首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Welsh ER  Price RR 《Biomacromolecules》2003,4(5):1357-1361
A water-soluble, blocked diisocyante was used to cross-link chitosan under various degrees of solvation, including hydration to form hydrogels. Thermal cross-linking of films cast from various amounts of organic cosolvents was found to increase with increased level of cosolvent up to a solvation level of 17% (w/w) and to be more efficient than for films prepared without cosolvent. Rheological studies revealed that gel modulus increased and gel time decreased with increasing cross-linker content and that gelation kinetics were consistent with a process having an activation energy of 103 kJ/mol. Swelling of hydrogels indicated that, even at high levels of hydration, the increased molecular mobility of reactants allowed for efficient network formation in a concentration-dependent manner. The extent of solvation via equilibrium swelling correlated well with degradative properties of chitosan networks in the presence of Chitinase (E. C. 3.2.1.14) from Streptomyces griseus with stability increasing with decreasing swelling (i.e., increased cross-linking).  相似文献   

2.
2,4-Difluoro-5-nitrobenzenesulfonic acid has been synthesized by the sulfonation of 2,4-difluoronitrobenzene, and precipitated with KCl as the potassium sulfonate. The structure was confirmed by chemical and spectroscopic methods (IR, 1H-NMR, 13C-NMR, 19F-NMR, UV, MS and ultimate organic analysis). Lysozyme was cross-linked with the potassium sulfonate and with 1,5-difluoro-2,4-dinitrobenzene. The products were analysed by SDS-PAGE and compared. The cross-linking conditions were optimized.  相似文献   

3.
Diaspirin cross-linked hemoglobin (DCLHb), a human hemoglobin that is intramolecularly cross-linked between the alpha chains (lysine 99(alpha)(1)-lysine 99(alpha)(2)), was polymerized with a number of water-soluble, nonimmunogenic polyamide cross-linking agents. The degree of polymerization and the oxygen-carrying capacity depended upon the polyamide reagent, the starting concentration of DCLHb, the molar ratio of the polyamide reagent to DCLHb used, the reaction pH, and whether oxy- or deoxy-DCLHb was used in the polymerization reaction.  相似文献   

4.
Biotechnology report. Solid state fermentations   总被引:8,自引:0,他引:8  
A unique method is described by which large yields of secondary metabolites arc produced on solid substrates. The process involves the use of moist substrates which are continuously agitated in appropriate fermentation equipment. The amount of agitation, aeration, and moisture can be varied. Extremely high yields of secondary metabolites such as ochratoxin and aflatoxin were obtained using Aspergillus and Penicillium species. The process prevents sporulation of the fungus and because of the nature of the solid substrate makes recovery of the product easier than in conventional liquid media. The substrates include rice, corn, wheat, and other cereals.  相似文献   

5.
Covalent cross-links can be inserted between the subunits of F-actin by using p-NN'-phenylenebismaleimide. Cross-linking reaches its maximum value when one molecule of reagent has reacted with each actin subunit. p-NN'-Phenylenebismaleimide reacts initially with a cysteine residue on one subunit, the slower cross-linking reaction involving a lysine residue on a neighbouring subunit. Hydrolysis of the actin-bound reagent limits the extent of cross-linking. Quantitative analysis of the amounts of cross-linked oligomers seen on polyacrylamide gels containing sodium dodecyl sulphate suggests that neither the binding of the reagent to actin nor the formation of cross-links introduces strain into the structure. The cross-links do not join together different F-actin filaments, and evidence is presented that suggests that the cross-links join subunits of the same long-pitched helix.  相似文献   

