首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differences in gender are in part responsible for the development of insulin resistance (IR) and associated hypertension. Currently, it is unclear whether these differences are dictated by gender itself or by the relative changes in plasma estrogen and/or testosterone. We investigated the interrelationships between testosterone and estrogen in the progression of IR and hypertension in vivo in intact and gonadectomized fructose-fed male rats. Treatment with estrogen significantly reduced the testosterone levels in both normal chow-fed and fructose-fed rats. Interestingly, fructose feeding induced a relative increase in estradiol levels, which did not affect IR in both intact and gonadectomized fructose-fed rats. However, increasing the estrogen levels improved insulin sensitivity in both intact and gonadectomized fructose-fed rats. In intact males, fructose feeding increased the blood pressure (140 +/- 2 mmHg), which was prevented by estrogen treatment. However, the blood pressure in the fructose-fed estrogen rats (125 +/- 1 mmHg) was significantly higher than that of normal chow-fed (113 +/- 1 mmHg) and fructose-fed gonadectomized rats. Estrogen treatment did not affect the blood pressure in gonadectomized fructose-fed rats (105 +/- 2 mmHg). These data suggest the existence of a threshold value for estrogen below which insulin sensitivity is unaffected. The development of hypertension in this model is dictated solely by the presence or absence of testosterone. In summary, the development of IR and hypertension is governed not by gender per se but by the interactions of specific sex hormones such as estrogen and testosterone.  相似文献   

2.
Hyperinsulinemia and insulin resistance have been linked to hypertension; however, the influence of sex on this relationship has not been well studied. The purpose of this experiment was to compare the effects of chronic insulin treatment on insulin sensitivity and blood pressure in male and female rats. Male and female Wistar rats were treated with insulin (2 U/day) via subcutaneous sustained release implants for 5 wk. Systolic blood pressure was measured via the tail-cuff method before and after treatment, and insulin sensitivity was assessed with an oral glucose tolerance test. The insulin sensitivity of female rats was 4.5-fold greater than male rats. Chronic insulin treatment impaired insulin sensitivity in both sexes; however, this occurred to a greater degree in male rats. Blood pressure increased in male rats treated with insulin only. The results demonstrate that hyperinsulinemia and insulin resistance are associated with hypertension in male rats only. Therefore, the link between these conditions appears to depend on sex.  相似文献   

3.
Two of the most potent vasoconstrictors, endothelin-1 (ET-1) and angiotensin II (Ang II), are upregulated in fructose hypertensive rats. It is unknown whether an interrelationship exists between these peptides that may contribute to the development of fructose-induced hypertension. The objective of this study was to investigate the existence of an interaction between the endothelin and renin angiotensin systems that may play a role in the development of fructose-induced hypertension. High fructose feeding and treatment with either bosentan, a dual endothelin receptor antagonist, or with L-158,809, an angiotensin type 1 receptor antagonist, were initiated simultaneously in male Wistar rats. Systolic blood pressure, fasted plasma parameters, insulin sensitivity, plasma Ang II, and vascular ET-1-immunoreactivity were determined following 6 weeks of high fructose feeding. Rats fed with a high fructose diet exhibited insulin resistance, hyperinsulinemia, hypertriglyceridemia, hypertension, and elevated plasma Ang II. Treatment with either bosentan or L-158,809 significantly attenuated the rise in blood pressure with no effect on insulin levels or insulin sensitivity in fructose-fed rats. Bosentan treatment significantly reduced plasma Ang II levels, while L-158,809 treatment significantly increased vascular ET-1-immunoreactivity in fructose-fed rats. Thus, treatment with the endothelin receptor antagonist prevented the development of fructose-induced hypertension and decreased plasma Ang II levels. These data suggest that ET-1 contributes to the development of fructose-induced hypertension through modulation of Ang II levels.  相似文献   

