocystis pyrifera and Ascophyllum nodosum. Stilophora rhizodes and Leathesia difformis, from the order Ectocarpales, both yield alginate of very high polyguluronate content, consistent with the brittle texture of both species. Stilophora rhizoides harvested during two consecutive growing seasons showed no appreciable variation in alginate block structure. Two alginate samples analysed in this work (from Leathesia difformis and from blades of Laminaria longicruris from one of the populations studied) show respectively higher and lower levels of the structure-forming polyguluronate sequences than any previously reported alginate samples from mature plant tissue.  相似文献   

8.
9.
The study of alginate hydrogels is of increasing interest, given their potential applications as biomaterials for tissue engineering and for encapsulating drugs and living cells. In this study, we present a new strategy for tailoring alginates on the basis of homopolymeric mannuronan, where the chain stiffness and the content of G-residues could be varied independently. Partial periodate oxidation (0–8%) followed by borohydride reduction, introducing flexible linkages through C2–C3 cleavage and ring opening, was combined with in vitro epimerization, introducing either alternating (MG) sequences (in the case of enzyme AlgE4) or G-blocks (in the case of enzyme AlgE6). Both enzymes are recombinantly expressed from Azotobacter vinelandii. Two strategies were followed: (a) oxidation/reduction followed by epimerization (b) epimerization to 90% G followed by oxidation/reduction. The resulting alginates were characterised by NMR spectroscopy and size-exclusion chromatography (SEC) with multi angular laser light scattering (MALLS) and viscosity detectors. Gels were prepared using the ‘internal setting’ method with either 10 mM or 20 mM Ca2+ present, and studied by small-strain oscillatory measurements. It was found that periodate oxidation, in the range P0 = 0.02–0.06, had a pronounced influence on the gelling properties. The decrease in dynamic storage modulus (G′) could mainly be attributed to increased local flexibility and not only a decrease in G-block lengths as a consequence of oxidation. The new alginate gels are easily degradable in a mild acidic environment and the degradation is easier to control than gels made of unoxidized alginate.  相似文献   

10.
The ability to control the interaction between proteins and cells with biomaterials is critical for the effective application of materials for a variety of biomedical applications. Herein, the surface modification of the biological dopant dextran sulphate-doped polypyrrole (PPy-DS) with poly(ethylene glycol) to generate a biomaterial interface that is highly resistant to protein and cellular adhesion is described. Thiolated poly(ethylene glycol) (PEG-thiol) was covalently bound to PPy-DS backbone via a thiol-ene reaction. The surface resistance to an extracellular matrix protein fibronectin increased with increasing molecular weight and concentration of PEG-thiol, and was further optimised via increasing the reaction temperature and the pH of the reactant aqueous solution. Optimised surface modification conditions substantially reduced interfacial protein adsorption, with the complete inhibition of adhesion and colonisation by primary mouse myoblasts. PEG-thiol-modified inherently conducting polymers are highly protein resistant multifunctional materials that are promising compounds for a range of biomedical and aquatic applications.  相似文献   

11.
New thermothickening copolymers were synthesized by grafting responsive poly(ethylene oxide-co-propylene oxide) [PEPO] onto three different polysaccharide backbones: carboxymethylcellulose [CMC], alginate [ALG], and carboxylated dextran [DEX]. The coupling reaction between carboxylic groups of biopolymers and the terminal amine of PEPO was activated at low temperature ( T < 10 degrees C) in water by using carbodiimide and N-hydroxysuccinimide. In these conditions it was shown that the formation of amide bonds strongly depends on the concentration of reactive groups, which is limited by the viscosity of the polymer sample. While a full conversion was obtained for the low molecular weight dextran, the efficiency of grafting remains low (between 30 to 40%) for CMC and alginate, which give a solution of high viscosity even at low concentration. When studied in the semidilute regime, all the copolymer solutions clearly exhibit thermothickening behavior with a large and reversible increase of viscosity upon heating. The association temperature and the gelation threshold were shown to depend on polymer concentration as it is expected from the phase diagram of PEPO precursor. Similarly, the influence of added salt on PEPO solubility in water has been used to control the self-assembling behavior of copolymer formulations. The relative comparison between the three copolymers reveals that the amplitude of the viscosity jump induced by heating mainly depends on the proportion of responsive material inside the macromolecular architecture rather than the dimensions of the main chain. The high increase of viscosity, which can reach several orders of magnitude between 20 degrees C and body temperature, clearly demonstrates the potentiality of these copolymers in biomedical applications like injectable gels for tissue engineering.  相似文献   