6.
N-(1-pyrene)maleimide: a fluorescent cross-linking reagent.   总被引:1,自引:0,他引:1  
C W Wu  L R Yarbrough 《Biochemistry》1976,15(13):2863-2868
N-(1-Pyrene)maleimide is nonfluorescent in aqueous solution but forms strongly fluorescent adducts with sulfhydryl groups of organic compounds or proteins. The conjugation reactions of N-(1-pyrene)maleimide are relatively fast and can be monitored by the increase in fluorescence intensity of the pyrene chromophore. In cases where primary amino groups are also present in the system, we have observed a red shift of the emission spectra of the fluorescent adducts subsequent to the initial conjugation, as characterized by the disappearance of three emission peaks at 376, 396, and 416 nm, and the appearance of two new peaks at 386 and 405 nm. Model studies with N-(1-pyrene)maleimide adducts of L-cysteine and cysteamine indicate that the spectral shift is the result of an intramolecular aminolysis of the succinimido ring in the adducts. Evidence from both chemical analysis and nuclear magnetic resonance studies of the addition products supports this reaction scheme. N-(1-Pyrene)maleimide adducts of N-acetyl-L-cysteine and beta-mercaptoethanol, which have no free amino group, do not exhibit a spectral shift. Among several protein conjugates only the N-(1-pyrene)maleimide adduct of bovine serum albumin (PM-BSA) shows the spectral shift resembling that of PM-cysteine. N-(1-Pyrene)maleimide reacts with the sulfhydryl group of the single cysteine residue at position 34 in BSA. The finding that the alpha-amino group of the N-terminus in PM-BSA is blocked after the spectral shift is completed strongly suggests that N-(1-pyrene)maleimide cross-links the N-terminus and the cysteine residue in BSA. The relative proximity of the sulfhydryl and amino groups is very critical in the cross-linking as demonstrated by the observation that the spectral shift observed with PM-BSA can be prevented by addition of denaturing reagents such as 1% sodium dodecyl sulfate immediately after labeling, and by the failure of PM-glutathione to undergo the intramolecular aminolysis. Since the intramolecular rearrangement of PM adducts is associated with characteristic fluorescence changes, N-(1-pyrene)maleimide can serve as a fluorescent cross-linking reagent which provides information about the spatial proximity of sulfhydryl and amino groups in proteins.  相似文献   

7.
Intramolecular cross-linking of myosin subfragment 1 with bimane   总被引:2,自引:0,他引:2  
K Ue 《Biochemistry》1987,26(7):1889-1894
We previously showed that the fluorescent inter-thiol cross-linker dibromobimane (DBB) [Kosower, N. S., Kosower, E. M., Newton, G. L., & Ranney, H. M. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 3382-3386] cross-links two [50 and 20 kilodaltons (kDa)] of the three major fragments of myosin subfragment 1 (S-1); on intact S-1, DBB quenches tryptophans and inhibits all ATPases [Mornet, D., Ue, K., & Morales, M. F. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 1658-1662]. Here we characterize the modification chemically: DBB cross-links Cys-522 (50 kDa) with Cys-707 (20 kDa), thereby sealing a large preexisting heavy-chain loop containing important functionalities. Cross-linking rate is insensitive to nucleotides, but apparently sterically, either monobromobimane or DBB reduces Ca2+-ATPase to low, nonzero levels.  相似文献   

8.
The influence of amino acids with contrasting conformational tendencies on the stereochemistry of oligopeptides has been investigated using an octapeptide Boc-Leu-Aib-Val-Gly-Gly-Leu-Aib-Val-OMe, which contains two helix-promoting Aib residues and a central helix-destabilizing Gly-Gly segment. Single crystal x-ray diffraction studies reveal that a 3 10-helix is formed up to the penultimate Aib residue, at which point there is a helix reversal in the backbone, reminiscent of a C-terminal 6 → I hydrogen bond. The curious feature in the crystal is the solvation of the possible 6 → 1 bond by a CH3OH molecule, where the OH is inserted between O(3) and N(8) and participates in hydrogen bonds with both. The cell parameters are as follows: space group P212121, a = 10.649(4) Å, b = 15.694(5) Å, c = 30.181(8) Å, R = 6.7% for 3427 data (| F0| > 3σF) observed to 0.9 Å. Nuclear magnetic resonance studies in CDCl3 using NH group solvent accessibility and nuclear Overhauser effects as probes are consistent with a 3 10-helical conformation. In contrast, in (CD3)2SO, unfolding of the central segment results in a multiple β-turn structure, with β-turn conformations populated at residues 1–2, 3–4, and 6–7. CD studies in methanol-2,2,2-trifluoroethanol (TFE) mixtures also provide evidence for a solvent-dependent structural transition. Helical conformations are populated in TFE, while type II β-turn structures are favored in methanol. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
The anomers of 1-O-n-octyl-D-glucopyranosides exhibit different crystal packing and thermodynamic properties. Crystallization either from solution or by epitaxy of the α-anomer resembles that of other amphiphiles, such as lysolecithin, and is isostructural to the decyl homologue. The β-anomer crystallizes into a unique form, independent of conditions, with the longest cyrstallographic axis parallel to the best developed crystal face. Both compounds exhibit two phase transitions, one near 70°C, the other above 100°C. The latter corresponds to melting to an isotropic liquid for both forms, but the former is distinctly different for the two anomers. Thus, birefringence is lost only with the β-anomer, while the enthalpy change is two-fold larger for the α-anomer. The crystal packing of the two compounds are thus clearly different.  相似文献   

