首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions between the protein kinase inhibitor UCN-01 and the PKC activator phorbol ester (PMA) have been examined in relation to differentiation and apoptosis in human myelomonocytic leukemia cells (U937). Coadministratation of 100 nM UCN-01 with a low concentration of PMA e.g., 2 nM, inhibited rather than promoted differentiation, reflected by reduced surface expression of the monocytic maturation marker CD11b and diminished cell adherence. Instead, administration of UCN-01 with PMA led to a marked increase in mitochondrial injury (e.g, cytochrome c release), activation of caspases-3 and -8, Bid cleavage, PARP degradation, and apoptosis, accompanied by a substantial reduction in viability and clonogenic survival. These phenomena were associated with multiple perturbations in cell cycle regulatory events, including abrogation of p21CIP1 induction, p27KIP1 cleavage, down-regulation of cyclin D1, dephosphorylation (activation) of p34cdc2, and degradation of underphosphorylated pRb. Potentiation of PMA-mediated apoptosis was partially mimicked by caffeine suggesting the involvement of Chk1 in the potentiation of apoptosis. Induction of cell death by UCN-01 and PMA was increased in cells stably expressing a p21CIP1 mRNA antisense construct, suggesting that p21CIP1 expression may protect cells from the lethal effects of this drug combination. Finally, ectopic expression of a Bcl-2 but not dominant-negative caspase-8 protected cells from UCN-01/PMA-mediated apoptosis, suggesting the lethal effects of this combination primarily involves the mitochondrial rather than the TNF-related extrinsic apoptotic pathway. Taken together, these findings suggest that UCN-01 disrupts a variety of cell cycle events in leukemic cells exposed to the maturation-inducing agent PMA, causing cells to engage an apoptotic rather than a differentiation-related program.

Key Words:

PMA, UCN-01, Differentiation, Apoptosis  相似文献   

2.
7-hydroxystaurosporine (UCN-01) is a more selective protein kinase C inhibitor than staurosporine. UCN-01 exhibits antitumor activity in experimental tumor models and is presently in clinical trials. Our study reveals that human myeloblastic leukemia HL60 and K562 and colon carcinoma HT29 cells undergo internucleosomal DNA fragmentation and morphological changes characteristic of apoptosis after UCN-01 treatment. These three cell lines lack functional p53, and K562 and HT29 cells are usually resistant to apoptosis. DNA fragmentation in HT29 and K562 cells occurred after 1 day of treatment while it took less than 4 h in HL60 cells. Cycloheximide prevented UCN-01-induced DNA fragmentation in HT-29 cells, but not in HL60 and K562 cells, suggesting that macromolecular synthesis is selectively required for apoptotic DNA fragmentation in HT29 cells. UCN-01-induced DNA fragmentation was preceded by activation of cyclin B1/cdc2 kinase. Further studies in HL60 cells showed that UCN-01-induced apoptosis was associated with degradation of CPP32, PARP, and lamin B and that the inhibitor of caspases (ICE/CED-3 cysteine proteases), Z-VAD-FMK, and the serine protease inhibitor, DCI, protected HL60 cells from UCN-01-induced DNA fragmentation. However, only DCI and TPCK, but not Z-VAD-FMK, inhibited DNA fragmentation in the HL60 cell-free system, suggesting that serine protease(s) may play a role in the execution phase of apoptosis in HL60 cells treated with UCN-01. Z-VAD-FMK and DCI also inhibited apoptosis in HT29 cells. These data demonstrate that the protein kinase C inhibitor and antitumor agent, UCN-01 is a potent apoptosis inducer in cell lines that are usually resistant to apoptosis and lack p53 and that caspases and probably serine proteases are activated during UCN-01-induced apoptosis.  相似文献   