12.
细胞的冷冻保存是细胞生物学实验中重要的实验技术.长期以来,人们使用冷冻保存液重悬细胞后进行冷冻储存,但是近年来,众多研究者发现传统冷冻方案往往会导致细胞活率大幅下降和细胞功能方面受损,从而很难满足生物医学、组织再生工程、细胞移植技术等高新技术的要求.所以研究者提出利用三维海藻酸微囊包埋细胞后再进行冷冻保存,从而在保证较高细胞活率的同时维持细胞的原有功能,有效的提高细胞的冷冻保存效率.本文概述了海藻酸微囊在细胞冷冻保存过程中的研究现状,同时对其应用进行了展望,以期为后续研究工作提供参考.  相似文献   

13.
Collagen fibrils are the main structural element of connective tissues. In many tissues, these fibrils contain two fibrillar collagens (types I and V) in a ratio that changes during tissue development, regeneration, and various diseases. Here we investigate the influence of collagen composition on the structure and rheology of networks of purified collagen I and V, combining fluorescence and atomic force microscopy, turbidimetry, and rheometry. We demonstrate that the network stiffness strongly decreases with increasing collagen V content, even though the network structure does not substantially change. We compare the rheological data with theoretical models for rigid polymers and find that the elasticity is dominated by nonaffine deformations. There is no analytical theory describing this regime, hampering a quantitative interpretation of the influence of collagen V. Our findings are relevant for understanding molecular origins of tissue biomechanics and for guiding rational design of collagenous biomaterials for biomedical applications.  相似文献   

14.
The gelling subunit of alginate, the major cell-wall polysaccharide of brown algae, was used as a molecular marker for identification of this cell-wall carbohydrate subunit at the cellular level. Short polyguluronate chains were conjugated to fluorescein and used as a probe to identify the gelling regions of alginate in tissue sections from a brown alga. The specificity of the probe for gelling subunits was demonstrated by lack of cell-wall labelling in the absence of calcium, correlation between divalent-cation binding affinities of polyguluronate with labelling intensity, and lack of labelling by fluorescein-conjugated nongelling subunits. The probe labelling-pattern also differed from sulfated fucan distribution. Extracellular matrix and cell walls were labelled on sections of vegetative blade, stipe and reproductive frond of Fucus gardneri Silva. Probe labelling was rapid, being virtually complete within 5 min. Probe labelling in seawater differed markedly from labelling at lower ionic strength and is interpreted as reflecting alginategelling properties in natural conditions. High-and low-affinity binding sites are discussed in terms of gelling-subunit length and steric availability. Fluorescein-conjugated polygalacturonate, which also forms calcium dimers, labelled extracellular alginate by formation of mixed polygalacturonate-polyguluronate dimers. Binding by the alginate hybridization probe differs from nucleic-acid hybridization in divalent-cation bridging and the lack of both a conformational transition and polymer polarity.Abbreviations EDTA ethylenedinitrilo tetraacetic acid (ethylenediaminetraacetic acid) - NMR nuclear magnetic resonance spectroscopy  相似文献   

15.
Proteins are inherently dynamic macromolecules that exist in equilibrium among multiple conformational states, and motions of protein backbone and side chains are fundamental to biological function. The ability to characterize the conformational landscape is particularly important for intrinsically disordered proteins, multidomain proteins, and weakly bound complexes, where single-structure representations are inadequate. As the focus of structural biology shifts from relatively rigid macromolecules toward larger and more complex systems and molecular assemblies, there is a need for structural approaches that can paint a more realistic picture of such conformationally heterogeneous systems. Here, we review reweighting methods for elucidation of structural ensembles based on experimental data, with the focus on applications to multidomain proteins.  相似文献   