4.
Experiments were performed to determine the pathogenic contribution of the peripheral sympathetic nervous system to fructose-induced hypertriglyceridemia, hyperinsulinemia and hypertension in rats. Neonatal chemical sympathectomy was performed in neonatal Sprague-Dawley rats (1-week old) by administration of guanethidine (50 microg/g, i.p.) 5 times per week for consecutive 3 weeks and nerve-intact rats were served as controls. Both groups of rats were fed a fructose-enriched diet for 9 weeks. The systolic blood pressure (SBP) and body weight were measured weekly and arterial blood samples were taken weekly for determinations of plasma insulin, glucose and triglyceride levels. The results showed that fructose feeding for one week significantly increased SBP in intact rats and sympathectomized rats (116+/-1 to 119+/-1 mmHg and 116+/-1 to 120+/-1 mmHg, respectively). SBP further increased thereafter in both groups. However, the increased SBP levels were significantly higher in intact group than in sympathectomized group after 5 weeks of fructose feeding. Fructose feeding for one week concurrently produced hypertriglyceridemia that preceded the appearance of hyperinsulinemia in both groups. The elevated plasma triglyceride levels were significantly lower in sympathectomized rats than in intact rats after 3 weeks of fructose feeding, whereas the elevated plasma insulin concentrations were not different between groups throughout fructose feeding period. Plasma glucose concentrations of both groups were comparable and remained unchanged throughout the study. These data indicate that neonatal chemical sympathectomy attenuated, but did not prevent, fructose-induced elevations in blood pressure and plasma triglyceride levels, suggesting a partial dependency of fructose-induced hypertriglyceridemia and hypertension on the integrity of the peripheral sympathetic nervous system (SNS) in rats.  相似文献   

5.
A high fructose diet induces hypertension, hyperinsulinemia - insulin resistance, and hypertriglyceridemia (syndrome X). In this study, we investigated the role of an abnormal lipid profile in mediating fructose-induced hypertension. We hypothesized that bezafibrate, a lipid-lowering drug, would reduce elevated blood pressure and inhibit increased vascular reactivity in fructose-fed rats. Male rats were placed on four different diets: group 1 was fed standard chow (n = 6); group 2 was fed 60% fructose (n = 5); group 3 was fed fructose plus bezafibrate (30 mg x kg(-1) x day(-1); drinking water; n = 5); and group 4 was fed standard chow plus bezafibrate (n = 6). In addition, the direct effects of very low density lipoprotein (VLDL) on vascular reactivity were examined. Bezafibrate treatment lowered blood pressure, free fatty acids, and triglycerides in the fructose-fed group, suggesting that lipid abnormalities play a role in the elevation of blood pressure in the fructose-induced hypertensive rat. Aortae from fructose-fed rats were hyperresponsive to the calcium channel agonist Bay K 8644, which was normalized with bezafibrate treatment. Incubation of aortae in a VLDL medium resulted in increased responsiveness to Bay K 8644, lending further support to lipid abnormalities altering vascular reactivity. An altered lipid profile evidenced by elevated triglycerides and free fatty acids is causally related to the development of high blood pressure and increased vascular reactivity in the fructose-induced hypertensive rat.  相似文献   

6.
We examined the effect of methanol/methylene chloride extract of Dorstenia psilurus given by gastric intubation on systolic blood pressure, plasma glucose, insulin, cholesterol, triglycerides and creatinine in rats with fructose-induced hypertension. Male Wistar rats in groups of 6 animals each were fed fructose-rich diets or standard chow for 3 weeks and treated with 100 mg/kg/day or 200 mg/kg/day of plant extract or vehicle for 3 subsequent weeks. Systolic blood pressure was measured every three days using the indirect tail cuff method. Systolic blood pressure was higher in fructose-fed rats (142+/-2 mm Hg, p < 0.01) compared with the controls (112+/-2 mm Hg), and was lower in Dorstenia psilurus-treated groups (127+/-2 and 119+/-1 mm Hg for the dose of 100 and 200 mg/kg, respectively) compared with the fructose-fed rats. Plasma insulin, cholesterol and triglycerides were higher on the fructose-rich diet compared with the controls. Plasma insulin and cholesterol were lower in the Dorstenia psilurus-treated groups. These results suggest that, Dorstenia psilurus treatment could prevent and reverse high blood pressure induced by a diet rich in fructose probably by improvement of plasma insulin levels. The plant extract might prove useful in the treatment and/or prevention of hypertension.  相似文献   