3.
The functional role of the cyclin-dependent kinase inhibitor (CDKI) p21CIP1 in differentiation of human myelomonocytic leukemia cells (U937) exposed to low concentrations of the antimetabolite 1-beta-D-arabino-furanosylcytosine (ara-C) was examined utilizing a cell line stably expressing a p21CIP1 antisense construct. Continuous exposure to 50 nM ara-C led to marked induction of p21CIP1 at 48-72 h in empty-vector control cells but not in their antisense-expressing counterparts (p21AS/F4 and B8). Such treatment induced expression of the myelomonocytic differentiation marker CD11b in approximately 35% of control cells, but no evidence of maturation was noted in antisense-expressing lines. However, antisense-expressing cells exposed to low concentrations of ara-C exhibited a reciprocal increase in apoptosis, manifested by the appearance of cells with classic morphologic features and hypodiploid quantities of DNA, reduced mitochondrial membrane potential (deltapsim), an increase in cytochrome c release into the cytosol, cleavage/activation of procaspases-9 and -3, and degradation of PARP and p27Kip1. Whereas empty-vector control cells exposed to 50 nM ara-C exhibited a decline in Bcl-2 expression, dephosphorylation of pRb, and an initial accumulation in S-phase, antisense-expressing cells did not. However, c-Myc down-regulation induced by low concentrations of ara-C was, if anything, more complete in antisense-expressing cells. Exposure of control but not antisense-expressing cells to ara-C led to phosphorylation/activation of MAP kinase at 24 h; moreover, the specific MEK/MAP kinase inhibitor PD98059 enhanced low-dose ara-C-mediated apoptosis only in wild-type cells. Lastly, exposure to 50 nM ara-C for 72 h resulted in detectable levels of cytoplasmic p21CIP1, a phenomenon associated with resistance to apoptosis, only in empty vector controls. Collectively, these findings demonstrate a functional role for p21CIP1 in leukemic cell maturation induced by low concentrations of ara-C. They also indicate that, as in the case of more conventional differentiation-inducers such as phorbol esters, disruption of the p21CIP1 response after exposure to low concentrations of the cytotoxic drug ara-C prevents leukemic cells from engaging a maturation program, but instead directs them along an apoptotic pathway.  相似文献   

4.
5.
Apoptosis of SK-HEP-1 human hepatoma cells induced by treatment with ginsenoside Rh2 (G-Rh2) is associated with rapid and selective activation of cyclin A-associated cyclin-dependent kinase 2 (Cdk2). Here, we show that in apoptotic cells, the Cdk inhibitory protein p21(WAF1/CIP1), which is associated with the cyclin A-Cdk2 complex, undergoes selective proteolytic cleavage. In contrast, another Cdk inhibitory protein, p27(KIP1), which is associated with cyclin A-Cdk2 and cyclin E-Cdk2 complexes, remained unaltered during apoptosis. Ectopic overexpression of p21(WAF1/CIP1) suppressed apoptosis as well as cyclin A-Cdk2 activity induced by treatment of SK-HEP-1 cells with G-Rh2. The suppressive effects of p21(WAF1/CIP1) were much higher in the cells transfected with p21D112N, an expression vector that encodes a p21(WAF1/CIP1) mutant resistant to caspase 3 cleavage. Overexpression of cyclin A in SK-HEP-1 cells dramatically up-regulated cyclin A-Cdk2 activity and accordingly enhances apoptosis induced by treatment with G-Rh2. These up-regulating effects were blocked by coexpression of a dominant negative allele of cdk2. Furthermore, olomoucine, a specific inhibitor of Cdks, also blocked G-Rh2-induced apoptosis. These data suggest that the induction of apoptosis in human hepatoma cells treated with G-Rh2 occurs by a mechanism that involves the activation of cyclin A-Cdk2 by caspase 3-mediated cleavage of p21(WAF1/CIP1).  相似文献   