10.
Cross-linking reagents have been used to link covalently adjacent subunits of solubilized spinach chloroplast coupling factor 1, which is a latent ATPase. 1,5-Difluoro-2,4-dinitrobenzene, dimethyl-3,3'-dithiobispropionimidate, and dimethylsuberimidate are able to form bridges of 3 to 11 A between amino groups, and hydrogen peroxide and the o-phenanthroline-cupric ion complex catalyze the oxidation of intrinsic sulfhydryl groups. The five individual subunit bands (alpha, beta, gamma, delta, and epsilon) and several new aggregate bands can be separated by means of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The same four fastest moving aggregate bands, as characterized by their mobilities, migrate more slowly than the heaviest subunit band and appear with all of the cross-linkers employed. The subunit composition of the aggregate bands has been determined through the use of the reversible cross-linkers, dimethyldithiobispropionimidate, (o-phenanthroline)2Cu(II), and H2O2, and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis in which aggregates are separated in the first dimension, the disulfide cross-links are cleaved, and the individual subunits present in the aggregates are separated in the second dimension. The subunits are detected by Coomassie brilliant blue staining and by labeling some of the sulfhydryl groups of the gamma and epsilon subunits with radioactive N-ethylmaleimide. The results obtained indicate that the alpha and beta subunits can cross-link directly with each of the other subunits, that two beta subunits are adjacent, and that gamma epsilon, gamma epsilon 2, alpha delta, and beta delta aggregates are present. A minimal subunit stoichiometry consistent with these results is alpha 2 beta 2 gamma delta epsilon 2. A possible structural model of the coupling factor is derived from the data. Similar, but less extensive, experiments have been carried out with the heat-activated coupling factor (which is an ATPase); no differences in the spatial arrangement of subunits are detected from the two-dimensional gel electrophoresis analysis of the cross-linked aggregates.  相似文献   

11.
12.
Biosurfactants are surface active substances which reduce interfacial tension and are produced or excreted at the microbial cell surface. We evaluated the biosurfactant production by Aspergillus fumigatus and Phialemonium sp. in solid state processes using fixed-bed column reactors. We evaluated two media, rice husks alone (simple support) and rice husks plus defatted rice bran (complex support), both enriched with either soy oil or diesel oil. The highest water-in-oil emulsifying activity (EAw/o) obtained was 7.36 EU g(-1) produced by A. fumigatus growing on complex support enriched with soy oil and supplied with air at a rate of 60 mL g(-1) h(-1), while Phialemonium sp. had a maximum production of 6.11 EU g(-1) using the simple support with diesel oil and an aeration rate of 120 mL g(-1) h(-1). The highest oil-in-water emulsifying activity (EAo/w) was 12.21 EU g(-1) produced by Phialemonium sp. on the complex support enriched with diesel oil and at an aeration rate of 60 mL g(-1) h(-1), while A. fumigatus produced a maximum EAo/w of 10.98 EU g(-1) when growing on the complex support with no additional carbon source and an aeration rate of 60 mL g(-1) 1 h(-1).  相似文献   