7.
8.
《Life sciences》1997,62(4):PL55-PL62
We demonstrated that the fructose-induced hypertensive rat, representative of the principal metabolic abnormalities found in a majority of hypertensive patients, i.e. hypertriglyceridemia, hyperinsulinemia and insulin resistance (Syndrome X), is associated with an impaired response to endothelium-dependent vasodilators and that fructose may directly contribute to this impairment. Twelve male Wistar rats were divided into two groups, one given 10% fructose (n=6); the other no fructose (n=6) for 40 days in the drinking water. Systolic blood pressure was measured via the tail cuff method. Perfusion pressure responses to acetylcholine, were measured in the isolated perfused mesenteric vascular bed. Constrictor or dilator responses were measured as increases or decreases, respectively, of the perfusion pressure at a constant flow (4 ml/min). Fructose-fed rats had significantly higher blood pressure, insulin and triglyceride levels than control animals. In phenylephrine constricted beds, the endothelium-dependent dilatation to acetylcholine (0.001 to 1 μmol) was attenuated in the fructose-fed group compared to control animals. Whether this abnormality results from the syndromes (hyperinsulinemia, hypertension and hypertriglyceridemia) associated with the fructose-fed animal model is unknown. We therefore hypothesized that fructose can impair the endothelium-dependent vasodilator response. This was evaluated by perfusing mesenteric arteries from normal rats with control mannitol (40 mM) or fructose (40 mM). Endothelium-dependent dilation to acetylcholine was impaired in fructose-perfused mesenteric arteries. Indomethacin restored the vasodilator response to acetylcholine, suggesting that a cyclooxygenase derivative mediates the impaired response. Thus, we conclude that fructose can contribute to the impaired endothelium-dependent response in the fructose-induced hypertensive rat model. Published by Elsevier Science Inc.  相似文献   

9.
Crocetin, a unique carotenoid with potent antioxidative and anti-inflammatory activities, is a major ingredient of saffron which is used as an important spice and food colorant in various parts of the world. In the present study, the effect of crocetin on insulin resistance and its related abnormalities induced by high-fructose diet were investigated in male Wistar rats. Compared to the control rats fed on normal laboratory diet, fructose-fed rats developed a series of pathological changes including insulin resistance, hyperinsulinemia, dyslipidemia and hypertension. Although having no evident effect on the body weight, fructose feeding caused a marked increase in the weight of epididymal white adipose tissue. Furthermore, a significant reduction in the expression of both protein and mRNA of adiponectin (an insulin-sensitizing adipocytokine) was observed, whereas those of tumor necrosis factor (TNF)-alpha and leptin were enhanced in epididymal white adipose tissue in fructose-fed rats. These disorders were effectively normalized in crocetin-treated rats. Crocetin was also demonstrated here to alleviate free fatty acid (FFA)-induced insulin insensitivity and dysregulated mRNA expression of adiponectin, TNF-alpha and leptin in primary cultured rat adipocytes. These findings suggest the possibility of crocetin treatment as a preventive strategy of insulin resistance and related diseases. The favorable impact on adiponectin, TNF-alpha and leptin expression in white adipose tissue may be involved in the improvement of insulin sensitivity observed in crocetin-treated rats.  相似文献   

10.
High dosage of fructose in rats causes insulin resistance and hyperinsulinemia. This study investigates the effect of physical exercise on oxidant-antioxidant balance in rats fed a high fructose diet, which show characteristic features of insulin resistance. Products of lipid peroxidation and the activity of enzymic antioxidants namely superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase, in red blood cells (RBCs) and liver were assayed. Levels of non-enzymic antioxidants alpha-tocopherol and ascorbic acid and of protein and non-protein thiols were also determined. The levels of lipid peroxides, diene conjugates, lipofuscin and hydroperoxides were significantly higher in the liver of fructose-fed rats. The RBCs showed significantly higher susceptibility to H(2)O(2)-induced stress compared to control rats. Inadequate antioxidant system was noted in high fructose-fed rats. Physical training to these rats reversed the adverse effects, which could be important in alleviating the pathological consequences of insulin resistance.  相似文献   

11.
Intact male and female spontaneously hypertensive rats showed a progressive increase in blood pressure with growth; male attained systolic blood pressure levels of 244 +/- 6 mmHg, and females 205 +/- 3 mmHg at age 22 weeks. Orchidectomy at age 4 weeks significantly attenuated the systolic blood pressure elevation in the male (195 +/- 4 mmHg at age 22 weeks), but ovariectomy at age 4 weeks had no effect on the development of hypertension in the female. The pattern of development of hypertension in orchidectomized males was the same as that in intact and ovariectomized females. Administration of testosterone propionate to gonadectomized rats of both sexes conferred a male pattern of blood pressure development. These results indicate that the sexually dimorphic pattern of hypertension in the spontaneously hypertensive rat is androgen dependent, rather than estrogen dependent. Plasma norepinephrine levels did not differ between the sexes, nor were they altered by gonadectomy or testosterone replacement, suggesting that the higher blood pressures in the intact male and androgen treated male and female SHR are not dependent on increased sympathetic outflow in the established phase of hypertension. Stores of norepinephrine in the posterior hypothalamic region were significantly greater in intact male rats and testosterone treated rats of both sexes than in intact or ovariectomized females, and were higher in the pons of intact female rats than in all other groups. These alterations in central catecholamine stores were not correlated with blood pressure. Further study is needed to assess the functional significance of these androgen mediated alterations in posterior hypothalamic neurons as a determinant of the androgen mediated sexual dimorphism of blood pressure in the spontaneously hypertensive rat.  相似文献   