6.
We show here that JNK1 activity is rapidly up-regulated and prolonged by specific mechanisms during apoptosis induced by paclitaxel- or ginsenoside-Rh2 in SK-HEP-1 cells. The early phase of JNK1 activation is prevented in cells expressing the dominant negative SEK1 mutant, although this JNK1 perturbation does not prevent apoptotic cell death. The later phase of JNK1 activation, which is temporally coincided with caspase-dependent cleavage of JNK1-associated p21(WAF1/CIP1), is efficiently prevented by expressing p21D112N, an uncleavable mutant of p21(WAF1/CIP1) and this perturbation of JNK1 activation results in prevention of apoptosis. The later JNK1 activation and apoptotic progression are also prevented by co-treatments of cells with rottlerin, a PKC-delta inhibitor or z-VAD-fmk, a pan caspase inhibitor. We also provide evidence that apoptotic cell death is significantly promoted in cells expressing JNK1, while this apoptotic cell death is effectively suppressed in cells expressing the dominant negative JNK1 mutant (DN-JNK1) or JBD, a JNK inhibitor protein. Thus, the later phase of JNK1 activation, which is linked to a caspase-dependent mechanism that requires PKC-delta activity, is associated with the induction of apoptosis, while the early JNK1 activation that is associated with a SEK1-mediated mechanism is not directly involved in apoptotic progression.  相似文献   

7.
Rat-1 cells are used in many studies on transformation, cell cycle, and apoptosis. Whereas UV treatment of Rat-1 cells results in apoptosis, X-ray treatment does not induce either apoptosis or a cell cycle block. X-ray treatment of Rat-1 cells results in both an increase of p53 protein and expression of the p53-inducible gene MDM2 but not the protein or mRNA of the p53-inducible p21(WAF1/CIP1) gene, which in other cells plays an important role in p53-mediated cell cycle block. The lack of p21(WAF1/CIP1) expression appears to be the result of hypermethylation of the p21(WAF1/CIP1) promoter region, as p21(WAF1/CIP1) protein expression could be induced by growth of Rat-1 cells in the presence of 5-aza-2-deoxycytidine. Furthermore, sequence analysis of bisulfite-treated DNA demonstrated extensive methylation of cytosine residues in CpG dinucleotides in a CpG-rich island in the promoter region of the p21(WAF1/CIP1) gene. Stable X-ray-induced p53-dependent p21(WAF1/CIP1) expression and cell cycle block were restored to a Rat-1 clone after transfection with a P1 artificial chromosome (PAC) DNA clone containing a rat genomic copy of the p21(WAF1/CIP1) gene. The absence of expression of the p21(WAF1/CIP1) gene may contribute to the suitability of Rat-1 cells for transformation, cell cycle, and apoptosis studies.  相似文献   

8.
We investigated the role of wild-type (wt)-p53 as an inducer of apoptotic cell death in human hepatoma cell lines. Following the retrovirus-mediated transduction of the wt-p53 gene, Hep3B cells lacking the endogenous p53 expression began to die through apoptosis in 4 h. They showed a maximal apoptotic death at 12 h, whereas HepG2 cells expressing endogenous p53 did not. However, the transduction of the wt-p53 gene elicited growth suppression of both Hep3B and HepG2 cells. P21(WAF1/CIP1), a p53-inducible cell cycle inhibitor, was induced, not only in Hep3B cells undergoing apoptosis, but also in HepG2 cells. The kinetics of the p21(WAF1/CIP1) induction, DNA fragmentation, and growth suppression of the Hep3B cells showed that DNA fragmentation and growth suppression progressed rapidly following p21(WAF1/CIP1) accumulation. N-acetyl-cysteine or glutathione, potent antioxidants, strongly inhibited the DNA fragmentation, but did not reduce the elevated level of p21(WAF1/CIP1). These findings suggested that p21(WAF1/CIP1) was not a critical mediator for the execution of p53-mediated apoptosis, although it contributed to the growth inhibition of cells undergoing apoptosis. Furthermore, p53-mediated apoptosis could be repressed by antioxidants.  相似文献   