13.
Shandiz AT  Capraro BR  Sosnick TR 《Biochemistry》2007,46(48):13711-13719
We examine the utility of intramolecular covalent cross-linking to identify the structure present in the folding transition state. In mammalian ubiquitin, cysteine residues located across two beta-strands are cross-linked with dichloroacetone. The kinetic effects of these covalent cross-links in ubiquitin, and engineered disulfide bonds in src SH3 (Grantcharova, V. P., Riddle, D. S., and Baker, D. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 7084-7089), are compared to the results of psi-analysis where strand association is stabilized by metal ion binding to engineered bihistidine sites (Krantz, B. A., Dothager, R. S., and Sosnick, T. R. (2004) J. Mol. Biol. 337, 463-75) at the same positions. The results for the two methods agree at some of the sites. The cross-linking phi crosslink-values agree with their corresponding psi-values when they have both have values of zero or one, which represent the absence and presence of native structure, respectively. When phi crosslink > psi, the apparent inconsistency is rationalized by the difference between each method's mode of stabilization; cross-linking reduces the configurational entropy of the unfolded state whereas metal binding directly stabilizes the native state. However, when the cross-linking phi-values are smaller than their corresponding psi-values, the apparent underestimation of structure formation is difficult to rationalize while retaining the assumption that the cross-link exclusively affects the entropy of the unfolded state. The interpretation also is problematic for data on cross-links located across strands which are not hairpins, and hence, these sites are likely to be of limited utility in folding studies. We conclude that cross-linking data for sites on hairpins generally report on the amount of structure formed within the enclosed loop while the metal binding data report on the amount structure formed at the site itself.  相似文献   

14.
Incubation of purified rat brain sodium channels at 37 degrees C or at high ionic strength causes a concomitant loss of saxitoxin-binding activity and dissociation of beta 1 subunits. Reaction with hydrophilic carbodiimides produced a resistance against the loss of saxitoxin binding and caused covalent cross-linking of alpha, beta 1, and beta 2 subunits. In the presence of saxitoxin, this cross-linking reaction led to formation of a state with increased affinity for saxitoxin. However, analysis of the concentration dependence of covalent cross-linking and its inhibition by hydrophilic nucleophiles showed that the stabilization of the saxitoxin-binding activity was due to the formation of a small number of isopeptide bonds in the alpha subunit rather than to cross-linking of alpha and beta 1 subunits. In the presence of amine nucleophiles, carbodiimides caused loss of saxitoxin binding, which was prevented in the presence of the toxin. Nucleophiles yielding positively charged amide products were more effective than those forming uncharged or negatively charged products. Under conditions where saxitoxin protected the binding activity of the sodium channel from inactivation, the overall availability of carboxyl groups for reaction was increased, providing evidence for a toxin-induced conformational change on binding. These results are considered in terms of an allosteric model of saxitoxin binding, in which the functional form of the sodium channel having high affinity for saxitoxin can be stabilized against inactivation by noncovalent interactions with beta 1 subunits, binding of saxitoxin and tetrodotoxin, or intramolecular cross-linking of amino acid residues within the alpha subunit.  相似文献   

15.
The X-ray crystal structure of 1L-1-O-acetyl-2,3:5,6-di-O-isopropylidene-chiro-inositol is described. The inositol ring deviates considerably from the ideal chair conformation to a flattened chair. A comparison of its conformation in solution with that in solid was made by the use of 1H NMR. This conformational analysis revealed that the title compound adopts similar conformations in solid state and in solution states irrespective of solvent polarity.  相似文献   