16.
Studies of synthetic polyglutamine peptides in vitro have established that polyglutamine peptides aggregate via a classic nucleation and growth mechanism. Chen and colleagues [Proc Natl Acad Sci U S A 2002;99:11884-11889] have found that monomeric polyglutamine, which is a disordered statistical coil in solution, is the critical nucleus for aggregation. Therefore, nucleation of beta-sheet-rich aggregates requires an initial disorder to order transition, which is a highly unfavorable thermodynamic reaction. The questions of interest to us are as follows: What are the statistical fluctuations that drive beta-sheet formation in monomeric polyglutamine? How do these fluctuations vary with chain length? And why is this process thermodynamically unfavorable, that is, why is monomeric polyglutamine disordered? To answer these questions we use multiple molecular dynamics simulations to provide quantitative characterization of conformational ensembles for two short polyglutamine peptides. We find that the ensemble for polyglutamine is indeed disordered. However, the disorder is inherently different from that of denatured proteins and the average compactness and magnitude of conformational fluctuations increase with chain length. Most importantly, the effective concentration of sidechain primary amides around backbone units is inherently high and peptide units are solvated either by hydrogen bonds to sidechains or surrounding water molecules. Due to the multiplicity of backbone solvation modes the probability associated with any specific backbone conformation is small, resulting in a conformational entropy bottleneck which makes beta-sheet formation in monomeric polyglutamine thermodynamically unfavorable.  相似文献   

17.
Hydrophilic nanocarriers formed by electrostatic interaction of chitosan with oppositely charged macromolecules have a high potential as vectors in biomedical and pharmaceutical applications. However, comprehensive information about the fate of such nanomaterials in biological environment is lacking. We used chitosan from both animal and fungal sources to form well-characterized chitosan-pentasodium triphosphate (TPP)//alginate nanogels suitable for comparative studies. Upon exposure of human colon cancer cells (HT29 and CaCo2), breast cancer cells (MDA-MB-231 and MCF-7), glioblastoma cells (LN229), lung cancer cells (A549), and brain-derived endothelial cells (HCEC) to chitosan-(TPP)//alginate nanogels, cell type-, nanogel dosage-, and exposure time-dependent responses are observed. Comparing chitosan-TPP//alginate nanogels prepared from either animal or fungal source in terms of nanogel formation, cell uptake, reactive oxygen species production, and metabolic cell activity, no significant differences become obvious. The results identify fungal chitosan as an alternative to animal chitosan in particular if biomedical/pharmaceutical applications are intended.  相似文献   

18.
Biocompatible photoresponsive materials are of interest for targeted drug delivery, tissue engineering, 2D and 3D protein patterning, and other biomedical applications. We prepared light degradable hydrogels using a natural alginate polysaccharide cross-linked with iron(III) cations. The "hard" iron(III) cations used to cross-link the alginate hydrogel were found to undergo facile photoreduction to "soft" iron(II) cations in the presence of millimolar concentrations of sodium lactate. The "soft" iron(II) cations have a decreased ability to cross-link the alginate which results in dissolution of the hydrogel and the formation of a homogeneous solution. The photodegradation is done using long wave UV or visible light at neutral pH. The very mild conditions required for the photodegradation and the high rate at which it occurs suggest applications for iron(III) cross-linked alginate hydrogels as light-controlled biocompatible scaffolds.  相似文献   

19.
Cao Y  Shen X  Chen Y  Guo J  Chen Q  Jiang X 《Biomacromolecules》2005,6(4):2189-2196
In this investigation, we used a kind of polyelectrolyte, sodium alginate, as a model biomacromolecule to investigate the aggregation behaviors in aqueous solution after partial protonation of carboxylate groups in the alginate molecules. It is demonstrated that the alginate assemblies with core-shell structure can be generated by the partial protonation of carboxylate groups in sodium alginate chains using the protons released gradually from the reaction of K(2)S(2)O(8) with water at 70 degrees C in aqueous solution. The partial cross-linked alginate assemblies are pH sensitive and can change to hollow structure in the medium with relatively high pH value. This approach avoids use of block or grafted copolymers as the precursors or any other template to prepare assemblies and capsules, and provides a functional surface for subsequent chemical reaction at the surface (e.g., for binding biomolecules and for surface grafting). Such unique assemblies are also expected to be useful in biomedical fields.  相似文献   

20.
The hydrolysis of PEtOx is studied to evaluate the potential toxicity of partially hydrolyzed polymers that might interfere with its increasing popularity for biomedical applications. The hydrolysis of PEtOx is studied in the presence of digestive enzymes (gastric and intestinal) and at 5.8?M hydrochloric acid as a function of temperature (57, 73, 90, and 100?°C). It is found that PEtOx undergoes negligible hydrolysis at 37?°C and that thermal and solution properties are not altered when up to 10% of the polymer backbone is hydrolyzed. Mucosal irritation and cytotoxicity is also absent up to 10% hydrolysis levels. In conclusion, PEtOx will not decompose at physiological conditions, and partial hydrolysis will not limit its biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号