9.
Genotoxic stimuli, including anticancer drugs, induce apoptosis in cancer cells through increase of p53, p21WAF1/CIP1 , at least in part. Bcl-2 and Bax modify this pathway or directly regulated by p53. Here we studied Adriamycin (ADM)-induced apoptosis in four human bladder cancer cell lines in respect of p53, p21WAF1/CIP1 and Bcl-2 family proteins. After ADM, treatment bladder cancer cells underwent dose-dependent cell death with typical morphologic features of apoptosis. Among four cell lines RT4 with wt p53, low ratio of Bcl-2 to Bax and induction of p21WAF1/CIP1 after ADM treatment, was the most sensitive to induction of apoptosis. Thus, p53, p21WAF1/CIP1 , Bcl-2 and Bax status might determine susceptibility of bladder cancer cells to ADM induced apoptosis.  相似文献   

10.
We here report the influence of the cell cycle abrogator UCN-01 on RKO human colon carcinoma cells differing in p53 status following exposure to two DNA damaging agents, the topoisomerase inhibitors etoposide and camptothecin. Cells were treated with the two drugs at the IC90 concentration for 24 h followed by post-incubation in drug-free medium. RKO cells expressing wild-type, functional p53 arrested the cell cycle progression in both the G1 and G2 phases of the cell cycle whereas the RKO/E6 cells, which lack functional p53, only arrested in the G2 phase. Growth-arrested cells did not resume proliferation even after prolonged incubation in drug-free medium (up to 96 h). To evaluate the importance of the cell cycle arrest on cellular survival, a non-toxic dose of UCN-01 (100 nM) was added to the growth-arrested cells. The addition of UCN-01 was accompanied by mitotic entry as revealed by the appearance of condensed chromatin and the MPM-2 phosphoepitope, which is characteristic for mitotic cells. G2 exit and mitotic transit was accompanied by a rapid activation of caspase-3 and apoptotic cell death. The influence of UCN-01 on the long-term cytotoxic effects of the two drugs was also determined. Unexpectedly, abrogation of the G2 arrest had no influence on the overall cytotoxicity of either drug. In contrast, addition of UCN-01 to cisplatin-treated RKO and RKO/E6 cells greatly increased the cytotoxic effects of the alkylating agent. These results strongly suggest that even prolonged cell cycle arrest in the G2 phase of the cell cycle is not necessarily coupled to efficient DNA repair and enhanced cellular survival as generally believed.  相似文献   

11.
BMP-4 and BMP-7 are associated with the suppression of granulosa cell apoptosis. LY294002 (PI3K inhibitor) or UCN-01 (PDK-1 inhibitor) increased the percentage of apoptotic cells in the granulosa cells treated with BMP-4 or BMP-7. The inhibitors of ERK and p38 (SB203580) did not increase the percentage of apoptotic cells in the granulosa cells treated with BMP-4 or BMP-7. Akt inhibitor did not induce apoptosis in the BMP-4-treated granulosa cells, whereas it did induce apoptosis of the BMP-7-treated granulosa cells. In the granulosa cells treated with BMP-4, the PKC inhibitor increased the percentage of apoptotic cells. Our data show that BMP-4 and BMP-7 are associated with granulosa cell survival via several non-Smad specific pathways: BMP-4 via the PI3K/PDK-1/PKC and BMP-7 via the PI3K/PDK-1/Akt.  相似文献   