12.
Insulin resistance has been shown to be associated with increased blood pressure (BP). The sex hormones estrogen and testosterone have opposing effects in the development of increased BP. Since testosterone has been implicated in increased BP following insulin resistance, we have tried to dissect out the effects of insulin resistance on endothelium-dependent vasorelaxation in the presence and absence of testosterone. Both gonadectomized and sham-operated male Wistar rats fed with a high-fructose diet developed insulin resistance, but BP increased only in the sham-operated rats. Reintroduction of testosterone in vivo restored the increase in BP, thereby abolishing the protective effects of gonadectomy. Fructose feeding did not affect plasma testosterone levels. Insulin resistance induced endothelial dysfunction in the mesenteric arteries of sham-operated rats, which was prevented by gonadectomy, thus suggesting a key role for testosterone in the pathogenesis of secondary vascular complications. Subsequent to blocking the actions of endothelium-dependent hyperpolarizing factor (EDHF), relaxation to acetylcholine (ACh) was lower in sham-operated fructose-fed rats compared with other groups, suggesting the involvement of nitric oxide (NO) in vasorelaxation. Inhibition of NO synthesis nearly abolished the ACh-evoked relaxation in both fructose-fed groups, thus suggesting a testosterone-independent impairment of EDHF-mediated relaxation. The improvement in endothelial function following gonadectomy could be ascribed to a NO component, although plasma nitrite and nitrate levels were unchanged. In summary, testosterone is essential in vivo for the development of endothelial dysfunction and hypertension secondary to insulin resistance, suggesting a facilitatory role for testosterone in increasing BP in fructose-fed male rats.  相似文献   

13.
Fructose feeding has been shown to induce insulin resistance and hypertension. Renal protein expression for the cytochrome P (CYP) 450 arachidonic acid metabolizing enzymes has been shown to be altered in other models of diet-induced hypertension. Of special interest is CYP4A, which produces the potent vasoconstrictor, 20-hydroxyeicosatetraenoic acid and CYP2C, which catalyzes the formation of the potent dilators epoxyeicosatrienoic acids as well as soluble epoxide hydrolase (sEH) which metabolizes the latter to dihydroxyeicosatrienoic acids. The RhoA/Rho kinase (ROCK) signaling pathway is downstream of arachidonic acid and is reported to mediate metabolic-cardio-renal dysfunctions in some experimental models of insulin resistance and diabetes. The aim of the present study was to determine the expression of CYP4A, CYP2C23, CYP2C11, sEH, RhoA, ROCK-1, ROCK-2, and phospho-Lin-11/Isl-1/Mec-3 kinase (LIMK) in kidneys of fructose-fed (F) rats. Male Wistar rats were fed a high fructose diet for 8 weeks. Body weight, systolic blood pressure, insulin sensitivity, and renal expression of the aforementioned proteins were assessed. No change was observed in the body weight of F rats; however, euglycemia and hyperinsulinemia implicating impaired glucose tolerance and significant elevation in systolic blood pressure were observed. Renal expression of CYP4A and CYP2C23 was significantly increased while that of CYP2C11 and sEH was not changed in F rats. Equal expression for RhoA in both control and F rats and an enhanced level of ROCK-1 and ROCK-2 constitutively activate 130 kDa cleavage fragments as well as phospho-LIMK. These data suggest that the kidneys could be actively participating in the pathogenesis of insulin resistance-induced hypertension through the arachidonic acid CYP 450-RhoA/Rho kinase pathway(s).  相似文献   