16.
The ionization state and hydrogen bonding environment of the transition state analogue (TSA) inhibitor, carboxymethyldethia coenzyme A (CMX), bound to citrate synthase have been investigated using solid state NMR. This enzyme-inhibitor complex has been studied in connection with the postulated contribution of short hydrogen bonds to binding energies and enzyme catalysis: the X-ray crystal structure of this complex revealed an unusually short hydrogen bond between the carboxylate group of the inhibitor and an aspartic acid side chain [Usher et al. (1994) Biochemistry 33, 7753-7759]. To further investigate the nature of this short hydrogen bond, low spinning speed 13C NMR spectra of the CMX-citrate synthase complex were obtained under a variety of sample conditions. Tensor values describing the chemical shift anisotropy of the carboxyl groups of the inhibitor were obtained by simulating MAS spectra (233 +/- 4, 206 +/- 5, and 105 +/- 2 ppm vs TMS). Comparison of these values with our previously reported database and ab initio calculations of carbon shift tensor values clearly indicates that the carboxyl is deprotonated. New data from model compounds suggest that hydrogen bonds in a syn arrangement with respect to the carboxylate group have a pronounced effect upon the shift tensors for the carboxylate, while anti hydrogen bonds, regardless of their length, apparently do not perturb the shift tensors of the carboxyl group. Thus the tensor values for the enzyme-inhibitor complex could be consistent with either a very long syn hydrogen bond or an anti hydrogen bond; the latter would agree very well with previous crystallographic results. Two-dimensional 1H-13C heteronuclear correlation spectra of the enzyme-inhibitor complex were obtained. Strong cross-peaks were observed from the carboxyl carbon to proton(s) with chemical shift(s) of 22 +/- 5 ppm. Both the proton chemical shift and the intensity of the cross-peak indicate a very short hydrogen bond to the carboxyl group of the inhibitor, the C.H distance based upon the cross-peak intensity being 2.0 +/- 0.4 A. This proton resonance is assigned to Hdelta2 of Asp 375, on the basis of comparison with crystal structures and the fact that this cross-peak was absent in the heteronuclear correlation spectrum of the inhibitor-D375G mutant enzyme complex. In summary, our NMR studies support the suggestion that a very short hydrogen bond is formed between the TSA and the Asp carboxylate.  相似文献   

17.
The specific binding of 125I-PDGF (platelet-derived growth factor) to intact fibroblasts becomes relatively nondissociable during incubation at 37 degrees C. To characterize the interaction of PDGF with its receptors under conditions in which there is no receptor internalization, we have studied the binding of 125I-PDGF to membrane preparations derived from mouse 3T3 cells and rat liver. The binding sites had the affinity and specificity characteristics expected of PDGF receptors. At 37 degrees C (but not at 4 degrees C) the specific binding of 125I-PDGF to membranes gradually became nondissociable as assessed by either dilution or by addition of excess unlabeled PDGF. This tight binding was not due to a covalent interaction since the polyanionic compound suramin readily dissociated specifically bound 125I-PDGF. This property of suramin was used to expose rat liver PDGF receptors which were occupied by endogenous PDGF. Affinity cross-linking studies demonstrated that the formation of the nondissociable state of 125I-PDGF binding was associated with the binding of 125I-PDGF to a 160,000-dalton protein and to a 110,000-dalton species. The cross-linked binding sites could be adsorbed to wheat germ agglutinin and to anion exchange resins. The isoelectric point of both cross-linked species determined by two-dimensional gel electrophoresis was approximately 4.7. These data demonstrate that in membrane preparations, PDGF binds to an anionic 160,000-dalton glycoprotein which is likely to be the receptor. A high affinity state of PDGF binding, which is formed rapidly at 37 degrees C, can be dissociated by suramin.  相似文献   

18.
The Cyssor reagent, 2-methyl-N1-benzenesulfonyl-N4-bromoacetylquinonediimide, which will cleave a protein chain at Cys under acidic conditions, cross-linked unreduced and partially reduced antibody at pH 8.0. No cleavage of the antibody occurred suggesting that the Cyssor reagent may be useful with certain proteins as a heterobifunctional cross-linker.  相似文献   

19.
A protein cross-linking reagent which contains a monothioacetal moiety is described. Cross-links generated using this reagent may be specifically cleaved by dilute mercuric ion at neutral pH.  相似文献   

20.
1. Cell-wall hydrolysates from calli of all higher plants tested contained a new phenolic amino acid for which the trivial name isodityrosine is proposed. Isodityrosine was shown to be an oxidatively coupled dimer of tyrosine with the two tyrosine units linked by a diphenyl ether bridge. 2. The amount of isodityrosine in sodium dodecyl sulphate-insoluble cell-wall preparations was proportional to the amount of hydroxyproline. 3. Acidified chlorite split the diphenyl ether bridge of isodityrosine, and concomitantly solubilized the cell-wall glycoprotein. 4. Dithiothreitol inhibited isodityrosine synthesis in vivo, and suppressed in parallel the covalent binding of newly synthesized protein in the cell wall. 5. It is suggested that isodityrosine is an inter-polypeptide cross-link responsible for the insolubility of plant cell-wall glycoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号