12.
13.
Death receptors of the Tumor Necrosis Factor (TNF) family form membrane-bound self-activating signaling complexes that initiate apoptosis through cleavage of proximal caspases including CASP8 and 10. Here we show that overexpression of the cytoplasmic domain (CD) of the DR4 TRAIL receptor (TNFRSF10A, TRAIL R1) in human breast, lung, and colon cancer cell lines, using an adenovirus vector (Ad-DR4-CD), leads to p53-independent apoptotic cell death involving cleavage of CASP8 and 10 proximally and CASP3, 6, and 7 distally. DR4-CD overexpression also leads to cleavage of poly(ADP-ribose) polymerase (PARP) and the DNA fragmentation factor (DFF45; ICAD). Importantly, normal lung fibroblasts are resistant to DR4-CD overexpression and show no evidence of PARP-, CASP8- or CASP3-cleavage despite similar levels of adenovirus-delivered DR4-CD protein as the cancer cells. These results suggest that DR4 may signal death through known caspases and that further studies are required to evaluate Ad-DR4-CD as a novel anti-cancer agent. Finally, we show that overexpression of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1) (CDKN1A), or its N-terminal 91 amino acids containing cell cycle-inhibitory activity, inhibits DR4-CD-dependent proximal caspase cleavage. The blockage of initiator caspase activation provides a novel insight into how p21 may suppress apoptosis and enhance cell survival.  相似文献   

14.
15.
16.
Programmed cell death (PCD) is involved in a variety of biologic events. Based on the morphologic appearance of the cells, there are two types of PCD as follows: apoptotic (type I) and autophagic (type II). However, the molecular machinery that determines the type of PCD is poorly defined. The purpose of this study was to show whether the presence of the cyclin-dependent kinase (CDK) inhibitor p21(WAF1/CIP1), a modulator of apoptosis, determines which type of PCD the cell undergoes. Treatment with C(2)-ceramide was associated with both the cleavage of caspase-3 and poly(ADP-ribose) polymerase and the degradation of autophagy-related Beclin 1 and Atg5 proteins, without a change in the cyclin-CDK activity, which culminated in apoptosis in p21(+/+) mouse embryonic fibroblasts (MEFs). On the other hand, C(2)-ceramide did not cleave caspase-3 or poly(ADP-ribose) polymerase and kept Beclin 1 and Atg5 proteins stable in p21(-/-) MEFs, events that this time culminated in autophagy. When expression of the p21 protein was inhibited by small interfering RNA or when the overexpression of Beclin 1 or Atg5 was induced, autophagy rather than apoptosis was initiated in the p21(+/+) MEFs treated with C(2)-ceramide. In contrast, the exogenous expression of p21 or the silencing of Beclin 1 and Atg5 with small interfering RNA increased the number of apoptotic cells and decreased the number of autophagic cells among C(2)-ceramide-treated p21(-/-) MEFs. gamma-Irradiation, which endogenously generates ceramide, induced a similar tendency in these MEFs. These results suggest that p21 plays an essential role in determining the type of cell death, positively for apoptosis and negatively for autophagy.  相似文献   

17.
The induction of DNA damage together with the interference with DNA repair represents a promising strategy in cancer treatment. Here we show that the PARP-1/2/3 inhibitor AZD2461 in combination with the CHK1 inhibitor UCN-01 altered the DNA damage response and reduced cell proliferation in PEL cells, an aggressive B cell lymphoma highly resistant to chemotherapies.AZD2461/UCN-01 combination activated p53/p21 and downregulated c-Myc in these cells, leading to a reduced expression level of RAD51, molecule involved in DNA repair. The effect of AZD2461/UCN-01 on c-Myc and p53/p21 was inter-dependent and, besides impairing cell proliferation, contributed to the activation of the replicative cycle of KSHV, carried in a latent state in PEL cells. Finally, we found that the pharmacological or genetic inhibition of p21 counteracted the viral lytic cycle activation and further reduced PEL cell proliferation, suggesting that it could induce a double beneficial effect in this setting. This study unveils that, therapeutic approaches, based on the induction of DNA damage and the reduction of DNA repair, could be used to successfully treat this malignant lymphoma.  相似文献   