14.
High fructose feeding induces insulin resistance, impaired glucose tolerance, and hypertension in rats and mimics most of the features of the metabolic syndrome X. The effects of a 6-week treatment with the transition metals administered in drinking water, vanadium (VOSO4.5H2O, 0.75 mg/mL) or tungsten (Na2O4W, 2 g/mL), were investigated on the reactivity to norepinephrine (NEPI) or acetylcholine (ACh) of thoracic aorta rings isolated from fructose (60%) or standard chow fed rats. Maximal effect (Emax) and pD2 (-log EC50) values were determined in each case in the presence or absence of endothelium, while the degree of insulin resistance was determined using the euglycemic hyper insulinemic glucose clamp technique. Aortic segments isolated from 6-week fructose-fed animals were characterized by NEPI hyperresponsiveness (increase in Emax) and endothelium-dependent NEPI supersensitivity (increase in pD2) without any change in the reactivity to ACh. Vanadium or tungsten administered in fructose-fed animals prevented both hypertension and NEPI hyperresponsiveness, while vanadium, but not tungsten, reduced NEPI supersensitivity. Vanadium, but not tungsten, increased the relaxing activity of ACh, both in control and fructose-fed animals. Insulin resistance associated with high fructose feeding was reversed by vanadium but not by tungsten treatment. The differential effects of the two transition metals on vascular responsiveness to NEPI or ACh may be explained by their differential effects on insulin sensitivity.  相似文献   

15.
The study examined the effects of galangin (GA) on oxidative stress, inflammatory cytokine levels and nuclear factor-kappa B (NF-κB) activation in fructose-fed rat liver. Adult male albino Wistar rats were divided into 4 groups. Groups 1 and 4 received the control diet containing starch as the source of carbohydrate while groups 2 and 3 were fed a diet containing fructose. Groups 3 and 4 additionally received GA (100 μg/kg, p.o) from the 15th day. At the end of 60 days, the levels of plasma glucose, insulin and triglycerides, insulin sensitivity indices and oxidative stress markers in the liver were determined. Cytokines of interest were assayed by ELISA and RT-PCR and NF-κB p65 nuclear translocation by Western blot and RT-PCR. Compared to control diet-fed animals, fructose-fed animals developed hyperglycemia, hyperinsulinemia, hypertriglyceridemia and insulin resistance (IR) (all p < 0.01). GA prevented the rise in plasma glucose, insulin and triglycerides and improved insulin sensitivity. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels in plasma and the mRNA and protein levels of TNF-α and transforming growth factor-β1(TGF-β1) in liver were significantly higher in fructose-fed rats than control rats. However, treatment with GA downregulated the expression of these cytokines. Translocation of NF-κB into the nucleus was also increased in fructose diet-fed animals, which was prevented by GA. These results suggest that GA prevents oxidative damage and has a downregulatory effect on the inflammatory pathway in liver of fructose-fed rats.  相似文献   

16.
The metabolic syndrome is an important public health concern that predisposes individuals to the development of cardiovascular disease and/or Type 2 diabetes. The fructose-fed rat is an animal model of acquired systolic hypertension that displays numerous features of the metabolic syndrome. This animal model is used to study the relationship between insulin resistance/compensatory hyperinsulinemia and the development of hypertension. Several mechanisms have been proposed to mediate the link between insulin resistance and hypertension. In this review, we have addressed the role of sympathetic nervous system overactivation, increased production of vasoconstrictors, such as endothelin-1 and angiotensin II, and prostanoids in the development of hypertension in fructose-fed rats. The roles of nitric oxide, impaired endothelium-dependent relaxation and sex hormones in the pathogenesis of the fructose-fed induced hypertensive rats have also been highlighted. More recently, increased formation of reactive oxygen species and elevated levels of uric acid have been reported to contribute to fructose-induced hypertension.  相似文献   

17.
Feeding rats with a high fructose diet results in insulin resistance and hypertension. Fructose-hypertensive rats (FHR) have increased vascular levels of endothelin-1 (ET-1) and thromboxane (TXA2). We have previously shown that chronic treatment with either the dual endothelin receptor blocker, bosentan, or the thromboxane synthase inhibitor, dazmegrel, prevented fructose-induced increases in blood pressure, suggesting that both ET-1 and TXA2 play important roles in the development of hyperinsulinemia/insulin resistance-associated hypertension. In this study, we investigated the potential interrelationship between ET-1 and TXA2 in the development of fructose-induced hypertension in vivo. Male Wistar rats were fed on a high fructose diet for 9 weeks. Either bosentan or dazmegrel treatment (daily by oral gavage) was initiated 3 weeks after the start of fructose feeding for a total duration of 6 weeks. At the end of drug treatment, blood and aorta were collected from each animal. Plasma thromboxane B2 (TXB2), a stable TXA2 metabolite, increased significantly in FHR and was reduced to control level by both chronic bosentan and dazmegrel treatment. Protein expression of cyclooxygenase 2 (COX2) was elevated significantly in FHR aortas and treatment with bosentan and dazmegrel corrected these changes. These results indicate that the actions of ET-1 in the aorta of FHR may be mediated through COX2-derived TXA2. Bosentan may prevent the development of hypertension in fructose-fed rats through inhibition of COX2 induction and subsequently the reduction in plasma TXA2.  相似文献   

18.
Modest maternal dietary protein restriction in the rat leads to hypertension in adult male offspring. The purpose of this study was to determine whether female rats are resistant to developing the increased blood pressure seen in male rats after maternal protein restriction. Pregnant rats were fed a normal protein (19%, NP) or low-protein (8.5%, LP) diet throughout gestation. Renal renin protein and ANG II levels were reduced by 50-65% in male LP compared with NP pups, but were not suppressed in female LP compared with female NP. Mean arterial pressure in conscious, chronically instrumented adult female offspring (22 wk) was not different in LP (LP: 120 +/- 3 mmHg vs. NP: 121 +/- 2 mmHg), and glomerular filtration rate was also not different in LP vs. NP. The number of glomeruli per kidney was similar in adult LP and NP female offspring (LP: 26,050 +/- 2,071 vs. NP: 26,248 +/- 1,292, NP), and individual glomerular volume was also not different (LP: 0.92 +/- 0.11 10(6) microm(3), LP vs. NP: 1.07 +/- 0.11 10(6) microm(3)); the total volume of all glomeruli per kidney was also not significantly different. Thus female rats are relatively resistant to the programming for adult hypertension by perinatal protein restriction that we have described in males. This resistance may be due to the fact that modest maternal protein restriction does not reduce the number of glomeruli with which females are endowed as it does in males. The intrarenal renin-angiotensin system during development may play a key role in this protective effect of female gender.  相似文献   

19.
20.
We previously showed that chronic insulin infusion induces insulin resistance, hyperendothelinemia, and hypertension in rats (C. C. Juan, V. S. Fang, C. F. Kwok, J. C. Perng, Y. C. Chou, and L. T. Ho. Metabolism 48: 465-471, 1999). Endothelin-1 (ET-1), a potent vasoconstrictor, is suggested to play an important role in maintaining vascular tone and regulating blood pressure, and insulin increases ET-1 production in vivo and in vitro. In the present study, BQ-610, a selective endothelin A receptor antagonist, was used to examine the role of ET-1 in insulin-induced hypertension in rats. BQ-610 (0.7 mg/ml; 0.5 ml/kg body wt) or normal saline was given intraperitoneally two times daily for 25 days to groups of rats infused with either saline or insulin (2 U/day via sc-implanted osmotic pumps), and changes in plasma levels of insulin, glucose, and ET-1 and the systolic blood pressure were measured over the experimental period, whereas changes in insulin sensitivity were examined at the end of the experimental period. Plasma insulin and ET-1 levels were measured by RIA, plasma glucose levels using a glucose analyzer, systolic blood pressure by the tail-cuff method, and insulin sensitivity by an oral glucose tolerance test. Our studies showed that insulin infusion caused sustained hyperinsulinemia in both saline- and BQ-610-injected rats over the infusion period. After pump implantation (2 wk), the systolic blood pressure was significantly higher in insulin-infused rats than in saline-infused rats in the saline-injected group (133 +/- 3.1 vs. 113 +/- 1.1 mmHg, P < 0.05) but not in the BQ-610-injected group (117 +/- 1.2 vs. 117 +/- 1.8 mmHg). Plasma ET-1 levels in both sets of insulin-infused rats were higher than in saline-infused controls (2.5 +/- 0.6 and 2.5 +/- 0.8 vs. 1.8 +/- 0.4 and 1.7 +/- 0.3 pmol/l, P < 0.05). Oral glucose tolerance tests showed that BQ-610 treatment did not prevent the insulin resistance caused by chronic insulin infusion. No significant changes were found in insulin sensitivity and blood pressure in saline-infused rats treated with BQ-610. In a separate experiment, insulin infusion induced the increase in arterial ET-1 content, hypertension, and subsequent plasma ET-1 elevation in rats. These results suggest that, in the insulin infusion rat model, ET-1 plays a mediating role in the development of hypertension, but not of insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号