18.
Cyclin-dependent kinase 2 (Cdk2) activity is thought to be involved in cell death-associated chromatin condensation and other manifestations of apoptotic death. Here we show that during TNFalpha-induced apoptosis, PKCdelta is activated in a caspase-3-dependent manner and phosphorylates p21(WAF1/CIP1), a specific cyclin-dependent kinase inhibitor, on (146)Ser. This residue is located near a cyclin-binding motif (Cy2) that plays an important role in the interaction between p21(WAF1/CIP1) and Cdk2, and its phosphorylation modulates the ability of p21(WAF1/CIP1) to associate with Cdk2. The phosphorylation of p21(WAF1/CIP1) is temporally related to the activation kinetics of Cdk2 activity during the apoptosis. We propose that during TNFalpha-induced apoptosis, PKCdelta-mediated phosphorylation of p21(WAF1/CIP1) at (146)Ser attenuates the Cdk2 binding of p21(WAF1/CIP1) and thereby upregulates Cdk2 activity.  相似文献   

19.
Previous studies have suggested that upregulation of Cyclin A-dependent protein kinase 2 (Cdk2) activity is an essential event in apoptotic progression and the mitochondrial permeability transition in human cancer cells. Here, we show that upregulated Cyclin A/Cdk2 activity precedes the proteolytic cleavage of PARP and is correlated with the mitochondrial translocation of Bax and the loss of mitochondrial transmembrane potential (Δψm) during etoposide-induced apoptosis in human cervical adenocarcinoma (HeLa) cells. Etoposide-induced apoptotic cell death is efficiently prevented in cells that overexpress a dominant negative mutant of Cdk2 (Cdk2-dn) or p21WAF1/CIP1, a specific Cdk inhibitor. Conversely, apoptotic cell death is promoted in Cyclin A-expressing cells. Disruption of the mitochondrial transmembrane potential in etoposide-induced cells is prevented in cells that overexpress Cdk2-dn or p21WAF1/CIP1, while this transition is prominently promoted in Cyclin A-expressing cells. We screened for mitochondrial Cdk2 targets in the etoposide-induced cells and found that the mitochondrial level of Bax is elevated by more than three fold in etoposide-treated cells and this elevation is effectively prevented in cells expressing Cdk2-dn under the same conditions. Thus, we suggest that Cdk2 activity is involved in the mitochondrial translocation of Bax, which plays an important role in the mitochondrial membrane permeability transition during apoptotic progression.  相似文献   

20.
The biological activity of retinoic acid (RA) was examined in human hepatoma Hep3B cells. Under serum-deprived conditions, RA induced S/M-phase elevation and mitotic index increase within 24 h, followed by apoptosis. This RA-induced apoptosis was accompanied by p53-independent up-regulation of endogenous p21(CIPI/Waf1) and Bax proteins, as well as activation of p34(cdc2) kinase, and increase of Rb2 protein level and phosphorylation pattern. In addition, RA had no effect on the levels of Bcl-XL; Bcl-XS; cyclins A, B, D1, D3, or E; or Rb1 expression but markedly down-modulated Cdk2 kinase activity and reduced Cdk4 expression. RA also slightly delayed p27(Kip1) expression. Olomoucine, a potent p34(cdc2) and Cdk2 inhibitor, effectively blocked RA-mediated p34(cdc2) kinase activation and prevented RA-induced apoptosis. Furthermore, antisense oligonucleotide complementary to p21(CIP2/Waf1) and p34(cdc2) mRNA significantly rescued RA-induced apoptosis. Our data indicate that p21(CIP2/Waf1) overexpression may not be the only regulatory factor necessary for RA-induced apoptosis in human hepatoma Hep3B cells. RA treatment leads to Rb2 hyperphosphorylation, and p34(cdc2) kinase activation is coincident with an aberrant mitotic progression, followed by appearance of abnormal nucleus. This aberrant cell cycle progression appeared requisite for RA-induced cell death. These findings suggest that inappropriate regulation of the cell cycle regulators p21(CIP2/Waf1) and p34(cdc2) is coupled with induction of Bax and involved in cell death with apoptosis when Hep3B cells are exposed to RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号